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Abstract

The quadrature method of moments (QMOM), a promising new tool for aerosol dynamics simulation is
extended to generally mixed multicomponent particle populations. This paper develops the mathematical and
statistical foundation for a fully multivariate extension of the QMOM using principal components analysis
(PCA). In essence, the full particle distribution function is systematically replaced by a set of lower-order
mixed moments and corresponding multivariate quadrature points optimally assigned through PCA and back
projection. The resulting PCA–QMOM is illustrated for a multivariate normal particle population in order
to compare quadrature point assignments with analytic results, but the method is applicable to arbitrary dis-
tributions. Physical and optical properties can be reliably estimated by summation over the PCA-assigned
quadrature points. Application of the PCA–QMOM to the dynamics of generally mixed particle populations
evolving under condensation, coagulation, and sintering is described in the following paper (Part II).
Published by Elsevier Ltd.
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1. Introduction

The method of moments (MOM) has been developed in recent years into a powerful and e<cient
simulation tool that is now a viable alternative to sectional and modal methods for representing
aerosol microphysical processes in atmospheric models (Wright, McGraw, Benkovitz, & Schwartz
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2000; Yu, Kasibhatla, Wright, Schwartz, McGraw, & Deng, 2003). Operationally, the MOM is a
method for direct tracking of the lower-order moments of a particle distribution function (pdf) rather
than the distribution itself. This reduction in number of variables contributes much to the computa-
tional e<ciency of the method while oGering unique advantages for engineering applications requiring
simulation of particle populations under conditions that can include new particle formation, evapo-
ration, growth by condensation and coagulation, and complex mixing Hows (Hulburt & Katz, 1964;
McGraw & Saunders, 1984; Pratsinis, 1988; Jurcik & Brock, 1993; La Violette, Berry, & McGraw,
1996; Yu et al., 2003). Closure of the moment evolution equations, which has always been a
key issue with the MOM, has been achieved for general particle growth laws by combining the
MOM with quadrature methods resulting in the quadrature method of moments (QMOM) (McGraw,
1997; Barrett & Webb, 1998). In addition to achieving closure, the QMOM, by exploiting a funda-
mental mathematical connection between moments and quadrature abscissas and weights (Press &
Teukolsky, 1990), yields a systematic and accurate prescription for reliable estimation of the physi-
cal and optical properties of a particle population directly from its lower-order moments (McGraw,
Huang, & Schwartz, 1995; Wright, 2000; Rosner, McGraw, & Tandon, 2003). Recently the QMOM
has been extended to model the chemically resolved dynamics of multicomponent internally mixed
aerosols (McGraw & Wright, 2003) (the assumption of internal mixing reduces the problem to a
univariate one for which the composition of a particle is determined from its mass).

With a few mostly bivariate exceptions (e.g., Strom, Okada, & Heintzenberg, 1992; Xiong &
Pratsinis, 1993; Wright, McGraw, & Rosner, 2001), pdfs have generally been approximated using
only a single (univariate) particle coordinate, such as radius or mass. On the other hand, there is a
growing need for reliable multivariate pdf models in such diverse Melds as combustion, nano-particle
synthesis, and assessment of radiative and health eGects of atmospheric aerosols and their impact on
climate. This is driven, in part, by new advances in the technology for particle measurement. For ex-
ample, Meld-deployable, single-particle mass spectroscopic techniques now furnish the composition of
multicomponent aerosols in real time and on a particle-by-particle basis (Murphy & Thomson, 1995;
Suess & Prather, 1999). Multicomponent thermodynamic models (Clegg, Brimblecombe, & Wexler,
1998), capable of estimating the phase stability and evaporation rates of mixed particles, provide
yet another driver for development of a multivariate aerosol model as such detailed information is
underutilized in a univariate description. The analysis of single-particle measurements has spurred the
development of sophisticated software tools for multivariate data visualization, analysis, and com-
pression (Imre, 2003). The need for e<cient microphysical-based simulations that can be run in real
time and compared with these new kinds of measurements has, in turn, motivated our development
of the present multivariate, statistically based aerosol model. Interestingly, some of the methods de-
veloped below for simulation (Section 2.2) are better known historically for their applications to
data analysis and compression.

The great e<ciency of moment methods makes them ideal candidates for multivariate applications.
The following sections develop the mathematical foundation for a fully multivariate extension of
the QMOM using principal components analysis (PCA). The resulting PCA–QMOM is illustrated
in Section 3 for a multivariate normal particle population in order to compare various quadrature
point assignments with analytic results, but the method is by no means limited to this case. In
Section 4 we describe how to estimate physical and optical properties of a particle population,
and obtain closure of the moment evolution equations, directly from the mixed moments tracked
in a simulation. This paper (Part I) describes application of PCA to the QMOM with an arbitrary
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number of quadrature points per variable. The following paper (Part II) gives several illustrations
of the method including its application to the simulation of generally mixed aerosols evolving under
condensation and coagulation. The illustrations of Part II will use the simplest implementation of
the method described here with two quadrature points per variable (e.g., 2h quadrature points for an
aerosol having h components).

2. Mathematical approach

In this paper we treat generally mixed, multivariate pdfs for which internally mixed and externally
mixed particle populations are special limiting cases. For deMniteness, examples of the pdfs will
be drawn mostly from the composition space of a multicomponent, but otherwise uniform-particle
aerosol (i.e. an aerosol consisting of a distribution of spherical particles with homogeneous mixing
within each particle). The description of particles of mixed size and shape is presented in Part II.

2.1. Multivariate distribution functions, moments, and quadrature approximations for generally
mixed particle populations

Consider the multivariate pdf for particle number, f(m1; m2; : : : ; mh) where h is the number of
components. This distribution function gives the number of particles per unit volume having com-
ponent masses m1 between m1 and m1 + dm1, etc. Note that f(m1; m2; : : : ; mh) is still not the most
general description possible because it assumes that each particle is homogeneously mixed. (For ex-
ample, a homogeneously mixed particle and a “core–mantle” particle each having the same overall
composition would not be distinguished in this representation; although they could be distinguished
by the methods to be described if additional variables were introduced.) For ease of presentation,
we will limit discussion to distributions of the type f(m1; m2; : : : ; mh) whose treatment, while not
the most general case possible, requires a considerable advance in the representation of multivariate
particle populations.

The total mass distribution, giving the total mass of particles per unit volume having m1 between
m1 and m1 + dm1, etc. is

q(m1; m2; : : : ; mh) = (m1 + m2 + · · · + mh)f(m1; m2; : : : ; mh): (2.1)

For internal mixtures these multivariate distributions reduce to univariate forms f(m) and q(m)
dependent only on the total particle mass, m=m1 +m2 + · · ·+mh (McGraw & Wright, 2003). Other
distribution functions are also obtainable from the full distribution, e.g., the marginal distributions
of the multivariate number distribution are deMned as

f1(m1) =
∫

f(m1; m2; : : : ; mh) dm2 dm3 : : : dmh; (2.2)

etc.
Multivariate mixed moments of the number distribution are deMned as

�kl:::w ≡ 〈mk
1m

l
2 : : : m

w
h 〉f =

∫
mk

1m
l
2 : : : m

w
h f(m1; m2; : : : ; mh) dm1 dm2 : : : dmh; (2.3)
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where we will used the simpliMed notation, with moments �kl:::w, in cases where no ambiguity can
arise, and the more complete angular bracket notation otherwise. Thus, the total mass of all the
particles per unit volume is

M =
∑
i

〈mi〉f (2.4)

which is also equal to the zeroth moment of the internal mixture mass distribution, q(m), and to the
Mrst mass moment of the internal mixture number distribution, f(m).

Moments suitable for comparison with the mass (m) moments of an internal mixture can be
calculated as combinations of the general mixed moments of multivariate distributions. Thus the kth
mass moment of f(m) is

〈(m1 + m2 + · · · + mh)k〉f =
∫

mkf(m) dm; (2.5)

where the left-hand side is a linear combination of multivariate mixed moments whose coe<cients
are deMned by the expansion. Similarly, we can deMne the m-moments of the individual species
distributions of an internal mixture qi(m) = mif(m):∫

mkqi(m) dm = 〈(m1 + m2 + · · · + mh)kmi〉f; (2.6)

where the right-hand side is a linear combination of mixed moments of the type deMned by Eq. (2.3).
Thus, any of the moments arising in the treatment of internal mixtures can be obtained in terms of
the more general mixed moments. In an external mixture, f(m1; m2; : : : ; mh) simply decomposes into
a sum of noninteracting particle populations. These can be multivariate themselves, but are usually
taken to be univariate for ease of simulation. Accordingly, here there is no need to further examine
the external mixing case. Indeed, the more interesting case that the pdf decomposes into a set of
multivariate populations that do interact is handled using the PCA–QMOM in Part II.

Consider N -point quadrature approximations to some of the multidimensional integrals given
above—other cases follow in similar fashion. The quadrature points (to illustrate for the bivari-
ate case) are of the form {m1j; m2j; wj} for j = 1; : : : ; N . We will use a subscript i to label species
and subscripts j, and sometimes k, to label quadrature points. The weight of the jth quadrature point
is wj. The quadrature approximation to Eq. (2.3) is

�kl:::w ≈
N∑
j=1

mk
1jm

l
2j : : : m

w
hjwj: (2.7)

In similar fashion, the quadrature approximation to Eq. (2.6) is

〈mk〉qi ≈
N∑
j=1

mijmk
jwj; (2.8)

where mj = m1j + m2j + · · · + mhj is total mass for quadrature point j. We are especially interested
in assignments of the quadrature points for which, for certain moments, the approximate equalities
of Eqs. (2.7) and (2.8) become exact.
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The key to the QMOM is the mathematical method that allows optimal assignment of the quadra-
ture points when only the moments of the pdf are known. Mathematical techniques for assigning
quadrature points in higher dimension, although the subject of a number of articles and monographs
(see, e.g., Engels, 1980), are not as developed as in the univariate case; especially in cases where only
the lower-order moments of the weight functions (i.e. the pdfs) are known. Quadrature points were
assigned in a bivariate extension of the QMOM by inverting diGerent sets of nine mixed-moments,
to obtain corresponding sets of three quadrature points in the plane and, alternatively, by inverting
36 mixed-moments, using a nonlinear search algorithm, to obtain 12 points (Wright et al., 2001). A
variant of the three-point quadrature assignment was recently applied to the simulation of coagulating
and sintering nanoparticles in Hames (Rosner & Pyykonen, 2002). These assignments, although ac-
curate and resulting in simulation times that are orders of magnitude faster than a full 2D sectional
approach, can still be computationally intensive when a nonlinear search is required and are not
readily extendable to higher dimensions. The remaining parts of this section introduce a systematic
and highly e<cient approach to the assignment of quadrature points in higher dimension.

2.2. Principal components analysis

PCA is a statistical method in which the lower-order mixed moments forming the elements of
the covariance matrix are utilized for the characterization and analysis of multivariate data (Johnson
& Wichern, 1992; Diamantaras & Kung, 1996). The covariance matrix is constructed as follows:
suppose a multivariate particle population characterized by the normalized pdf, or probability density
function, f̃(x1; x2; : : : ; xh), where xi can refer to the mass of species i, as above, or to some other
variable. The covariance matrix � is the symmetric h× h matrix having elements:

�ij = cov(xi; xj) ≡ 〈xixj〉f̃ − 〈xi〉f̃〈xj〉f̃; (2.9)

where the quantities on the right-hand side are lower-order mixed-moments in the notation of
Eq. (2.3). PCA approaches the interpretation of the variance–covariance structure of f̃(x1; x2; : : : ; xh)
by forming linear combinations of the original variables, xi. The principal components are those
linear combinations having coe<cients given by the elements of the eigenvectors, gj, of �. The
eigenvectors form the columns of an orthogonal matrix, G, which transforms � to diagonal form
(Johnson & Wichern, 1992):

GT�G = D: (2.10)

GT is the transpose of G. D is a diagonal matrix containing as its elements the nonnegative eigen-
values of � ordered according to decreasing size �1¿ �2¿ · · ·¿ �h¿ 0. Following this ordering, the
jth column of G, which we denote by the vector gj, is the normalized eigenvector of � corresponding
to the eigenvalue �j (�gj = �jgj). Thus, the jth principal component is the projection:

yj = G1jx1 + G2jx2 + · · · + Ghjxh

with variance 〈y2
j 〉 − 〈yj〉2 = �j. Gij is the element located in the ith row and jth column of G. The

principal coordinates are uncorrelated as cov(yi; yj) = Dij = 0 for i 
= j.
Figs. 1 and 2 show a collection of 1000 points (small points in the Mgure) sampled from a

bivariate distribution f̃(x1; x2) in the original coordinates (x1i ; x2i) and in the principal coordinates
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Fig. 1. Assignment of quadrature points in the original coordinates frame: Figure shows 1000 points sampled from a
bivariate pdf in the original state variables, x1 and x2. Open circles: Quadrature points derived from moments {0; 1; 2}
along each coordinate (these have equal weights). Closed circles: Quadrature points derived from moments {0; 1; 2; 3; 4; 5}
along each coordinate (these have diGering weights).

(y1i; y2i): y1i =G11(x1i−〈x1〉)+G21(x2i−〈x2〉), y2i =G12(x1i−〈x1〉)+G22(x2i−〈x2〉) centered on the
mean. In centered coordinates where each point is represented by a vector from the origin, and �̃
locates the mean, these equations may be written more compactly as ỹ i =GT(̃xi − �̃). (Assignment
of the quadrature points is discussed in the following subsection.) As expected from the eigenvalue
ordering described above, the largest variance occurs for the Mrst principal component, y1.

From the lower-order mixed-moments, alone, PCA provides a technique for extracting those uncor-
related linear combinations of the original coordinates that best characterize the variability of the pdf.
Furthermore, signiMcant data compression can often result upon replacing the original, h-dimensional,
representation with a reduced, k-dimensional one, using just the Mrst k principal components. The
latter property of PCA can be especially useful when the original dimensionality is large (h�1) and
has been widely utilized in signal and image data compression (Diamantaras & Kung, 1996). For the
present study, PCA Mnds its most valuable application in the assignment of quadrature points.
This is described in the following subsection. The compression features of PCA are further illustrated
in Part II.
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Fig. 2. Assignment of quadrature points in the principal coordinates {y1; y2} frame: Sampled points are the same as in
Fig. 1. Open circles: Quadrature points derived from moments {0; 1; 2} along each principal coordinate (these have equal
weights). Closed circles: Quadrature points derived from moments {0; 1; 2; 3; 4; 5} along each principal coordinate (these
have diGering weights). Ellipsoids for � (one standard deviation) and 2� (two standard deviations) obtained from the
covariance matrix, as described in Section 3, are also shown.

2.3. Application of PCA to the assignment of quadrature points in the multivariate QMOM

We begin with a brief summary of the correspondence between moments and quadrature abscissas
and weights in the univariate case of one-coordinate dimension (McGraw, 1997; Wright et al.,
2000). Such univariate distributions arise naturally in the multivariate problem as projections of the
multivariate distribution onto the axis of a single coordinate (cf. Eq. (2.2)). The univariate quadrature
points along each coordinate are subsequently used to assign quadrature points in h dimensions from
h univariate moment sequences; each sequence consisting of moments of the pdf projected onto
one of the h principal axes. Although the pdf itself is unknown, the moments from pdf projection
onto an arbitrary axis are obtained as linear combinations of the mixed-moments whose evolution
is tracked in the original coordinate frame. The mixed-moments are shown to transform as tensor
elements under a rotation of the coordinate frame.

A special form of two-point quadrature (with equal weights) su<ces to recover the Mrst three
integral moments {�0; �1; �2} where a single index is used here for the univariate case. These have
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coordinates

{{x1; w1}; {x2; w2}}
={{�1=�0 −

√
�2=�0 − (�1=�0)2; 0:5�0}; {�1=�0 +

√
�2=�0 − (�1=�0)2; 0:5�0}} (2.11)

with the property that �k = xk1w1 + xk2w2 for k = 0; 1; 2. Removal of the restriction of equal weights
results in general two-point and three-point quadratures with recovery of the Mrst four integral mo-
ments {�0; �1; �2; �3} and Mrst six integral moments {�0; �1; �2; �3; �4; �5}, respectively. Algorithms
for obtaining general n-point quadratures from moment sequences have been developed (McGraw,
1997). An especially e<cient approach utilizes the subroutine ORTHOG from Numerical Recipes,
and can be applied to ordinary moment sequences, provided n is not too large, as well as to “modiMed
moments”, which are linear combinations of the ordinary moments (Press, Teukolsky, Vetterling, &
Flannery, 1992). For example, ORTHOG has proven to be a highly e<cient and robust algorithm for
obtaining general three-point quadratures from six-moment sequences in simulations of atmospheric
aerosols by the QMOM (Wright et al., 2000; Yu et al., 2003).

Without loss of generality, it is often more convenient to obtain quadrature point representations
for normalized pdfs centered on the origin. Quadrature points for unnormalized–uncentered pdfs are
trivially recovered by multiplying the normalize weights by particle number density and translat-
ing the centered abscissas to the true coordinate means. In terms of the normalized and centered
moments, �̃k :

�̃k =
∫

(x − 〈x〉)kf̃(x) dx;

where �̃0=1 and �̃1=0, Eq. (2.11) simpliMes to {{x̃1; w̃1}; {x̃2; w̃2}}={{−√
�̃2; 0:5}; {

√
�̃2; 0:5}}. The

centered moments are computed in terms of same-order and lower-order moments of the uncentered
pdf. Thus: �̃2 = �2 − �2

1, �̃3 = �3 − 3�2�1 + 2�3
1, etc., where �0 = 1. Similar expansions are readily

carried out for multivariate mixed-moments. Thus, e.g., �̃20 = �20 − (�10)2, �̃11 = �11 − �10�01, etc.,
with �00 = 1, showing that the covariance matrix elements (Eq. (2.9)) are centered mixed-moments.

2.3.1. Back projection
Our assignment of quadrature points in higher dimension makes use of the method of back projec-

tion and is similar to image construction from back projected densities in tomography. The approach
is illustrated in Figs. 1 and 2 for the assignment of quadrature points in the bivariate plane. In Fig. 1
the PCA method is not used; instead the test pdf, f(x1; x2), is simply projected onto the original
coordinate axes to obtain the corresponding marginal distributions f1(x1) and f2(x2). In fact, it is the
moments of these marginal distributions, and not the distributions themselves, that we require. These
are for f1(x1), {�00; �10; �20; �30; �40; �50; : : :} and for f2(x2), {�00; �01; �02; �03; �04; �05; : : :}. Thus for
projections along the original coordinate axes, the projected moments are simply subsets of the bi-
variate mixed moments of f(x1; x2). Inversion of the x1 moments gives quadrature points along the
x1 axes, {x1k ; w1k} for k =1; : : : ; n and similarly for inversion of the x2 moments to obtain {x2l; w2l}
for l = 1; : : : ; m. The positions of these points for the three-moment inversions, {�00; �10; �20} and
{�00; �01; �02}, from Eq. (2.11), are indicated in Fig. 1 by the intersection points of the horizon-
tal and vertical hairlines with the coordinate axes. Back projection refers simply to running these
projected-distribution quadrature points, which lie on the axes, orthogonally back through the coor-
dinate space to obtain a set of quadrature points in the bivariate plane with abscissas located at the
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intersections of the back projection lines. These are the N = nm quadrature points {x1k ; x2l; w1kw2l}
for k = 1; : : : ; n and l = 1; : : : ; m, with obvious extensions to three and higher dimensions. Note that
assigning the bivariate quadrature weights as products of the univariate weights correctly preserves
normalization. In the simple case that the projected distributions are represented using normalized
two-point quadratures (n = m = 2), with w11 = w12 = w21 = w22 = 0:5, the four points resulting from
back projection (open circles) have equal weights of 0.25. The Mlled circles result on back projec-
tion following the calculation of general three-point quadratures along each coordinate axes using
the projected distribution moments {�00; �10; �20; �30; �40; �50} and {�00; �01; �02; �03; �04; �05} in the
construction. The resulting nine quadrature points will in general have nonequal weights.

Although Fig. 1 illustrates the method of back projection for assigning quadrature points in higher
dimensions, it is clear, even from visual inspection, that this particular assignment, projecting onto
the original coordinate axes, is far from optimal. SigniMcant weights appear in regions where the pdf
density is low, and the distribution of quadrature points is not at all matched in shape to the pdf.
Indeed the only positive feature of this assignment is that the resulting quadrature points correctly
reproduce the moments used in the back projection construction itself. In general, only these moments
will be correctly reproduced. The optimal assignment results on back projection from the principal
axes (y1; y2), Fig. 2, as we now show. For this construction we Mrst require the centered moments
from pdf projections along each of the principal axes. Once these have been obtained, location of
the quadrature points along each axes, required for the back projection, follows as in any univariate
moment inversion (see above). Thus, we focus here on obtaining the projected pdf moments in the
principal coordinate frame.

2.3.2. Rotation of multivariate mixed moments to the principal coordinate frame
Inspection of Eq. (2.3) shows the multivariate mixed-moments to involve centered coordinate

products in a way that suggests their transformation as tensor elements under axes rotation. This is
indeed the case and it is readily shown that centered moments of order s, where s= k + l+ · · ·+w
is the sum of the indices appearing in Eq. (2.3), transform into each other as the hs elements of a
symmetric tensor, T, of rank s. For second-order moments, these are the elements of the covariance
matrix, Tij = �ij = �̃ij.

Transformation to the principal frame is described by the matrix G of Eq. (2.10):

T ′
mn =

∑
i

∑
j

Gim GjnTij; (2.12a)

and T ′
mn has the same elements as the diagonal matrix D. Similarly, the third-order moments transform

as the elements of the third-rank tensor:

T ′
mno =

∑
i

∑
j

∑
k

Gim Gjn GkoTijk ; (2.12b)

and so on for higher-order moments and higher-rank tensors. For a bivariate problem, Eq. (2.12b)
describes the transformation of 23=8 tensor elements. These elements are symmetric to permutations
of their indices and are identiMed with the moments by a pattern: T111 = �̃30, T112 =T121 =T211 = �̃21,
T122 = T212 = T221 = �̃12, and T222 = �̃03 that is readily extended to the h-variate case. (The number
of tensor indices, or tensor rank, equals the sum of the exponents, k + l + · · · + w appearing in
Eq. (2.3). Index values, which vary from 1 to h, label the coordinates, and the number of times a
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given value appears equals the exponent of that coordinate appearing in Eq. (2.3).) The transformed
moments are

�̃′kl =
∫

yk
1y

l
2f̃ PCA(y1; y2) dy1 dy2 (2.13)

where f̃ PCA is the transformed version of f̃. SpeciMcally, Eq. (2.12b) is a recipe for calculating
the third-order moments of pdf projections onto the principal axes. Two of these, �̃′30 = T ′

111 and
�̃′03 = T ′

222, are required when general two-point and higher-order quadratures are used.

2.3.3. Assignment of quadrature points through back projection in the principal frame
Fig. 2 shows the distribution of quadrature points in the principal frame. The open circles are

the four points obtained from three-moment inversions with the primed moment sets, {�̃′00; �̃
′
10; �̃

′
20}

and {�̃′00; �̃
′
01; �̃

′
02}. Because �̃′00 = 1, and �̃′10 = �̃′01 = 0, Eq. (2.11) simpliMes to give the quadrature

points y1 = ±√
�1; y2 = ±√

�2, located along the principal axes, with weights of 1/2 where the �i
are eigenvalues of the covariance matrix. After back projection we obtain the four points shown in
the Mgure with coordinates {±√

�1;±
√
�2} in the principal frame and identical weights of 1/4. If we

limit the calculations to inversion of the Mrst three integral moments along each axes, this pattern
persists to higher dimensions: for h dimensions the coordinates of the 2h quadrature points in the
principal frame are

{±
√

�1;±
√
�2; : : : ;±

√
�h} (2.14)

with identical weights of 2−h. The Mlled circles of Fig. 2 show the location of nine quadrature
points obtained from general three-point quadratures along each principal axes by applying ORTHO
to the projected primed moment sequences {�̃′00; �̃

′
10; �̃

′
20; �̃

′
30; �̃

′
40; �̃

′
50} and {�̃′00; �̃

′
01; �̃

′
02; �̃

′
03; �̃

′
04; �̃

′
05}.

These sequences are obtained from Eq. (2.12) and its extension to fourth- and Mfth-rank tensor
transformations for the corresponding order moments. The nine quadrature points (Mlled circles)
with unequal weights result after back projection.

To investigate which moments are correctly reproduced from these points, we need one additional
property inherent to the assignment of quadrature points through back projection. This is moment
factorization. To illustrate for the bivariate case:

�kl =
∑
ij

yk
1iy

l
2jw1iw2j =

(∑
i

yk
1iw1i

)(∑
j

yl
2jw2j

)
= �k0�0l; (2.15)

where the prime superscripts have been omitted because the factorization of Eq. (2.15) applies to
whichever frame is used for back projection and does not depend on being in the principal frame.
The Mrst equality follows from the use of back projected abscissas and weights. Such factoriza-
tion of the moments indeed occurs when the pdf itself factors, e.g., again for the bivariate case,
f(y1; y2)=f1(y1)f2(y2). If such factorization of the pdf occurs, as it does for a multivariate normal
distribution (Section 3), it will occur in the principal frame, and all combinations of lower-order
mixed-moments will be given correctly by Eq. (2.15). For example, for the nine-point quadrature of
Fig. 2 all 36 bivariate moments of the form �kl for k; l = 0; : : : ; 5 will be exactly reproduced. Note
from the tensor transformation equations (Eq. (2.12)) that if a full set of moments of order s is de-
termined in one frame, the set is determined in all rotated frames. Thus, the 21 bivariate moments of
orders 0; : : : ; 5 are exactly determined by the nine-point quadrature of Fig. 2, in every rotated frame,
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if the pdf is factorable in the principal frame. Finally, whether the pdf is factorable of not, the full
set of second-order moments, which comprise the elements of the covariance matrix, are correctly
described by either the four-point or the nine-point quadratures of Fig. 2. We have already seen
that the diagonal elements are given correctly. For the oG-diagonal elements in the principal frame
�̃′11 = �̃′10�̃

′
01 = 0, as the Mrst equality is assured by Eq. (2.15). Thus, whether the pdf factors or not,

the PCA quadrature construction exactly reproduces the full set of second-order moments (diagonal
and oG-diagonal) in the principal frame and, therefore, in all rotated frames (of course this exact-
ness is preserved on translation and normalization of the quadrature points as well as on rotation).
The trend continues with increasing number of components and the 2h quadrature points from even
the simplest, three moments per coordinate, construction (Eq. (2.14)) recover all elements entering
the h× h covariance matrix of an h-variate problem, as well as the Mrst- and zeroth-order moments
representing pdf location and normalization. For example, the four quadrature points of Fig. 2 (open
circles) give correctly the two variances and covariance of the bivariate pdf when projected onto the
axes of any rotated frame. These e<cacious properties demonstrate that the combination of PCA and
back projection results in an optimized assignment of quadrature points for use in the multivariate
QMOM.

In this section, we have shown how to assign quadrature points using the PCA transformation
to obtain a set of abscissas, illustrating for the bivariate case, {y1k ; y2l} and weights w1kw2l for
k = 1; : : : ; n and l= 1; : : : ; m. It is sometimes convenient to relabel these points using a single index
in a one-to-one but otherwise arbitrary mapping ({k; l} ↔ {j}). For example, with j=m(k − 1)+ l,
all points will be represented as j takes on integral values from 1 to nm. Thus, the quadrature
points in the principal frame may be represented by the vectors ỹ j having components {y1j; y2j}
and weights wj = w1kw2l, where j corresponds to the {k; l} pair in the mapping. In Section 2.2 we
obtained the relation ỹ i = GT(̃xi − �̃) for transforming points to the PCA coordinates. The inverse
of this linear relation transfers the quadrature points generated in the principal frame back to the
original frame where they will be used:

x̃j = Gỹ j + �̃; (2.16)

where the components of �̃ are given in terms of the normalized Mrst-order moments, for example,
{�10; �01} in the bivariate case. The weights are, of course, unchanged during this transformation.

The present assignment yields quadrature points that are in one-to-one correspondence with
a set of moments, but unlike previous applications of the QMOM in one and two dimensions,
the present assignment is not free of additional constraints on the points. For example, with the
otherwise unconstrained bivariate assignment of Wright et al. (2001), three quadrature points are in
correspondence with nine moments, 12 points with 36 moments, etc. Thus the number of quadrature
points is minimized, but the inversion of the moment set to get these points can be ill-determined,
or at best di<cult to carry out. With the PCA assignment, on the other hand, four quadrature points,
constrained to have equal weights and lie on the corners of a rectangle, are in one-to-one corre-
spondence with only six moments (one for normalization, two for location of the mean, and three
for the elements of the covariance matrix). This Hexibility to include additional constraints and still
have a well-deMned mapping is a very useful feature of the QMOM. The fewer number of moments
reproduced in the PCA–QMOM is more than compensated by the computational ease with which the
quadrature abscissas and weights can be assigned. In Part II we show how to update the moments
in an aerosol dynamics simulation using quadrature points in the original coordinate frame.
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3. Illustrative calculations for a multivariate normal population

Implementation of the PCA–QMOM is especially transparent when the pdf is a multivariate normal
(Gaussian) distribution. Real aerosol populations often approximate normal distributions after an
appropriate coordinate transformation, the best known example being the log-normal distribution,
which is normal in z = log(m). Such coordinate transformations are examined in Part II. Here we
analyze the case that the distribution is already normal for the insight that such an analysis provides
into the workings of the PCA–QMOM.

The multivariate normal distribution has the form (Feller, 1971):

f(x1; x2; : : : ; xh) = �−1 exp[ − q(̃x)]; (3.1a)

where �−1 normalizes the distribution, x̃ = (x1; x2; : : : ; xh) is now a row vector, and

q(̃x) =
h∑

i; j=1

qijxixj = x̃Qx̃T: (3.1b)

The normal density centered at �̃ = (�1; �2; : : : ; �h) is given by f(̃x − �̃). The coe<cient matrix Q
is the inverse of the covariance matrix � introduced in Section 2, Q = �−1, and the normalization
constant is determined by the equation: �2 = (2�)h|�|, where |�| = |Q|−1 is the determinant of �
(Feller, 1971). The transformation to principal coordinates also transforms Eq. (3.1b) to a sum of
square terms and factors Eq. (3.1a): D−1 = GTQG, where G is as in Eq. (2.10) and D−1 is the
inverse of D. Thus the left-hand side of Eq. (3.1a) factors in the principal frame into a product of
1D normal distributions:

fPCA(y1; y2; : : : ; yh) = f1(y1)f2(y2) : : : fh(yh); (3.2a)

where

fi(yi) =
1√
2��i

exp
[
− y2

i

2�i

]
; (3.2b)

consistent with the normalization of Eq. (3.1).
Assignment of quadrature points by back projection is the required choice for a factorable pdf,

even when the factors are non-Gaussian distributions. Consider, e.g., the quadrature approximation
to bivariate integrals over a known kernel function �(y1; y2):∫ ∫

�(y1; y2)fPCA(y1; y2) dy1 dy2 =
∫ ∫

�(y1; y2)f1(y1)f2(y2) dy1 dy2

=
∫

f1(y1)
(∫

�(y1; y2)f2(y2) dy2

)
dy1 ≈

∫
f1(y1)

(∑
l

�(y1; y2l)w2l

)
dy1

≈
∑
k;

∑
l

�(y1k ; y2l)w1kw2l ≡
∑
j

�(y1j; y2j)wj: (3.3)

Here the assignment of quadrature abscissas and weights is identical to that of the back projection
method of Section 2, but emerges naturally as the direct product of 1D quadratures due to the
factorization of fPCA(y1; y2). The Mrst equality results from factorization of the pdf. The third and
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fourth approximate equalities apply 1D quadrature to the principal coordinates y2 and y1, respectively.
The last equality simply relabels the quadrature points using a single index ({k; l} → {j}) as in
Section 2. The weight of the jth quadrature point is, as in back projection, given by wj = w1kw2l,
where j corresponds to the {k; l} pair in the mapping and varies from 1 to the total number of
quadrature points N . Higher-order quadrature abscissas and weights for the standard weigh function
of Eq. (3.2b) are available in tabulated form (Abramowitz & Stegun, 1972), ORTHOG is not
required. For two-point quadrature, wi1 = wi2 = 1=2 and yi1 = −√

�i, yi2 = +
√
�i just as with the

equal-weight two-point quadratures of Section 2. In general there will be N =
∏h

i=1 Ni quadrature
points in h dimensions with Ni-point quadrature along principal coordinate i.

PCA is based on the covariance matrix and does not require that the pdf be factorable or have
multivariate normal form. On the other hand, the application of PCA to multivariate normal dis-
tributions reproduces a greater number of moments because of the factorization, as described in
Section 2, and yields contours of constant pdf density directly from the moments. The contours of
constant density for an h-dimensional multivariate normal distribution are the ellipsoids deMned by
the quadratic form:

(x− �)�−1 (x− �)T = c2: (3.5)

These ellipsoids are centered at �=(�1; �2; : : : ; �h) and have axes ±c�1=2
i gi in the notation of Section 2.

Fig. 2 shows the disposition of ellipsoids for � (one standard deviation) and 2� (two standard
deviations) obtained from Eq. (3.5) for h = 2 and c = 1 and c = 2, respectively. The 1� ellipsoid
is inscribed in the rectangle having as its corners the abscissas from the four-point quadrature
scheme. The trend continues to higher dimension. For example, in three dimensions there are eight
quadrature points having identical weights (wj =1=8) and coordinates {±√

�1;±
√
�2;±

√
�3} located

at the corners of a rectangular parallelepiped into which is inscribed the � ellipsoidal surface from
Eq. (3.5) for h = 3 and c = 1.

It is important to emphasize that all of the quantities introduced in this section, apart from the full
pdf itself, were obtainable using only lower-order moments upto and including the second-order mo-
ments of the covariance matrix. These include the principal coordinates, principal values, which are
the variances in the principal frame, quadrature points for 2h-point quadrature, and ellipsoidal proba-
bility surfaces for estimating the shape and breadth of the distribution. Together these moment-derived
quantities furnish considerable information about the pdf, and a direct route to the estimation of its
physical and optical properties represented as integrals over a known kernel function as in Eq. (3.3).

4. Physical and optical properties and closure of the moment evolution equations

Thus far we have focused on the assignment of quadrature points and not on their use in
the QMOM—estimation of aerosol properties and moment evolution. Both applications require the
estimation of integrals of the type:

I =
∫

�(̃x)f(̃x)d̃x ≈
N∑
j=1

�(x1j; x2j; : : : ; xhj)wj; (4.1)

where the kernel �(̃x) is known. This may represent an optical kernel, such as an extinction coe<-
cient, or a dynamical kernel for a microphysical process (e.g., sedimentation, condensation growth,
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cloud activation, etc.) governing aerosol evolution. In the latter case the quadrature approximation
becomes the right-hand side of a linear diGerential equation describing moment evolution. The fact
that the evolved moments can then be inverted to give updated quadrature points, by the methods
described in Section 2, completes the closure cycle for moment evolution (McGraw, 1997). Closure
methods are illustrated for multivariate condensation and coagulation kernels in Part II.

Quadrature approximations work best where the kernel is smooth and well approximated by poly-
nomial forms. In the univariate case it is known that the quadrature approximation of Eq. (4.1)
is exact for N -point quadrature for kernels of polynomial degree less than or equal to 2N − 1:
�(x)= a+ bx+ cx2 + · · ·+ ex2N−1 with arbitrary coe<cients. Physically realistic kernels can usually
Mt well by Mfth-order polynomials, and the corresponding three-point quadratures have proven highly
accurate (McGraw et al., 1995; McGraw & Wright, 2003). (However, see Wright et al. (2002) for
some exceptionally nonsmooth kernels requiring special treatment.) For the multivariate case, the
number of mixed moments that are exactly reproduced increases rapidly with number of quadrature
points and with dimension. Consider, e.g., the 2h-point quadrature of Eq. (2.14). This will be exact
for general f(̃x) when the kernel is of the form:

�(̃x) = a +
h∑

i=1

bixi +
h∑

i=1

h∑
j=1

cijxixj: (4.2)

This expression contains 1 + h + h(h + 1)=2 = (h2 + 3h + 2)=2 distinct terms corresponding to the
number of distinct mixed-integral moments that will be exactly reproduced by the 2h quadrature
points of Eq. (2.14) (these include all of the moments entering into the covariance matrix). In the
special case that the pdf factors:

f(̃x) = f1(x1)f2(x2) × · · · × fh(xh), the number of moments exactly reproduced increases to 3h

(these are the factorable moments �ijk::: = �i00::: × �0j0::: × �00k::: × · · · for i; j; k; : : : = 0–2). If, in
addition to factorization, the factors are symmetric about their mean values, as is the case with the
multivariate normal distribution, for example, the number of moments exactly reproduced increases
to 4h (�ijk::: =�i00:::×�0j0:::×�00k:::×· · · for i; j; k; : : :=0–3). This last result derives form the fact that
the (centered) third moments along each coordinate vanish for a symmetric distribution, and thus
are also reproduced exactly by the equal-weight two-point quadratures along each coordinate (i.e.
equal-weight two-point quadrature is equivalent to general two-point quadrature for the symmetric
distribution case).

5. Summary

A new method has been developed for extending the moment-based representation of aerosols to
multivariate particle populations. In essence, the full pdf has been replaced by a set of lower-order
mixed-moments and corresponding quadrature points assigned through PCA and back projection. The
assignment of quadrature points is central to the QMOM, which has been extended here using PCA
to the multivariate domain. For calculations, the quadrature abscissas can be viewed as surrogate
particle compositions, with weights given by the quadrature weights, optimally assigned through PCA.
Aerosol physical and optical properties, usually calculated by numerical integration over a known
kernel function, provided the full pdf is known, or by summation over a large number of measured
single-particle compositions, can now be estimated reliably and accurately as a summation over a
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small number of PCA-assigned quadrature points derived from moments. For example, multivariate
kernels of the kind given in Eq. (4.1), arise naturally in multicomponent thermodynamic models of
vapor–particle exchange (Clegg et al., 1998; Capaldo, Pilinis, & Pandis, 2000), and their evaluation
is often the time-limiting step in aerosol models. With the PCA–QMOM the number of calls to the
thermodynamic module is minimized as the rates of vapor–particle exchange are required only at
those few particle compositions speciMed by the quadrature points.

The steps for locating multivariate quadrature points from moments using PCA can be summarized
as follows: (1) Set up the covariance matrix, �, consisting of the centered moments of second
order in the original coordinates, and solve the eigenvalue problem associated with this matrix to
obtain the ordered principal values {�i} and the matrix G. (2) Obtain the quadrature points Mrst
along each principal axes. Note that inspection of the principal values will help decide how many
points to take. For example, one might use three-point quadrature along y1 and two-point or even
one-point quadratures along those remaining axes for which the variances are small. For higher-order
quadratures, one will need to carry more moments for computing the higher-order projected moments
using the tensor transformations of Eq. (2.12), and invert the resulting projected moment sequences
using ORTHOG. (3) Back project to obtain the abscissa locations in higher dimension and form
the product weights (cf. Eq. (2.15) for the bivariate case). For equal-weight two-point quadratures
along each axes, the location of the points is given immediately by Eq. (2.14) and one can bypass
steps 2–3. (4) Convert quadrature points to original coordinates using Eq. (2.16).
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