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ABSTRACT

Various commonly used Kessler-type parameterizations of the autoconversion of cloud droplets to embryonic
raindrops are theoretically derived from the same formalism by applying the generalized mean value theorem
for integrals 10 the general collection equation. The new formalism clearly reveals the approximations and
assumptions that are implicitly embedded in these different parameterizations. A new Kessler-lype purameter-
ization is further derived by eliminating the incorrect and/or unnecessary assumptions inherent in the existing
Kessler-type purameterizations. The new parameterization exhibits a different dependence on liguid water content
and droplet concentration, and provides theoretical explanations for the multitude of values assigned to the
tunable coefficients associated with the commonly used parameterizations, Relative dispersion of the cloud
droplet size distribution (defined as the ratio of the stundard deviation to the mean radius of the cloud droplet
size distribution) is explicitly included in the new parameterization, allowing for investigation of the influences
of the relative dispersion on the autoconversion rate and, hence, on the second indirect aerosol effect. The new
analytical parameterization compares favorably with those parameterizations empirically obtained by curve-
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fitting results from simulations of detailed microphysical models,

1. Introduction

Rain is initiated in liquid water clouds by collision
and coalescence of cloud droplets wherein larger drop-
lets with higher settling velocities collect smaller drop-
lets and become embryonic raindrops. This so-called
autoconversion process is usually the dominant process
that leads to the formation of drizzle in stratiform
clouds. Accurate parameterization of the autoconversion
process in atmospheric models of various scales [from
large eddy simulations (LESs) to global climate models]
is important for understanding the interactions between
cloud microphysics and cloud dynamics (e.g., Chen and
Cotton 1987), for the forecasting of the freezing drizzle
formation and aircraft icing (Rasmussen et al. 2002),
and for improving the treatment of clouds in climate
models (Rotstayn 2000).

Kessler (1969) proposed a simple parameterization
that linearly relates the autoconversion rate to the cloud
liquid water content, and this parameterization has been
widely used in cloud-related modeling studies because
of its simplicity. But this simple parameterization leaves
much to be desired, as it is well known that the auto-
conversion rate is a function of not only of the liquid
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water content but also the cloud droplet number con-
centration and the spectral shape of the cloud droplet
size distribution (Berry 1967; Berry and Reinhardt
1974a.b). Over the last several decades, much effort has
been devoted to improving the original Kessler param-
eterization by including the effect of the droplet con-
centration as well as liquid water content (Manton and
Cotton 1977; Tripoli and Cotton 1980; Liou and Ou
1989; Baker 1993). The effort to improve the parame-
terization of the autoconversion rate has been recently
reinforced by an increasing interest in cloud—climate
interactions, and particularly in studies of the second
indirect aerosol effect (Boucher et al, 1995; Lohmann
and Fleichter 1997; Rotstayn 2000).

Without loss of generality, all of the Kessler-type pa-
rameterizations can be written as

P=cLHy — ¥y, (1)

where P is the auloconversion rate (in g cm=3 s71), ¢
is an empirical coefficient (in s=!) (hereafter conversion
coefficient), and L is the cloud liquid water content (in
g cm ). The Heaviside step function H(y — y.) is in-
troduced to describe a threshold y, (hereafter threshold
coefficient) below which the autoconversion is negli-
gibly small. The meaning of v is different in different
parameterizations; for example, y represents the cloud
liquid water content in the original Kessler parameter-
ization, whereas it represents the mean volume radius
in the Manton and Cotton expression, and the mean
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radius of the fourth moment in the parameterizations of
Liou and Ou (1989), Baker (1993), and Boucher et al
(1993). It is noteworthy that, while the autoconversion
rate is also formulated in terms of the cloud water mix-
ing ratio instead of the liquid water content, transfor-
mation between these two equivalent formulations is
straightforward.

A common problem with the Kessler-type parame-
terizations is that they collectively lack a solid theoret-
ical foundation, approximations associated with their
use are not clear, and the logical connections between
the various Kessler-type parameterizations are not well
understood. Here we first derive the various existing
Kessler-type parameterizations by applying the gener-
alized mean value theorem to the general collection
equation. This derivation readily reveals the distinctions
between, and approximations of, these different param-
eterizations. The existing Kessler-type parameteriza-
tions are then generalized into a unified expression that
includes the effect of the spectral shape of the cloud
droplet size distribution as well as the droplet concen-
tration and liquid water content. A new Kessler-lype
parameterization that eliminates the incorrect and/or un-
necessary assumptions inherent in the existing param-
eterizations is further developed and applied to explain
the multitude of the empirical coefficients associated
with the existing Kessler-type parameterizations. The
effect of the spectral shape on the autoconversion rate
is also discussed using the new parameterization.

2. Reexamination of typical Kessler-type
parameterizations

As discussed above, one of the problems shared by
the existing Kessler-type parameterizations is the lack
of a rigorous theoretical basis for their formulation. The
purpose of this section is to show that application of
the generalized mean value theorem for integrals to the
general equation for the autoconversion rate provides
the required theory.

a. Autoconversion rate and generalized mean valte
theorem for integrals

We first recapitulate the expression for the autocon-
version rate and the generalized mean value theorem
for integrals that will be used in this work. From the
continuous collection equation, the mass growth rate of
a collector drop of radius R falling through a population
of smaller droplets having a cloud droplet size distri-
bution n(r) is given by (Pruppacher and Klett 1997)

dm(R) _

J. K(R, nm(ru(r) dr. (2)
dt

The autoconversion rate P is obtained by further inte-
grating (2) over all collector drops:
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I
P = J%’n(fe) dR

«
= J- H(R) dR J K(R, rym(rn(r) dr. (3)

The interval of the integration is from the smallest to
the largest droplets, and is omitted throughout the paper
for simplicity. It is well known from standard calculus
textbooks (e.g., Spiegel 1992) that, if f(x) and g(x) are
continuous in the interval x € [a, b] and g(x) does not
change sign in this interval, then there is a point x, €
{(a, b) such that

b i
j Fingx) dv = flx,) j g(x) dx. )

It will be shown below that application of the gen-
eralized mean value theorem for integrals to (3) provides
a unified basis for the various Kessler-type parameter-
izations.

b. Derivation of the tvpical Kessler-type
parameterizations

Kessler (1969) intuitively proposed an expression for
the autoconversion rate such that

P, =aL - L., (5a)

where L. is the threshold liquid water content below
which the autoconversion rate is assumed to be so small
that the empirical coefficient a, = 0 when L = L_, and
a, > 0 when L > L_. This parameterization can be
rewritten as (Khairoutdinov and Kogan 2000)

P, = ay(lL — LOH(L — L)), (5b)

where the Heaviside function is introduced to represent
the threshold process. Equation (5b) can be further ex-
pressed in the form of (1):

P, = c,LH(L — L). (5¢)

Comparison of (5c) with (5b) yields
e = 1 - L, (5d)

Ci\' aK L 1

Equation (5d) provides an explanation for the results
obtained by Kessler (1969) that increasing a, affects
precipitation development in much the same way as does
decreasing the threshold liquid water content because
the autoconversion rate increases when a, increases or
the threshold liquid water content decreases for a given
liquid water content.

The Kessler parameterization can also be derived by
applying the generalized mean value theorem for inte-
grals to (3) as follows. Application of the generalized
mean value theorem to the first integral of (3) yields
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P = K(R, ren(R) dR f m(rn(r) dr

=L | K(R ryn(R) dR, (6)
where r, is between the smallest and the largest cloud

droplets. Further application of the generalized mean
value theorem to (6) yields

P = KR, roNL = ¢,L, (7)

where R, is between the smallest and the largest cloud
droplets, N is the total number concentration of cloud
droplets, and K(Ry, r,) represents the “average’ col-
lection kernel. Equation (7) becomes the Kessler pa-
rameterization if the conversion rate satisfies (5d). The
above derivation shows that the original Kessler param-
eterization with constant values of a, and L, results from
the assumption of a fixed collection kernel that is in-
dependent of droplet radius and proportional to (I —
L J/L)N ', These assumptions are clearly not valid.

Manton and Cotton (1977; see also Tripoli and Cotton
1980) formulated a similar expression for the autocon-
version rate

Pyc = eyeLH(L — L) (8)

Unlike the original Kessler parameterization, however,
the conversion coefficient was further expressed as

Cne = TEGRIV(R)N, (9)

where Ey. represents an average collection efficiency
associated with the autoconversion process, R, is the
mean volume radius (see the appendix for the definition
of R;), and V(R,) is the terminal velocity of a droplet
of radius R;. They also argued that the threshold of the
autoconversion process was determined by the value of
the mean volume radius instead of by the liquid water
contents such that

_ 4ap,

L.=——R3}N, (10)
3

where R, is the threshold mean volume radius, and p,,
is the density of water. Manton and Cotton used E, . =
0.55, and R,, = 10 pum.

The Manton—Cotton parameterization can also be de-
rived by applying the mean value theorem to the collec-
tion equation, but in a slightly different way than for the
original Kessler parameterization. The collection kernel
K (R, r) depends generally on the collection efficiency
E and the terminal velocity V and is given by

KR ry = ER raR + n?*V(R) — V(M. (11

Because cloud droplets are so small, this equation can
be simplified by assuming that

(R+ =R (12a)
V(R) — V(r) = V(R). (12b)
Substitution of (12a), (12b), and (11) into (3) yields

and
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P=x f R*V(Rn(R) dR f ER, rym(rn(ry dr. (13)

Application of the generalized mean-value theorem to
the first integral of (13} yields

P=aL f RVRMRER, rye) dR. (14)

Further application of the generalized mean-value the-
orem to (14) yields

P

TLR:V(Ryc)Eye | n(R) dR

= 7L Ric V(R )NL. (15)

Comparison of (13) to (8) and (9) shows that (15) re-
duces to the Manton—Cotton parameterization under the
assumption of R, = R,. This assumption is invalid
except in the case of a4 monodisperse cloud droplet size
distribution.

The familiar form of the Manton-Cotton parameter-
ization can be derived by assuming that the terminal
velocity of the drop R is well described by the Stokes
law

V(R) = k,R?, (16)
where k¥, = 1.19 X 10°cm~' $~' is the Stokes constant.
Substitution of (16) into (15) yields

Ryc = 7, EyeRINL. (17a)
Substitution of the expression relating the mean velume
radius to the liquid water content and droplet concen-

tration into (17a) yields the familiar form of the Man-
ton—-Cotton parameterization:

Puc = ayeN""L7HR, — R,), (17b)
where the parameter
3 /3
Qe = TK, Eyios (17¢)
4mp,,

The Heaviside function H(R, — R,,) is introduced to
consider the threshold process such that the autocon-
version rate is negligibly small when R, < R,,.

A major improvement of the Manton—Cotton param-
eterization over the original Kessler parameterization is
inclusion of the droplet concentration as a dependent
variable in formulation of the autoconversion rate,
which enables one to differentiate between airmass
types. Another improvement is that the threshold is de-
termined by the mean volume radius rather than the
liquid water content; this change makes physical sense
because a cloud with a large liquid water content, a
large number of droplets, and therefore a small mean
volume radius will not rain. It is evident from the above
derivation that these improvements result from relaxing
the assumption of a fixed collection kernel (independent
of the droplet radius) inherent in the original Kessler
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parameterization, The derivation also exposes the fol-
lowing deficiencies remaining in the Manton—Cotton pa-
rameterization: fixed collection efficiency, terminal ve-
locity, and Ryc = R,.

Several parameterizations that are slightly different
from the Manton—Cotton parameterization have been
subsequently proposed. Instead of applying the mean-
value theorem to the integral of (14) before substituting
the Stokes law for the terminal velocity, Liou and Ou
(1989) relaxed the assumption of a fixed terminal ve-
locity by first applying the Stokes law for the terminal
velocity and obtained the autoconversion rate

P = mx, L j E(R, ryc)R'n(R) dR. (18)

Application of the generalized mean-value theorem to
(18) yields

P, = wx E,L J Rn(R)y dR = @k, E,RINL, (19)

where E, is the average collection efficiency associated
with (18) and R, is the mean radius of the fourth moment
(see the appendix for the definition of R,). Liou and Ou
assumed a fixed linear relation between R, and the
mean-square radius R,, R, = 1.247R,, and investigated
sensitivities of cloud radiative properties to the mean-
square radius.

In investigation of the behavior of cloud condensation
nuclei in the marine cloud-topped boundary layer, Baker
(1993) used a similar parameterization but assumed R,
is equal to the mean volume radius R, such that

3 13
Plinkcr = 77.“'(4—) EA17N7II3L7ISP;(R] - RS‘-)! (20)
TPy

where £, = 0.55, R,, = 10 um, and the empirical mul-
tiplier y, which varies from 0.01 and 0.1, was introduced
to make the autoconversion rate smaller. The Heaviside
function H(R, — R..) is again introduced to consider
the threshold process such that the autoconversion rate
is negligibly small when R, < R,

In their GCM study, Boucher et al. (1995) assumed
a fixed linear relation between R, and the mean volume
radius, R, = 1.1R,, and obtained an autoconversion
parameterization given by

Pooi. = ;N LPHR, — R,),  (2la)

Boucher

% 113
ay = ’fTI(‘,(4;p ) (1.D)*E,y, (21b)

where the Heaviside function H(R, — R,.) is introduced
to consider the threshold process such that the auto-
conversion rate is negligibly small when R, < R,.. Note
that the threshold process is determined by the mean
radius of the fourth moment rather than the mean vol-
ume radius. Also noted is that, unlike Baker (1993),
they found that a value of ¥ = 1 generated more rea-
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sonable results. A value of £, = 0.55 was used in this
study. They also studied the sensitivity to the value of
the threshold radius R, .

3. New parameterizations
a. Generalized R, parameterization

Compared to the Manton—Cotton parameterization,
one of the features shared by the Baker and the Boucher
parameterizations is that the mean volume radius R; in
the Manton—Cotton parameterization is replaced by the
mean radius of the fourth moment R, in both the con-
version and the threshold coefficients. Values of the two
average collection efficiencies, Ey, and E,, may differ
to some degree. These differences arise because the
Baker and Boucher parameterizations eliminate the as-
sumption of fixed terminal velocity. Furthermore, as will
become evident later, the linear relation between R, and
R, assumed in the Baker and Boucher parameterizations
is easier to physically justify than the assumption that
Ry = R, in the Manton—Cotton parameterization. How-
ever, the differences between the three parameterizations
are minimal in practice because the o parameters (@,
g ers AN e ) and the threshold radii are arbitrarily
tuned in most modeling studies. For this reason, the
three parameterizations will hereafter be lumped to-
gether and referred to as the traditional R, parameter-
izations to emphasize the important role of the fourth
moment [see Eq. (19)].

The Baker and the Boucher parameterizations can be
generalized into a common expression by assuming a
general linear relation between the mean volume radius
and the mean radius of the fourth moment such that (see
the appendix for details)

Ry = B,R,,

where 8, is a nondimensional parameter depending on
the spectral shape of the cloud droplet size distribution.
Application of this expression gives the generalized R,
parameterization

P, = a,N-"LPH(R, — R.,), (230)
% 473
o, = K, (—) E.jB3. (23b)
dmp,

The differences between the three traditional R, param-
eterizations become evident from the above equations.
The Baker parameterization is a special case of the gen-
eralized R, parameterization with 8, = 1. In practice,
the Manton—Cotton parameterization can also be con-
sidered a special case with 8, = 1. As will be shown
below, B, is an increasing function of the relative dis-
persion of the cloud droplet size distribution defined as
the ratio of the standard deviation to the mean radius
of the cloud droplet size distribution. A value of 8, =
1 is equivalent to assuming a monodisperse cloud drop-
let size distribution. The Boucher parameterization cor-
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responds to a special case of 8, = 1.1, suggesting the
assumption of a larger, yet fixed relative dispersion for
the cloud droplet size distribution. Therefore, the pri-
mary differences between the traditional R, parameter-
izations reflect their different choices for the relative
dispersion of the ¢loud droplet size distribution. Ob-
viously, the assumption of fixed relative dispersion,
monodisperse or not, is troublesome.

The gamma distribution n(R) = N, R# exp(—AR) (N,,
# and A are distribution parameters) have been widely
used to describe cloud droplet size distributions in stud-
ies of the autoconversion rate (Berry 1967: Beheng
1994; Khairoutdinov and Kogan 2000). We have also
found that observed cloud droplet size distributions are
indeed well represented by the gamma distribution (Liu
and Daum 2000a,b). For the gamma droplet size dis-
tribution, 8, is eusily shown to be uniquely related to
the relative dispersion e of the cloud droplet size dis-
tribution by (see the appendix for details)

(1 + 32y
(1 + 2e3)(1 + e’

B, = (24)
[

According to this equation, 8, = 1.1 used in the Bou-

cher parameterization corresponds approximately to an

g = 0.5.

b. New R, parameterization

Although the various R, parameterizations are sig-
nificant improvements of the original Kessler paranie-
terization, they still suffer from the implicit deficiency
that the collection efficiency is treated as a constant
independent of droplet radius. This assumption is ob-
viously incorrect because it means collections between
droplets of nearly the same size are just as frequent as
those between droplets of very different sizes. Baker
(1993} discussed this deficiency and introduced a mul-
tiplicative parameter y (from 0.01 to 0.1) to adjust for
this effect. The other implicit assumption is the Stokes
terminal velocity, although the effect of the latter as-
sumption is minimal because the Stokes law describes
terminal velocities of small droplets reasonably well.
Here we develop a new parameterization that removes
these assumptions.

Long (1974) showed that for R < 50 pum the collec-
tion kernel can be well approximated by

K(R, 1) = k.RS, (25)

where the coefficient k, = 1.9 X 10" isincm ™3 s-!, R
is in cm, and the collection kernel X is in cm? s~!. See
also Pruppacher and Klett (1997) for more discussions
on the Long kernel. Substitution of (25} into (3) yields

P; =

h

1oL f Rn(R) dR = wk,NRSL, (26)

where ¥ is in em~3, R is the mean radius of the sixth
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moment in cm (see the appendix for the definition of
R, Lisingem™, and P, is g em~? s~!. Similar to
the generalized R, parameterization, we assume a gen-
eral linear relation between the mean volume radius and
the mean radius of the sixth moment, R, = B,R,. This
relation leads to the following expressions:

P, = 9gN'L3H(R, — R,.), (27a)
3 \?
n=|—| «.B% (27b)
4m7p,,

where the Heaviside function H(R, — R,,) is introduced
to consider the threshold process such that the auto-
conversion rate is negligibly small when R, < R,.. Note
the change of the threshold radius from R, in the R,
parameterizations to R in the new R parameterization.

For the purpose of comparison, the new R, param-
eterization is rewritten in the forms of the original Kes-
sler and the R, parameterizations such that

Py =c,LHR, — R, = a,N"ALH(R, — R,.), (28a)

o = a N V3L, (28b)
3\ JAEE
a, = (E) w31 (ﬁ) : (28¢)

Again, under the assumption that the cloud droplet size
distribution is described by the gamma distribution, the
relationship between S, and the relative dispersion (&)
is easily shown to be

176

_ |+ 3830 + 4821 + 58?)
“ (1 + e)(1 + 2&%)

(29)

4. Comparisons of the Kessler-type
parameterizations

To facilitate comparison, all the Kessler-type param-
eterizations discussed above are summarized in Table |
in the forms of the Kessler parameterization and the R,
parameterizations. Also given in the table are the major
approximations and assumptions associated with these
parameterizations as revealed by the common deriva-
tion. It is clear that the linear dependence of the auto-
conversion rate on the liquid water content in the orig-
inal Kessler parameterization arises from the incorrect
assumption of a fixed collection kernel. The R, param-
eterizations improve the original Kessler parameteri-
zation by relaxing the assumption of a fixed kernel to
that of fixed collection efficiency. All of the R, param-
eterizations exhibit the sume dependence on cloud liquid
water content (L™) and droplet concentration (N ~'%);
their differences lie in the characterization of the effect
of the relative dispersion. The new R, paramelerization
exhibits an even stronger dependence on both the liquid
water content (L*) and the droplet concentration (N ')
than the R, parameterizations. This improvement comes
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TABLE |, Summary of the Kessler-type autoconversion parameterizations, P = cLH(y — ¥».) = aN-WLBH(y — y.).

Parameterizations Assumptions

Conversion coefficient ¢ ¥ ¥

Kessler Fixed collection kernel

Manton—Cotion
trum, and fixed Stokes terminal velocity

Baker Fixed collection efficiency, Stokes terminal ve-
locity, and fixed, broader spectrum
Boucher Fixed collection efficiency, Stokes terminal ve-

locity, and fixed, broader spectrum

Generalized R,
velocity

New R, None of above

Fixed collection efficiency, monodisperse spec- Epe = QycNTLAA R, R,

L
cp=agll — 7 L L.

,-; 43
e = T (E) Ene

" - YR
Coarer = e L R, R,
3 3"
Dyaier = T E,
dap,,
. = T T
Chouener = AV 1L R, R

Aoucher

3 243
= mc,(—) E, (1.1)
dap,

Fixed collection efficiency and Stokes terminal ¢, = a,N-iL# R, R,

3 473
a, = e, (W) E.B
¢, = a N-VL R, R

s

3 1 [— 243
B d7p : N

L

from the elimination of the incorrect assumption of fixed
collection efficiency inherent in the R, parameteriza-
tions,

Examination of our new R parameterization provides
an explanation for a number of long-standing issues
associated with the original Kessler parameterization as
well as the various R, parameterizations. For example,
such a wide range of values have been assigned to the
coefficient a, in studies using the original Kessler pa-
rameterization that, in practice, it has been often con-
sidered to be arbitrarily tunable (e.g., Kessler 1969; Liu
and Orville 1969: Ghosh et al. 2000). It is evident from
the new R, parameterization that the wide range of val-
ues assumed for a, may stem from the variabilities in
the liquid water content, droplet concentration, and rel-

100

T 51

Relative Dispersion

Fig. 1. Dependence of B2 (solid line) and 3; (dashed line) on the
relative dispersion.

ative dispersion that are not properly accounted for in
the original Kessler parameterization. Similar to the ar-
bitrary tunability of the coefficient ay in the original
Kessler parameterization, a wide range of values has
been also assigned to the a (or y) coefficient in mod-
eling studies using the traditional R, parameterizations
(Baker 1993; Boucher et al. 1995). For example, the
range of y from 0.01 to 1, as suggested by Baker (1993)
and Boucher et al. (1995), alone leads to a difference
of three orders of magnitude in . The new R, param-
eterization again shows that the multitude of values that
have been assigned to & may be due to the combined
variabilities in liquid water content, droplet concentra-
tion, and relative dispersion.

Both the generalized R, parameterization and the new
R, parameterization explicitly account for the effect of
the spectral shape through the dependency of 8, and B
on the relative dispersion of the cloud droplet size dis-
tribution [(24) for 8, and (29) for B,]. This is a desirable
feature because the effect of spectral shape on the au-
toconversion rate is well known, yet poorly quantified
(Berry 1967, 1968; Berry and Reinhardt 1974a,b; Or-
ville and Kopp 1977). However, the dependency of the
autoconversion rate on the relative dispersion is quan-
titatively different for the generalized R, and the new
R, parameterizations. Figure 1 shows 8 and B as a
function of the relative dispersion within a range of
values observed in ambient clouds (Liu and Daum
2000a,b, 2002). As shown in Fig. 1, both 8} and 8¢
increase with increasing relative dispersion, suggesting
that the autoconversion rate is larger for a broader drop-
let size distribution when liquid water content and drop-
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let concentration remain the same. It also suggests that
the parameterizations assuming a monodisperse droplet
size distribution underestimate the corresponding au-
toconversion rates and the degree of underestimation
increases with the increasing relative dispersion because
B and B¢, respectively, represent the ratios of the au-
toconversion rates given by the generalized R, and the
new R, parameterizations to their counterparts assuming
a monodisperse droplet size distribution. Compared to
the new R parameterization, the generalized R, param-
eterization underestimates the effect of relative disper-
sion on the autoconversion rate as well, and the under-
estimation increases with the increasing relative dis-
persion. This deficiency of the generalized R, param-
eterization results from the incorrect assumption of fixed
collection efficiency inherent in the generalized R, pa-
rameterization.

Relative dispersion also impacts the autoconversion
rate by affecting the threshold radius. The threshold
radius is determined by the mean volume radius R;, by
the mean radius of the fourth moment R,, and by the
mean radius of the sixth moment R, in the Manton-
Cotton and the Baker parameterizations, in the Boucher
and the generalized R, parameterizations, and in our
new R, parameterization, respectively. [t is noteworthy
that R, is more closely related to the predominant radius
that is shown to determine the collection process by
Berry (1967, 1968) using a detailed microphysical mod-
el. Since the threshold radii for the generalized R, pa-
rameterization and the new R, parameterization are, re-
spectively, given by R,. = B,R,. and R, = B,R,., both
parameterizations tend to have threshold radii larger
than R, used in the Manton—Cotton and the Baker pa-
rameterizations, Simple calculations using (24) for 8,
and (29) for B3, show that the differences between R,
R, and R, increase with increasing relative dispersion.
The underestimation by R, can reach up to a factor of
1.4 for the generalized R, and 2.0 for the new R, pa-
rameterizations, depending on the relative dispersion.
According to few limited studies (Boucher et al. 1995),
differences of such magnitude in threshold radii caused
by the dispersion effect are large enough to significantly
affect the results of climate simulations.

It is evident from the above discussion that the orginal
Kessler parameterization and the various R, parameter-
izations have incorrect dependence of the autoconver-
sion rate on liquid water content, droplet concentration,
and relative dispersion due to using incorrect assump-
tions for the collection kernel. This fact should be em-
phasized because of their widespread use in cloud-re-
lated modeling ranging from LES models (Ghosh et al.
2000) to climate models (Boucher et al. 1995).

5. Comparison with model-based
parameterizations

Over the last few decades, several empirical expres-
sions have been developed to improve the parameteri-
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zation of the autoconversion rate by curve-fitting the
autoconversion rate obtained by numerically solving the
stochastic collection equation under a variety of initial
conditions (Berry 1968; Beheng 1994; Khairoutdinov
and Kogan 2000). Similar to our simple R, parameter-
ization, these model-based parameterizations all suggest
stronger dependence of the autoconversion rate on liquid
water content and droplet concentration than either the
original Kessler parameterization or the various R, pa-
rameterizations.

Figure 2 shows a comparison of the new R, param-
eterization to the model-based parameterizations in
more detail. A wide range of liquid water contents (from
0.01 to 5 g m~?) and droplet concentrations (from 10
to 2500 em~3) are used in the calculation of the auto-
conversion rates presented in this figure, which covers
virtually all the values likely observed in ambient
clouds. Two points are obvious from Fig. 2. First, there
are still significant discrepancies among the different
model-based parameterizations. Second, the new R pa-
rameterization well represents the average behavior of
the different model-based parameterizations, lending
additional support to the new R, parameterization. In
addition, the analytically derived R, parameterization
provides clearer physical insight than the model-based
parameterizations in which physics is often blurred in
the subtleties of the numerical model including initial
conditions.

6. Conclusions

The Kessler-type autoconversion parameterizations
that have been widely used in cloud-related modeling
studies are theoretically derived and analyzed by ap-
plying the generalized mean value theorem for integrals
to the general collection equation. The approximations
implicitly assumed in these parameterizations, their log-
ical connections, and the improvements are revealed by
the derivations. It is shown that the original Kessler
parameterization implicitly assumes a fixed collection
kernel independent of droplet sizes, The Manton—Cotton
parameterization improves the original Kessler param-
eterization by relaxing the assumptions of a fixed col-
lection kernel to a fixed collection efficiency and fixed
terminal velocity. The Baker and the Boucher param-
eterizations physically improve the Manton-Cotton pa-
rameterization by eliminating the assumption of a fixed
terminal velocity. It is also demonstrated that the Man-
ton-Cotton parameterization, the Baker parameteriza-
tion, and the Boucher parameterization can be gener-
alized to the so-called generalized R, parameterization,
each being a special case of the generalized R, param-
eterization with a different, yet fixed relative dispersion.

A new R, parameterization is analytically derived by
further eliminating the assumptions of fixed collection
efficiency and the Stokes expression for the terminal
velocity inherent in the various R, parameterizations by
use of the Long kernel. The new R, parameterization
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FiG. 2. Comparison of the new analytical R, parameterization (solid line) with previous modei-
based parameterizations, where KK represents the empirical parameterization given by Khai-
routdinov and Kogan (2000) and SB represents a parameterization derived by Seifert and Beheng
(2001) by analyzing the stochastic collection equation. Note that a relative dispersion of (.50 as
used in Boucher et al. (1993) is used in calculation of the autoconversion rate for parameterizations
that explicitly account for the relative dispersion. Relative dispersion is not considered in the
Khairoutdinov and Kogan parameterization. The threshold process embodied in the Heaviside
function is not considered for the R, parameterization to maintain consistency with the param-
eterizations that do not consider the threshold process.

suggests stronger dependence of the autoconversion rate
on liquid water content, droplet concentration, and rel-
ative dispersion and better represents the physics of the
autoconversion process compared to previous Kessler-
type parameterizations. This should be emphasized be-
cause the original Kessler parameterization and the var-
ious R, parameterizations are still being widely used
despite their deficiencies clearly revealed in this work.
Furthermore, examination of the new R, parameteri-
zation shows that the wide range of values chosen for
both the a, coefficient in the original Kessler parame-
terization and the o coefficient in the R, parameteri-
zations may be mainly due to the combined variabilities
in cloud liquid water content, droplet concentration, and
relative dispersion in ambient clouds. The practice of
arbitrarily tuning coefficients (ay in the original Kessler
parameterization and « in the R, parameterizations) to
match some constraints in modeling studies is therefore
misleading; critical information is lost in the tuning pro-
cess. Further comparisons of the new R, parameteri-

zation with the existing model-based parameterizations
lend additional support to the new R, parameterization.

In comparison with the commonly used Kessler-type
parameterizations (the original Kessler parameterization
and the traditional R, parameterizations), the new R,
parameterization has an additional advantage because it
includes relative dispersion as a dependent variable and
can be used to study the effect of the relative dispersion
on the autoconversion rate. Our preliminary analysis
indicates that the effect of the relative dispersion needs
to be accounted for in the parameterization of the au-
toconversion process. The importance of the relative
dispersion is further reinforced by its substantial effect
on cloud radiative properties (Liu and Daum 2000a,b;
Wood 2000). It has been recently shown that the relative
dispersion is enhanced by anthropogenic aerosols and
that this enhanced dispersion significantly affects the
evaluation of the Twomey effect (Liu and Daum 2002;
Peng and Lohmann 2003; Rotstayn and Liu 2003). It is
expected that the enhanced relative dispersion will fur-
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ther affect the evaluation of the so-called second indirect
aerosol effect by affecting the autoconversion rate. The
dispersion-dependent R, parameterization can be used
to quantify this effect. It is noteworthy that some model-
based parameterizations (e.g., the Berry and the Beheng
parameterizations) also consider the relative dispersion
as a dependent variable,

Several points are noteworthy in passing. First, cloud
turbulence is also known to affect the dispersion of the
cloud droplet size distribution and the collection process
(Telford 1996; Liu et al. 2002; Shaw 2003). Thus, fur-
ther development of the autoconversion parameteriza-
tion must consider cloud turbulence as well. Second,
some studies (Cotton [972; Seifert and Beheng 2001)
suggest that the transient (or aging) behavior of the au-
toconversion process could be important; more research
on this issue is needed. Third, similar parameterizations
for the autoconversion rate have been used in models
of various scales ranging from LES models to global
climate models, and this brings up the issue of the scale
dependence of such parameterizations (Pincus and Klein
2000; Rotstayn 2000; Wood et al, 2002; Zhang et al.
2002). Approaches other than the simple Kessler-type
parameterizations may be necessary for treating these
complex problems. A potential candidate was proposed
by Feingold et al. (1998), which represents cloud and
drizzle size distributions using two analytical functions
(e.g., lognormal).
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APPENDIX

Various Mean Radii and Expressions for

B, and B,

The pth moment of the cloud droplet size distribution

n(R) is defined as
J-R"n(R) dR

M, =—

i 5 (Al)

where N is the total droplet number concentration, and
p = 1,2, 3, .... The mean radius of the pth moment
is defined as

R, = M, (A2)
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For the commonly used gamma droplet size distribu-
tions n(R) = NyR" exp(—AR), R, is given by

R - Np +p+1)
roAN| TA A+ )

1ip

) (A3)

where I'( - ) is the gamma function. Therefore, we have

- & _ Cip+p-+1 1ps 1 o ot 13 -3

B.ﬂ' - R? - ['(1;+th o) (1 -+ u) . (Ad)
4+

i . and AS

& [+ w2+ w( + e (A5)
[(6 + NS 4 p)(d + py]ve

) ’ AG
d [(3 + w2+ )l + v (A6)

For the gamma distribution, the spectral shape parameter
e is related to the relative dispersion by

p=g?—1 (A7)

Substitution of (A7) into (AS5) and (A6), respectively,
yields
B (l _*_ 382)11-1

[(L + 2&3)}1 + g2

8. and (AB)

o

(1 -+ 3e?)(1 + 4e)(1 + 58?)
(I + e3)(1 + 2?)

Bfl = (Ag)

It is noteworthy that, besides the gamma distribution,
a lognormal distribution and Weibull distribution are
often used to describe droplet size distributions as well.
For these distributions, R, is linearly related to R, but
with different dependences of B8, on the relative dis-
persion. The gamma distribution is chosen here because
it describes observed droplet size distributions better
than the lognormal distribution and gives simple ana-
Iytical expressions for B, and 8, (Liu and Daum 2000b).
Detailed comparisons will be addressed elsewhere.
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Reply

We welcome and appreciate the comment by Wood
and Blossey (2003, hereafter WB) on our paper (Liu and
Daum 2004, hereafter LH). In response, we would like to
make the following points.

First, as clearly stated in LH, Kessler-type
parameterizations take the form of a product of two
different functions:

P=POH(J‘d—rC), (D

where Py represents the autoconversion rate after the onset
of the autoconversion process (autoconversion function
hereafter), and the Heaviside step function H represents
the threshold behavior such that the autoconversion rate is
zero when the driving radius 14 is less than the critical
radivs r.. Differences between the various Kessler-type
parameterizations arise from how Py and ry are specified.
In the Liu-Daum parameterization, both Py and ry are
determined by the mean radius of the sixth moment of the
cloud droplet size distribution instead of the mean radius
of the third or fourth moment of previous
parameterizations. It is noteworthy that WB essentially
compares the autoconversion rate calculated from a
detailed collection model to the autoconversion function
Py, not the Liu-Daum parameterization, which is the
product of Py and the Heaviside step function introduced
to represent the threshold behavior. Furthermore, as
demonstrated in WB’s Fig. 2b, WB tends to focus more
on the threshold behavior. This figure shows the ratio of
Py to P as a function of the volume-mean radius, and
reveals that the real autoconversion rate falls sharply after
the driving radius ry is less than some threshold value
between 10 and 15 pm.

Second, there are two different approaches that have
been used to mathematically define the autoconversion
rate. According to Kessler’s original ideas,
autoconversion starts once some threshold is crossed, and
the autoconversion rate represents the growth rate by the
collection process integrated over drops from the critical
radius to sizes that are large enough to fall as small
raindrops. Existing Kessler-type parameterizations,
including the Liun-Daum parameterization derived in LH,
basically follow this definition, and assume an abrupt
threshold behavior described by the Heaviside step
function. The other approach, pioneered by Beheng and
his group (e.g., Beheng 1994), is used in WB. The
Beheng approach separates self-collection of cloud
droplets (collected cloud droplets remain as cloud
droplets) from the autoconversion process, and seems
reasonable at first glance. However, as correctly pointed
out in WB, the result obtained using this approach is
highly sensitive to the separation radius ry. Separation
radius is introduced to distinguish cloud droplets from
raindrops, but there appears to be no fundamental basis
for choosing a value for it, and values from 20 pum (e.g.,

WB) to 50 um (e.g., Beheng 1994) to 100 pm (Simpson
and Wiggert 11969) have been used. Note that WB
appears to confuse the separation radius with the critical
radius as defined in Liu et al. (2004) and McGraw and Liu
(2004).

Finally, the results presented in WB indeed raise
questions as to the representation of the threshold
behavior and the effect of truncating the cloud droplet
size distribution on the autoconversion rate. It is clear
from WB’s Fig. 2b that the “all-or-nothing”
representation of the threshold behavior by the Heaviside
step function used in Kessler-type parameterizations,
including the Liu-Daum parameterization, does not
accurately describe the threshold behavior; the change of
the autoconversion rate near the threshold is smooth, not
discontinuous as characterized by the Heaviside step
function. Therefore, to further improve the
autoconversion parameterization requires going beyond
the commonly used Kessler-type parameterizations.
Another related issue is the choice between the two
different definitions of the autoconversion rate, which
should be consistent with the other processes (e.g.,
accretion) that need to be parameterized in atmospheric
models.
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