
BNL-71727-2003-JA

By acceptance of this article, the publisher and/or recipient acknowledges the U.S.
Government's right to retain a nonexclusive, royalty-free license in and to any copyright
covering this paper.

Research by BNL investigators was performed under the auspices of the U.S. Department
of Energy under Contract No. DE-AC02-98CH10886.

REPRESENTATION OF GENERALLY-MIXED MULTIVARIATE AEROSOLS
BY THE QUADRATURE METHOD OF MOMENTS:

II.  AEROSOL DYNAMICS

Choongseok Yoon and Robert McGraw
Atmospheric Sciences Division

Environmental Sciences Department
Brookhaven National Laboratory

Upton, NY  11973-5000

July 2003

Submitted to
Journal of Aerosol Science



REPRESENTATION OF GENERALLY-MIXED MULTIVARIATE AEROSOLS

BY THE QUADRATURE METHOD OF MOMENTS:

II. AEROSOL DYNAMICS

Choongseok Yoon† and Robert McGraw‡

†‡Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, NY 11973

†Department of Applied Mathematics & Statistics, State University of New York

Stony Brook, NY 11794-3600

Abstract

The quadrature method of moments (QMOM) is extended to generally-mixed
multicomponent particle populations using principal component analysis (PCA).  The
resulting PCA-QMOM provides a versatile method for moment closure illustrated for
generally-mixed, multivariate, particle populations evolving under condensation,
coagulation, sintering, and simultaneous processes.  The method is illustrated using a 2h -
point quadrature version of the PCA-QMOM, where h is the number of coordinate
dimensions, developed in the preceding paper (Paper I).  Calculations for multiple
particle populations interacting through coagulation are also presented.  A theory is
developed for the time-dependence of the covariance matrix of a multicomponent particle
population evolving under a size-independent coagulation rate.  It is found that the rank
of the hxh covariance matrix, for h components, approaches unity at long time as the
particle population evolves to an internally-mixed, self-preserving size distribution state.

Keywords:  aerosol dynamics; multicomponent aerosols; moment methods; principal

component analysis; multivariate; quadrature

† Doctoral dissertation research carried out at BNL and SUNY-SB

‡  Corresponding author. Tel.: +1-631-344-3086; fax:+1-631-344-2887.

E-mail address: rlm@bnl.gov  (R. McGraw)

Submitted to J. Aerosol Science, July  2003



1

1.  Introduction

In addition to particle mass loading, the chemical and physical properties of

aerosols are determined by particle number density, composition, shape, and size

distribution.  In the atmosphere, particle number and composition control the indirect

effects that aerosols have on climate through their influence on cloud activation, drizzle

production, and cloud radiative properties (Twomey et al., 1984; Albrecht, 1989;

McGraw and Liu, 2003).  Another example, again from the atmosphere, points to the

mixing state of black carbon aerosols as having a significant influence on radiative

forcing (Jacobson, 2001).  The representation of such processes in models requires new

multivariate approaches to aerosol simulation, which on account of the large numbers of

variables involved will most likely have to be statistically based.

While particle populations of mixed shape and composition call for a multivariate

description, the extreme computational requirements of multivariate particle distribution

function (pdf) simulation have generally forced the use of zero dimensional (e.g.

modeling sulfate mass), or univariate (e.g. modeling the pdf using a single radial or mass

coordinate) approximations.  Likewise, most treatments of multicomponent aerosols have

been limited to the special cases of externally-mixed or internally-mixed particle

populations.  External mixtures are non-interacting particle populations, e.g.  dust, sea

salt, and sulfate in the atmosphere - to the extent that these are non-interacting - amenable

to treatment using separate radius or mass coordinates for each population.  Limited

interactions between such populations (e.g. the aggregation of sulfate with the other

particle types) have been accommodated within the univariate  framework (Wright et al.,

2000), but the methods are not extendable to general mixtures.  Internal mixtures,
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characterized by the property that all particles of the same total mass, m, have the same

composition (Seinfeld and Pandis, 1998), are also amenable to a univariate treatment.

Here the component species distributions are each represented as functions of particle

mass.  Sectional methods, which fractionate the pdf into discrete size classes, or sections,

are naturally suited to the representation of internal mixtures (see for example Meng et

al., 1998).  Nevertheless, the computational demands are formidable, even for univariate

problems, if a high-resolution description  of the size distribution, requiring a large

number of sections, is desired.  Extensions of the modal (Wilk, 1998)  and moment

(McGraw and Wright, 2003) methods to internal mixtures have also been developed.

A recent extension of sectional methods to include multiple size distributions can

in principle represent the intermediate (between internal and external) mixing states of

the aerosol (Jacobson, 2002).  The aerosol is partitioned into multiple distributions that

are each characterized by their own sectional size coordinate.  Coagulation, condensation,

nucleation, and reversible chemistry are allowed to take place among the distributions.

These results show the remarkable extent to which sectional methods can be developed

using high speed computers.  Limitations include the large number of variables that must

be carried to represent the multiple size distributions.  Additionally, only a sampling of

the full pdf is obtained.  The composition coordinates of the multiple size distributions

must be assigned on a case-by-case basis prior to simulation, and these should be

representative of the full compositional-coordinate space of the aerosol.  At present, the

assignment appears to require at least some degree of subjective model intervention.

In the previous paper (Part I) the quadrature method of moments (QMOM) was

combined with principal component analysis (PCA) in a novel and very general way that
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makes explicit the statistical foundation of moment methods.   This was achieved by

combining quadrature with PCA, using PCA to assign the quadrature points in higher

dimension.  The resulting PCA-QMOM is developed below to provide a computationally

efficient, statistically-based approach to multivariate aerosol dynamics simulation.  The

new methods are illustrated through simulations requiring the representation of generally-

mixed, multivariate, particle populations.  These include generally-mixed,

multicomponent and mixed-shape particle populations evolving under typical aerosol

microphysical processes including coagulation, sintering, and condensation growth.

2.  Assignment of quadrature points by principal components analysis (PCA)

The multivariate mixed moments of an h-variate particle distribution function,

f m m mh( , ,..., )1 2 , are defined as

  
m m m m m m f m m m dm dm dmp q

h
w

f

p q
h
w

h h1 2 1 2 1 2 1 2... ... ( , ,..., ) ...= ∫∫ ∫L     (2.1)

where mi{ }  are the coordinates that characterize an individual particle, and

f m m mh( , ,..., )1 2  gives the number of number of particles per unit volume having

coordinate mi  between mi  and m dmi i+  for all i.  In most of the examples treated in this

paper, mi  will be the mass of species i present in a multicomponent aerosol particle.  In

the bivariate model of Sec. 3.3, which describes nonspherical particles undergoing

coagulation and sintering, m1 and m2  represent particle volume and particle surface area,

respectively.  PCA makes use of the probability density function, which is normalized to

unity.  Thus we will also require the moments of the normalized distribution

˜( , ,..., ) ( , ,..., ) /f m m m f m m m Nh h1 2 1 2 0=  where N0 is the total number of particles per unit

volume.  These differ only by the factor 1 0/ N  from the moments of Eq. 2.1.
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The calculations presented below are based on the most economical, 2h -

quadrature point, version of the PCA-QMOM, which tracks mixed-moments through

second order, including the moments entering the covariance matrix.  The present

description is limited to this case.  Extensions of the method to higher quadrature point

densities, and correspondingly higher-order moments, is described in Paper I.

Assignment of the 2h  points requires the following moments:  the normalization

1 10 0f fN N= =˜ ; the h coordinate means, m m Ni f i f˜ /= 0  for i = 1 through h; and

the h h( ) /+1 2 distinct elements of the symmetric h h×  covariance matrix, Σ :

         

  

Σ =

− − −

− − −

− −

m m m m m m m m m m

m m m m m m m m m m

m m m m m m m m

f f f f f h f f h f

f f f f f h f f h f

h f f h f h f f h

1
2

1
2

1 2 1 2 1 1

1 2 1 2 2
2

2
2

2 2

1 1 2 2

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜

L

L

M M M

˜̃ ˜ ˜f h f h f
m mL 2 2−



















(2.2)

Thus the total number of moments required is 1 1 2 3 2 22+ + + = + +h h h h h( ) / ( ) / .  For

specified values of these moments the assignment of quadrature points is straightforward,

requiring only that the eigenvectors and eigenvalues of Σ  be obtained.  The eigenvectors,

which are necessary to transform between coordinate systems, form the columns of an

orthogonal matrix, G , that transforms Σ  to diagonal form.  Thus G G DTΣ =  where GT

is the transpose of G   and D = diag( )λ i  is the diagonal matrix containing as its elements

the eigenvalues of Σ .  These are nonnegative and ordered according decreasing size

  λ λ λ1 2 0≥ ≥ ≥ L h .  The eigenvalues give the variances of the probability distribution

function in the principal coordinate frame.  Thus the largest variance is along the
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direction of the first principal coordinate, y1: y y1
2

1

2

1− = λ . The second largest

variance, along y2 , is given by λ2, etc..

Having diagonalized Σ ,  the 2h  quadrature points are now trivial to assign in the

principal frame.  The transformed and centered coordinates of the abscissas are simply:

  
± ± ± ±{ }λ λ λ1 2, ,  L h . (2.3)

The weights are identical and equal to 2 0
−h N .  It is convenient to number the quadrature

points using a single index,  j, which takes on values from 1 through 2h .  For example, a

convenient mapping can be carried out by assigning the ±  signs in Eq. 2.3 according to

the pattern of 0's and 1's in the binary representation of j −1.  In practice, one is

interested only in the quadrature points in the original coordinate frame.  Let the

components of the vector 
  
r
yj  contain the centered principal coordinates of quadrature

point  j, from Eq. 2.3, and 
  
r
x j  the desired full  coordinates (uncentered) for this same point

in the original frame.  Then:

  
r r r
x yj j= +GT µ (2.4)

where the i th component of   
r
µ  gives the corresponding normalized first-order moment:

  

r
µ( ) /i m Ni f

= 0 .  The quadrature weights (which sum to the total particle number density) are,

of course, unchanged by the transformation:  w Nj
h= −2 0.

The steps for locating multivariate quadrature points from moments using the 2h -

quadrature point version of the PCA-QMOM are summarized as follows: (1) Setup the

covariance matrix, Σ , consisting of the normalized moments of second order in the original

coordinates, and solve the eigenvalue problem associated with this matrix to obtain the ordered

principal values λ i{ }  and the matrix G .  (2) The location of the quadrature points in the



6

principal frame is given immediately by Eq. 2.3.  Convert these to the original coordinates using

Eq. 2.4 and normalize to N0.  Equations 2.3 and 2.4 complete the assignment of quadrature

points from moments in this version of the PCA-QMOM.

3. Moment evolution

The assignment of quadrature points from moments by the PCA-QMOM having

been described, we complete closure by describing the method used to update the

moments in terms of the quadrature points so assigned.  The procedure is basically the

same as in the original QMOM (McGraw, 1997; Barrett and Webb, 1998), but is

extended here to the multivariate applications that are the focus of the present study.  To

illustrate, we consider below the mixed moments of (i) multicomponent aerosols evolving

under coagulation and condensation, and (ii ) mixed-shape single-component particles

evolving under simultaneous coagulation and sintering.  The same general methods apply

to other kinds aerosol microphysical processes requiring a multivariate description;

provided only that the rate kernels for these processes are known.

3.1  Multivariate condensation

Consider particle growth through the condensation/ evaporation of condensable

molecular species in multicomponent vapor.  The following equation gives the evolution

of the mixed moment 
  
m m mp q

h
w

f1 2 L , for h component species, under condensation:

       

  

d

dt
m m m

d

dt
m m m f m m m dm dm dm

d

dt
m m m w

p q
h
w

f

p q
h
w

h h j
p

j

N

j
q

hj
w

j

1 2

1 2 1 2 1 2 1
1

2

L

L L L L L

=

≈∫ ∫∫ ∑
=

( ) ( , , , ) ( )  .
 (3.1)

The first equality is derived in Paper I and the second gives the N-point quadrature

approximation, using a single index  j to number the points.  Thus the coordinates
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( , , , )m m mj j hj1 2 L  give the location of quadrature point j having weight wj .  Evaluation of

the derivatives on the right hand side requires the growth rate law for each component

species (i).  For example, the addition (loss) of species i  to (from) a particle having the

ternary composition   { , , , }m m mh1 2 L  can be represented quite generally as

  

dm

dt
m m mi

i h= φ ( , , , )1 2 L .         (3.2)

for i =1,2,…,h.  The right hand side of Eq. 3.2 gives a net rate that depends on both

condensation and evaporation fluxes, which in turn depend on the relative sizes of the

particle and the mean free path of the gas, and particle composition.  In some cases

particle growth may to a good approximation depend only on radius, as with transport-

limited growth, but in other cases, of high importance to atmospheric aerosols,

composition-dependent thermodynamic models are necessary for improved prediction of

evaporation rates and gas-particle exchange (Clegg et al. 1998; Capaldo et al., 2000).

For these cases, the resulting growth laws take the more general multivariate form given

by the right hand side of Eq. 3.2 and their evaluation from the thermodynamic models

can become the most computationally expensive part of an aerosol simulation run.  A

great advantage of the PCA-QMOM is its property that the pdf is optimally represented

by just a few quadrature points, so the number of evaluations of the right hand side of Eq.

3.2 required during a simulation (one for each point) is minimized.

3.2 Multivariate coagulation

The moment evolution equations for coagulation are developed here for a

trivariate (three component species) particle model to illustrate the method.  The

extension to higher dimensions is straight forward.  Consider the coagulation of two 3-

component particles to form a single particle of larger size:
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{ , , } { ' , ' , ' } { ' , ' , ' }m m m m m m m m m m m m1 2 3 1 2 3 1 1 2 2 3 3+ ⇒ + + + . (3.3)

For this event the change in the moment m m mp q w

f1 2 3  is

( ' ) ( ' ) ( ' ) ' ' 'm m m m m m m m m m m mp q w p q w p q w
1 1 2 2 3 3 1 2 3 1 2 3+ + + − − . (3.4)

Factoring in the frequency at which events of type 3.3 occur, which is proportional to the

product of the distribution functions for each particle, and using Eq. 3.4, we obtain:

  

d

dt
m m m

K m m m m m m m m m m m m m m

f m m m f m m m dm dm dm dm dm dm

p q w

f

p q w p q w p q w

1 2 3

1 1 2 2 3 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2

1
2

=

+ + + − − ×∫ ∫∫L ( , ' )[( ' ) ( ' ) ( ' ) ' ' ' ]

( , , ) ( ' , ' , ' ) ' ' '               33

(3.5)

The factor 1/2 corrects for counting each pair of particles twice.  In writing the kernel this

way we have assumed that the coagulation rate depends only on the total masses of the

two particles and not on their composition:

K m m K m m m m m m( , ' ) ( , ' ' ' )= + + + +1 2 3 1 2 3 . (3.6)

The quadrature approximation to Eq. 3.5 is:

d

dt
m m m

K m m m m m m m m m m m m m m w w

p q w

f

j
kj

k j k
p

j k
q

j k
w

j
p

j
q

j
w

k
p

k
q

k
w

j k

1 2 3

1 1 2 2 3 3 1 2 3 1 2 2

1
2

≈

+ + + − −∑∑ ( , )[( ) ( ) ( ) ]

(3.7)

where the summation indices vary from 1 to the number of quadrature points, N.  The

coagulation kernel is often reported in terms of the particle volume v m m mc( , ,..., )1 2 ,

which will in general have some dependence on the mixing state of the particle.  For

example, a homogeneous particle might well have a different volume than one of

identical mass composition that is not homogeneously mixed.  Here we assume that



9

individual particles are spherical and homogeneously mixed, so expressing  the

coagulation kernel in terms of particle mass requires only an approximation for the

particle density to determine the specific form of K.  The method is also capable of

handling more general kernels when their functional dependencies are known.

3.3  Simultaneous coagulation and sintering

Particles having identical composition but different shapes have been represented

by assigning a volume, v,  and surface area, a, to each particle (Koch and Friedlander,

1990).  The v-a model has proven useful for the representation of particle aggregates

undergoing simultaneous coagulation and sintering in flames (Wright et al., 2001; Rosner

and Pyykonen, 2002; Rosner et al., 2003).  Microphysical processes are represented

through the dynamical equations developed for evolving the bivariate number density

distribution function, f v a( , ), whose mixed moments are:

v a v a f v a dvdap q

f

p q= ∫∫ ( , ) . (3.8)

It is useful to summarize the moment evolution equations used in the v-a model

(Wright et al., 2001) in preparation for the calculations of the following section.  A

coagulation event between two particles, under the assumption that area as well as

volume is additive, can be represented schematically as:

{ , } { ' , '} { ' , '}v a v a v v a a+ ⇒ + + (3.9)

The change in the bivariate v-a moment v ak l

f
,  for this one event is:

( ' ) ( ' ) ' 'v v a a v a v ap q p q p q+ + − − (3.10)

Integrating over the distribution, as in Eq. 3.5, gives:
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d

dt
v a

v v v v a a v a v a f v a f v a dv da dvda

v v v v a a v a v a w

p q

f
coag

p q p q p q

j k j k
p

j k
q

j
p

j
q

k
p

k
q

j







=

+ + − − ×

≈ + + − −

∫∫1
2

1
2

L β

β

( , ' )[( ' ) ( ' ) ' ' ] ( , ) ( ' , ' ) ' '

( , )[( ) ( ) ] wwk
k

N

j

N

==
∑∑

11

(3.11)

where it has been assumed that the coagulation kernel, β( , ' )v v , depends only on volume.

For particles undergoing sintering, volume is conserved and (Wright et al., 2001):

d

dt
v a q v a af v a dvda q v a a wp q

f
fusion

p q
j
p

j
q

j

N

a a jj







= ≈∫∫ ∑− −

=
=

1 1

1

˙ ( , ) ˙ . (3.12)

For the model calculations of the following section we use the linearized, surface-energy

driven, rate law of Koch and Friedlander (1990), under which the time rate of change of

surface area for an individual aggregate is

˙ ( )mina
t

a a
f

= − −1
(3.13)

where amin  is the area of the fully compacted (spherical) particle of the same volume, and

t f  is the characteristic time of fusion/sintering.  Equations 3.11-3.13 complete the model.

3.4 Coordinate transformations and the evolution of transformed moments

It is sometimes more accurate to track moments and quadrature points in a

transformed coordinate space.  For example, aerosol distributions shaped by coagulation

tend to be broad and transformation toz m= ln( ) might be expected to better approximate

a normal distribution (normal in z, lognormal in m) and better sampling of the pdf with

the quadrature points assigned along z rather than along m.  Calculations presented in the

following section will employ transformations of the type  z z mi i i= ( )  where z mi i( ) is the
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logarithm, as above, or a power law of the form: z mi i
i= γ , with an exponent γ i  that will

in general be coordinate dependent.  Such coordinate transformations are easily carried

out within the framework of the QMOM as next illustrated for selected transformations

used in the calculations of the following section.

The covariance matrix and quadratures are cast in terms of the transformed

moments.  To illustrate for the bivariate case:

z z z z f z z dz dz z z wp q p q
z j

p

j
j

q
j1 1 1 2 1 2 1 2 1 2= ≈∫∫ ∑( , ) . (3.14)

Applying the fundamental transformation rule governing  the mapping between

coordinate systems: f z z dz dz f m m dm dmz ( , ) ( , )1 2 1 2 1 2 1 2=  greatly facilitates construction of

the moment evolution equations in the transformed coordinates.  For coagulation Eq. 3.5

becomes:

d

dt
z z

K z z z z z m m z m m z m z m z m z m w w

p q

z j j k k
p

j k
q

j k
p

j
q

j
p

k
q

k j k
k

N

j

N

1 2

1 2 1 2 1 1 1 2 2 2 1 1 2 2 1 1 2 2
11

1
2

=

+ + − −
==

∑∑ ( , , , )[ ( ) ( ) ( ) ( ) ( ) ( )]

  (3.15)

where the transformed kernel is

      K z z z z K m m K z z z zz j j k k j k j j k k( , , , ) ( , ) ( , )/ / / /
1 2 1 2 1

1
2
1

1
1

2
11 2 1 2= = + +γ γ γ γ

for the power law transformation, and K e e e e
z z z zj j k k( , )1 2 1 2+ +  for the log.

For condensation, Eq. 3.1 becomes:

   
d

dt
z z

d

dt
z z f z z dz dz

d

dt
z z wp q p q

z j
p

j

N

j
q

j1 2 1 2 1 2 1 2 1
1

2= ≈∫∫ ∑
=

( ) ( , ) ( )   (3.16)
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The quadrature derivatives are evaluated using the chain rule and Eq. 3.2 for the growth

law written in terms of two components for the bivariate case.  Thus, for the power law

transformations,z m1 1
1= γ  and z m2 2

2= γ , we obtain

           
dz

dt

dz

dm

dm

dt
z

dm

dt
z z zj j

j

j
j

j
j j j

1 1

1

1
1 1

1 1
1 1

1
1 1

1
2
11 1 1 1 1 2= = =− −γ γ φγ γ γ γ γ γ( ) / ( ) / / /( , ) (3.17a)

and for the log transformation

      
dz

dt

dz

dm

dm

dt
z

dm

dt
z z zj j

j

j
j

j
j j j

1 1

1

1
1

1
1 1 1 2= = − = −exp( ) exp( ) [exp( ),exp( )]φ (3.17b)

Finally, for evolution of the transformed bivariate v a−  moments under sintering:

With z v1
1= γ  and z a2

2= γ , Eq. 3.12 becomes:

d

dt
z z z

dz

dt
f z z dz dz q z z z a wp q

fusion

p
q

j
p

j
q

j
j

N

a z jj1 2 1
2

1 2 1 2 2 1 2
1

2
1

1

2 2

2
1 2







= ≈∫∫ ∑ − −

=
=( , ) ˙( ) /

( ) /γ γ γ
γ .   (3.18)

The preceding power law transformations are fully consistent with Eqs. 3.1, 3.7,

and 3.12 applied to the corresponding fractional moments.  Thus one can change easily

from integral moments to fractional moments such as v p / 3  or aq / 2  which, in this

example, are proportional to the radial moments for integer values of p and q.  The log

transformation is well suited to broad pdfs that resemble log-normal form.  On the other

hand, for certain analytic coagulation kernels, such as K u v const( , ) = , K u v u v( , ) = + ,

and K u v uv( , ) = , where u and v are particle volumes, the QMOM is exact for the integral

volume moments, but only approximate for the moments of log(v) and fractional volume

moments.  Nevertheless, the QMOM remains highly accurate for transformed moments,

as shown recently in comparisons with the moments obtained from box model

simulations of the full pdf using high-resolution discrete models (McGraw and Wright,

2003).
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4. Calculations

4.1  Simultaneous coagulation and sintering in the bivariate v-a model

Simulation of the full bivariate pdf in the volume-area (v-a) model of Sec. 3.3 was

recently reported (Wright et al., 2001).  The pdf was evolved on a 150x150 discrete v-a grid,

and selected mixed moments were evaluated numerically as a function of time by summing

over the grid.  These results will be used here to benchmark the PCA-QMOM for a

nonanalytic case.

Figure 1a shows evolution of the fractional volume moments,

1 1 3 2 3 4 3 5 3, , , , ,/ / / /v v v v v{ } , and Fig. 1b the mixed moments,

v a v a v a va v a v a0 5 3 1 3 5 3 2 3 5 3 5 3 4 3 5 3 5 3 5 3/ / / / / / / / / /, , , , ,{ } , defined as in Eq. 3.8.  The

discrete grid calculations are as in Wright et al., (2001).  The coagulation kernel was

approximated as:

β( , ) ( )( )/ / / /v v K v v v vj k j k j k= + +− −1 3 1 3 1 3 1 3 , (4.1)

which applies for Brownian coagulation in the continuum regime.  The constraint

a a v≥ min ( ), where a vmin ( )  is the minimum surface area for a particle of volume v, is handled

by building it into the grid itself as described in Wright et al. (2001).  The initial distribution

is lognormal in these modified volume and area coordinates.  Time is expressed in reduced

units, τ = KN t( )0 , where K is the coagulation rate constant from Eq. 4.1 (assumed

independent of time) and N( )0  is the initial number of particles per unit volume (initial value

of v a0 0 1≡  from Eq. 3.8).

Figure 2a shows a sampling of 1000 points from the initial distribution.  Quadrature

points were assigned  by the PCA-QMOM after first transforming coordinates so that the



14

initial distribution optimally approximates a bivariate normal form.  Results from the Box-

Cox transformation (Appendix A) suggest a power law transformation with z v1
1 10= /  and

z a2
1 10= − /  for the volume and area coordinates, respectively.  That these exponents are small

in magnitude is consistent with an initial distribution nearly lognormal in v and a ( Appendix

A).  The sampled points from Fig. 2a are reproduced in Fig. 2b in the transformed

coordinates, and the quadrature points assigned in these coordinates using PCA (Sec. 2).

Figure 2b shows orientation of the principal axes, y1 and y2 , and initial placement of the four

quadrature points obtained from the six transformed-coordinate moments

1 1 2 1
2

2
2

1 2, , , , ,z z z z z z{ } .  These give the normalization, the two coordinate means, and

the three distinct elements of the symmetric 2x2 covariance matrix, respectively.  Figure 2b

also shows the initial disposition of the probability ellipsoids for the σ  (1 standard deviation)

and 2σ  (2 standard deviation) surfaces obtained from the covariance matrix as described in

Paper I.  The four quadrature points, rectilinear in the coordinates of Fig. 2b, are shown after

transformation back to the original v-a coordinates in Fig. 2a.  These have equal weights

(irrespective of coordinates) and are seen to provide an excellent economical representation

of the initial distribution.

Returning to Fig. 1, the data points, shown at integral values of the reduced time,

were calculated using this 4-point quadrature version of the PCA-QMOM.  Moments were

evolved using the differential equations for coagulation and sintering given by Eqs. 3.11 and

3.12, respectively.  The PCA-QMOM results are seen to be in excellent agreement with the

benchmark calculations for the lower-order moments (Fig. 1a and lower curves of Fig. 1b),

with the largest error, approaching 20%, encountered for the highest order moment (upper

curve of Fig. 1b).  This error pattern is not surprising given that the highest order moment
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used in generating the 4-point quadrature is s = 2 (s is the sum of the exponents, p and q, of

Eq. 3.8) whereas s = 10/3 for the highest order moment, estimated from these same

quadrature points, shown in Fig. 1.  For comparison, the bivariate QMOM of Wright et al.

(2001) gave errors within 1% using a 12-point quadrature technique (with the quadrature

abscissas and weights determined using 36 bivariate moments), and within 7% for a multiple

3-point quadrature technique (four sets of 3-point quadratures) also using 36 bivariate

moments.  The accuracy of the 4-point (6-moment) PCA-QMOM is comparable to that of a

single 3-point (9 moment) quadrature using the original bivariate QMOM.

4.2  Interacting particle populations

There are important cases where the aerosol pdf is not well approximated by a single

multivariate normal pdf  in any coordinate system.  Examples include external mixtures of

distinct particle populations as may be found near sources of primary emissions.  While not

mixed initially, such populations can subsequently interact through coagulation, and also

through condensation via the competition for limited condensable vapor species.  Recent

studies have pointed to the mixing state of the aerosol as important in climate and health

effects, and one would like to have the capability to simulate the general mixing state of a

multivariate aerosol throughout its evolution.  The great computational efficiency of moment

methods allows these kinds of problems to be handled with comparative ease through the

simultaneous tracking of multiple distributions.  The following calculation illustrates how the

PCA-QMOM can be applied to the simulation of interacting particle populations.

Figure 3a shows the initial condition for the test calculation. The aerosol is

represented as a sum of two, initially known, bivariate lognormal distributions (I and II), with

moments:
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                 1 2 1 0 2 0 1 0 011 1 2 1
2

2
2

1 2I I I I I I
     = = = = = ={ }N z z z z z z; ; ; . ; . ; .         (4.2a)

1 1 2 2 2 0 1 0 2 0 012 1 2 1
2

2
2

1 2II II II II II II
     = = = = = ={ }N z z z z z z; . ; . ; . ; . ; . .         (4.2b)

The σ  and 2σ  surfaces and sampled particle compositions from the initial distributions are

shown in the figure.  These surfaces are initially spherical and remain elliptical in the

logarithmic coordinate system, z m1 1= ln( ), z m2 2= ln( ), used in the simulation.  Interactions

take place through coagulation both within and between the different populations.  In the

latter case we define a third, mixed, population (III) that gains through the assignment to it of

aggregates formed via coagulation of particles from either I or II with the other populations.

The pdf of the overall particle population is represented as a sum of contributions from the

component distributions: f m m f m m f m m f m m( , ) ( , ) ( , ) ( , )1 2 1 2 1 2 1 2= + +I II III .  Separately

assigned quadrature points and moments can be tracked for each of these distributions as well

as for the overall population.  Extension of Eq. 3.3 to this case gives, now for two

components, the following representative processes:

{ , } { ' , ' } { ' , ' }

{ , } { ' , ' } { ' , ' }

{ , } { ' , ' } { ' , ' }

m m m m m m m m

m m m m m m m m

m m m m m m m m

1 2 1 2 1 1 2 2

1 2 1 2 1 1 2 2

1 2 1 2 1 1 2 2

I I I

I II III

I III III

+ ⇒ + +
+ ⇒ + +
+ ⇒ + +

(4.3)

and similarly for other allowable combinations.

For special kernels [which include the constant kernel,K m m K( , ' ) = ; the sum

kernel,K m m m m( , ' ) '= + ; the product kernel K m m mm( , ' ) '= ; and their linear combinations]

the moment evolution equations can be expressed in closed form and moment methods

including the QMOM and PCA-QMOM are exact.  This property extends even to the case of

multiply interacting populations.  For the total distribution, f m m( , )1 2 , to illustrate for the

constant kernel case, the evolution equations for moments through second order are:
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dN

dt

K
N

d m

dt

d m

dt
K m

d m m

dt
K m m

a

a
a

a b
a b

= −

=

=

=

2

0

2

2
2

(4.4)

where a and b label different species.  This closed set of equations determines all of the

moments required by the simplest (2 points per coordinate) version of the PCA-QMOM.

Multiple populations are tracked using separate covariance matrices for each population.  For

three populations and two components, a total of 18 moments is required.  These generate

three sets of 4-point quadratures; one set for each distribution.  For simulations in mass

coordinates using analytic kernels, the full set of moment evolution equations is in closed

form and may be integrated directly.  In these cases the PCA-QMOM is also exact.

Figures 3b and 3c show evolved σ  surfaces for each of the populations at the reduced

coagulation times tcoag = 5 and tcoag = 10 defined below.  These results were obtained from a

PCA-QMOM simulation carried out in the log-mass coordinate frame using Eq. 3.15 with

constant K.  Except for particle number, moment evolution in the transformed coordinates is

no longer exact.  Despite this, the use of transformed coordinate quadratures often provides

for superior sampling of pdf shape (as is already evident for the near lognormal distribution

of Fig. 1) and better approximations to integrals over the kernels describing aerosol physical

and optical properties than if the analytic moment evolution coordinates are used.   Figure 3d

shows the number of particles remaining in each distribution as a function of time.  These

results are independent of the total number concentration of particles initially present (shown

normalized to unity).  Particle number enters the reduced coagulation time, defined as:
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t K N N t KN tcoag = + =[ ( ) ( )] ( )I II0 0 0 .  The figure shows decay of the initial populations (I and

II) and growth, and later decay, of the mixed population (III).

4.3  Evolution of generally-mixed multicomponent aerosols

Calculations were completed for a number of test cases involving multicomponent

aerosols evolving under condensation and coagulation to test the general numerical

integration features of the PCA-QMOM in higher coordinate dimensions.  Again we find for

those special cases that closed-form equations can be constructed for the moments, the PCA-

QMOM integration is also exact.  The presentation will be limited mainly to results obtained

for coagulation, as this is the most interesting case.

Figure 4 shows evolution of a three-component aerosol in logarithmic mass

coordinates.  The initial distribution is taken to be a product of lognormal distributions with

identical distribution parameters for each component.  Thus the normalized initial

distribution is of the form:

f m N m s m m si i i i i i i( , ) / exp ln( / ) /( )}0 2 20

1 2 2= ( ) −[ ]{ }−
π (4.5a)

where mi  is the mass of species i in the particle, mi  is the geometric mean mass, and si  is the

logarithm of the geometric standard deviation.  The initial distribution parameters are taken

to be the same for each component: s s s s1 2 3= = ≡  and m m m m1 2 3= = ≡ .  With these

settings the initial distribution takes the factorable form:

f m m m N m m m s m m si
i

( , , ; ) exp ln( / ) /( )}1 2 3 0 1 2 3

3 1 2 2

1

3

0 2 2= ( )[ ] − [ ]







−

=
∑π     (4.5b)

with initial moments:

      m m m N pm ps qm qs wm wsp q w

f1 2 3 0
2 2 20 2 2 2; exp ( ) / exp ( ) / exp ( ) /= +{ } +{ } +{ }     (4.6)
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Figure 4a shows a sampling of the initial distribution (small black points) and the

initial σ and 2σ probability surfaces, colored blue and green respectively, for s2 4 3= ln( / )

and m = 3 2/ .  These surfaces are spherical in logarithmic coordinates.  The 2h -point PCA-

QMOM yields eight equal weight quadrature points, initially at the vertices of the cube,

indicated by the red points.  (Note that, because of the initial spherical symmetry of the pdf,

there is a degeneracy here in the initial assignment of quadrature points.  This is irrelevant for

computation as the moments and σ -surfaces evolve continuously - and the spherical pdf

symmetry is broken immediately once the particles begin to interact.)  The test distribution is

evolved under simultaneous coagulation (constant kernel) and condensation growth.  The

condensation rate is taken to have the simple analytic form:

dm

dt

dm

dt

C
m

dm

dt

C
m1 2

2
3

30
3

2
3

= = =, ,    (4.7)

where C is constant.  The coagulation-to-condensation time constant ratio is set to unity:

χ = =KN C( ) /0 1, to obtain comparable time scales for these processes.  Results are given in

terms of the reduced condensation time t Ctcond = , which for this case (χ = 1) equals the

reduced coagulation time, tcoag .  The PCA-QMOM is applied in logarithmic coordinates;

evolving the moments according to Eqs. 3.16 and 3.17b for condensation, and Eq. 3.15 for

coagulation.  Disposition of the eight quadrature points and the σ and 2σ surfaces are shown

in Fig. 4b for τ = = =t tcond coag 10.  Note the initial stages of approach to an internal mixing

state for which total particle mass, the principal coordinate, becomes increasingly dominate

while the orthogonal coordinates become diminished in importance with significantly smaller

variances in the principal frame.  This effect is next examined more closely for a

multicomponent aerosol evolving under coagulation alone.
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Statistical features of the PCA-QMOM, including compression, may be demonstrated

through analytic solutions for the covariance matrix, Σ( )t , available when analytic growth

laws are used.  Equations 4.4, for constant-kernel coagulation, apply to any number of

aerosol component species (coordinates) represented by the subscripts a and b.  For h

species, a and b will each vary from 1 through h.  With the time dependence of the

covariance matrix elements given by Eqs. 4.4 the matrix can be integrated directly to obtain:

         Σ Σ( ) ( )t K t= +0 A . (4.8)

A is the matrix of derivatives, constant in time, from the right-hand-side of Eq. 4.4.:

  

A =















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
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




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
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1 2 2
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2

1 2
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2
1 2

L

L

M M M

L

M
L . (4.9)

The second equality shows A  written as the outer product of the vector of component masses,

  
v1 1 2= ( )m m mh

T
L , with itself.  Defined by a single vector, it follows that A has rank

1 and h-1 of its eigenvalues are equal to zero.  The eigenvector of nonzero eigenvalue is obtained

simply by multiplying Eq. 4.9 on the right hand side by v1 to give:

  

A

m

m

m

m

m

m

m m m

m

m

m

m

m

m
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h

h

i
i

h
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1 2
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∑ (4.10)

showing that v1 is the eigenvector (unnormalized) of A:

Av v v v v1 1 1 1 1 1= ⋅ =( )T λ (4.11a)

with nonzero eigenvalue

  
λ1 1

2

2

2 2= + + +m m mhL . (4.11b)



21

At long time the covariance matrix approaches K tA  (see Eq. 4.8) and its nonzero principal value

is given by Eq. 4.11b.  Inspection of the corresponding eigenvector, v1, shows that the principal

axes is oriented along the coordinate direction, having constant component mass ratios

m m m m2 1 2 1/ /= , etc..  This is the coordinate describing the internally-mixed state of the

aerosol, as expected on physical grounds.

4.4  Scaling of multicomponent aerosol distributions under coagulation

The long time asymptotic behavior of an evolving aerosol can also be studied using the

PCA-QMOM.  For this it is convenient to use nondimensional moments and scaled coordinates

for the multivariate particle distribution function.  Nondimensional moments are defined as:

η η η η η η ψ η η η η η η
ψ1 2 1 2 1 2 1 2

j k
h
l j k

h
l

h hd d d... ... ( , ,..., ) ...= ∫∫∫ (4.12)

where ηa a am m= / , etc. are scaled coordinates, m m Na a= / , and ψ ( )⋅  is the normalized,

transformed version of f ( )⋅ .  The nondimensional moments are readily expressed in terms

of the mass moments:

  

η η η
ψ1 2

1 2

1 2

j k
h
l

j k
h
l

f

j k

h

lm m m

N

N

m

N

m

N

m
...

...
=













× ×







L . (4.13)

Thus:

1 1 1ψ = =f N/ (4.14a)

ηa = 1 (4.14b)

ηa
a

a

a

a

m

N

N

m
N

m

m
2

2 2 2

2=






= (4.14c)

η ηa b
a b

a b

a b

a b

m m

N

N

m

N

m
N

m m

m m
= = . (4.14d)

The original covariance matrix (using Eqs, 4,14c and 4,14d) is:
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and the reduced covariance matrix, corresponding to the reduced mass probability distribution

ψ η η( , )1 2 , is:
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The matrix elements in Eqs. 4.15 and 4.16 are related through A  of Eq. 4.9:

Σ Σij
ij

ijt
N t

t( )
( )

˜ ( )=
A

. (4.17)

For constant kernel:

Σ Σ

Σ Σ

ij ij ij

ij ij

t K t

t
N

N
KNt

( ) ( )

˜ ( ) ˜ ( )

= +

= +

0

0 0

A
(4.18)

from Eq. 4.8, where N N0 0= ( ) is the initial particle number density.  The first of Eqs.

4.4 gives the solution for N:

N t
N

K
t( ) = +





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−
1

20

1

(4.19)

and the second of Eqs. 4.18 gives the evolution of the reduced covariance matrix with

time:

˜ ( ) ˜ ( )Σ Σt
KN t

KN t= +



 +[ ]

−

1
2

00
1

0U (4.20)
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where U  is the constant element h h×  matrix having each of its elements equal to unity.

In reduced time units, t KN tcoag = 0 , this becomes:

˜ ( ) ˜ ( )Σ Σt
t

tcoag
coag

coag= +





+[ ]
−

1
2

0
1

U (4.21)

Figure 5 shows evolution from an initial distribution (sampled points) towards the self-

preserving limit for coagulation of a two component aerosol under constant kernel.  The figure

shows disposition of the four quadrature points for several indicated values of the reduced time.

These lie at the vertices of rectangles into which can be inscribed the σ-surfaces (not shown)

derived from the covariance matrix of Eq. 4.21.  The corners of the small rectangle, oriented with

the sampled points, mark the locations of the initial quadrature points.  Subsequent locations are

marked by clockwise rotation and lengthening of the principal axes with time.  At long times the

total mass coordinate dominates, and the distribution approaches a self-preserving form in the

reduced total mass, η ≡ m m/ .  The η-moments are known to approach, in the asymptotic limit,

the factorial values η k k= +Γ( )1  under constant-kernel coagulation (Wang, 1966).  Inspection

of the long-time behavior of Fig. 5 shows merging of pairs of quadrature points to η values of  0

and 2 with combined weights of 1/2 for each merged pair (since each of merging points has

weight 1/4).  These quadrature fixed points yield asymptotic moments in agreement with the

factorial values for k = 0,1,2, showing that the PCA-QMOM gives the correct asymptotic

behavior for this important analytic test case.  These results illustrate the compression features of

the PCA-QMOM.  Compression is obtained with the dominance of a few principal coordinates

(here just one) from the h originally required to specify the pdf.  This reduction in dimensionality

is especially important when the original dimensionality is large (h >>1).
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5. Summary and Discussion

The PCA-QMOM introduced in Paper I has been applied to the simulation of

generally-mixed, multivariate particle populations evolving under condensation,

coagulation, and simultaneous condensation/coagulation and coagulation/sintering

processes.  The new method was tested through comparisons with the bivariate pdf

obtained numerically using a high-resolution discrete grid model, and with analytic test

cases in three and higher dimensions, where calculations of the full multivariate pdf are

too expensive, computationally, to carry out.

The statistically-based PCA-QMOM, which like all QMOM-based methods

works best with lower-order moments, is in many ways complementary to the sectional

and discrete grid approaches that seek to represent the full pdf.  For univariate problems,

QMOM calculations have typically employed three quadrature points (six moments).

Although the QMOM has been shown to be remarkably accurate at this level (Marchisio

et al., 2003; McGraw and Wright, 2003), one may still seek (at least in the univariate

case) more information by computing the full pdf using a high-resolution sectional

model.  On the other hand, for bivariate and especially for multivariate problems, it

becomes vastly more difficult, even impractical, to track the full pdf, and statistical

approaches will likely win out.  Beyond the advantages of data compression available

with PCA,  there are many more lower-order (mixed) moments available in higher

dimensions - and correspondingly higher densities of quadrature points can be assigned

and tracked with time using the methods we have described.  Thus, much more

information about a multivariate pdf, albeit of a statistical nature, becomes available with

the PCA-QMOM.
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Appendix A:  Data transformation technique

The Box-Cox method (Box and Cox, 1964) is a popular way to determine

transformations on variables so that, after transformation, the pdf better approximates a

multivariate normal form.  The method is designed for positive variables, however this is

not as restrictive as it seems because a single constant can be added to each observation

in the data.  The method requires that a sampling of the initial pdf be available.  We

choose the power transformation to bring the data closer to normal form.  The method

transforms the variable x to x ( )λ  where the family of transformations indexed by λ is

x
x

x

( )

ln

λ

λ

λ
λ

λ
=

− ≠

=













1
0

0

    

         

. (A1)

For fixed x > 0 , x ( )λ  is continuous is λ.  Given the set of observations,   x x xn1 2, , ,K ,

along a particular coordinate, the Box-Cox solution for λ is the one which maximizes the

likelihood expression:

    L
n

RSS n xi
i

n

( ) ln( / ) ( ) lnλ λλ= − + −
=
∑2

1
1

(A2)
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where RSSλ  is the residual sum of squares of x ( )λ , that is

RSS x xi
i

n

λ
λ λ= −( )

=
∑ ( ) ( )

2

1

(A3)

where

x
n

x
n

x
i

i

n
i

i

n
( ) ( )λ λ

λ

λ
= = −



= =

∑ ∑1 1 1

1 1

(A4)

is the sample mean of the transformed observations.

We have also employed a simple alternative method based on moments.  From the

n observations, we define the new variables z xi i
( ) ( ) /λ λ

λ λµ σ= −  where µλ  and σλ  are

the mean and standard deviation of the positive distribution xi
λ{ } .  By definition the

expectation values for the z( )λ  distribution are: E z[ ]( )λ = 0 and E z[( ) ]( )λ 2 1= .  For a

normal distribution we would also have E z[( ) ]( )λ 3 0= , which is the case for any

distribution xi
λ{ }  that is symmetric about µλ .  Accordingly, we choose λ to be the

exponent that minimizes E z[( ) ]( )λ 3 .

Both methods were applied separately to the volume and area coordinates of the

sampled points shown in Fig. 2a, and gave similar results: a power λ near 1/10 for

volume and -1/10 for area.  Because these exponents are not significantly different from

zero, the logarithmic Box-Cox transformation (Eq. A1) also gives near normal results.

Both methods were applied here to statistical samplings from an initially known pdf,

however, because the second method can be applied directly to moments, it has the

potential advantage of enabling coordinate transformations to be updated with time even

though the pdf is unknown.  Fractional moments, of an order dependent on the
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continuous parameter λ, can be estimated from the tracked moments for this purpose

using polynomial interpolation methods (Frenklach, 2002; Diemer and Olson, 2002).

References:

Albrecht B. A. (1989), Aerosols, cloud microphysics, and fractional cloudiness, Science 245,
1227-1230.

Barrett, J. C., and Webb, N. A. (1998).  A comparison of some approximate methods for
solving the aerosol general dynamic equation.  J. Aerosol Science 29, 31-39.

Box G. E. P., and Cox D. R. (1964).  An analysis of transformations, J. Royal Statistical
Society 211-243, discussion 244-252.

Clegg S. L., Brimblecombe P., and Wexler A. S. (1998).  A thermodynamic model of the
system H NH SO NO H O+ + − −− − − −4 4

2
3 2  at tropospheric temperatures, J. Phys. Chem. A 102,

2137-2154.

Capaldo K.P., Pilinis C., and Pandis, S. N. (2000).  A computationally efficient hybrid
approach for dynamic gas/aerosol transfer in air quality models, Atmospheric Environment,
34, 3617-3627.

Diemer R. B., and Olson J.H. (2002).  A moment methodology for coagulation and breakage
problems: Part 2 - moment models and distribution reconstruction, Chem. Eng. Sci. 57, 2211-
2228.

Frenklach M. (2002).  Method of moments with interpolative closure, Chem. Eng. Sci. 57,
2229-2239.

Jacobson M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in
atmospheric aerosols, Nature 409, 695-697.

Jacobson M. Z. (2002). Analysis of aerosol interactions with numerical techniques for
solving coagulation, nucleation, condensation, dissolution, and reversible chemistry among
multiple size distributions, J. Geophys. Res. 107 (D19), 4366, doi:10.1029/2001JD002044.

Koch W., and Friedlander S. K. (1990), The effect of particle coalescence on the surface area
of a coagulating aerosol, J. Coll. Interface Sci. 140, 419.

Marchisio D. L., Pikturna J. T., Fox R. O., Vigil D. R., and Barresi A. A. (2003), Quadrature
method of moments for population-balance equations, AIChE Journal 49, 1266-1276.

McGraw R. (1997), Description of atmospheric aerosol dynamics by the
Quadrature method of moments, Aerosol Sci. Technol. 27, 255-265.



28

McGraw R., and Wright D. L. (2003).  Chemically resolved aerosol dynamics for internal
mixtures by the quadrature method of moments, J. Aerosol Sci. 34, 189-209.

McGraw R., and Liu Y. (2003), Kinetic potential and barrier crossing: a model for warm
cloud drizzle formation, Phys. Rev. Letts. 90, 018501-1.

Meng Z., Dabdub D., and Seinfeld J. H. (1998). Size-resolved and chemically
resolved model of atmospheric aerosol dynamics, J. Geophys. Res. 103, 3419-3435.

Rosner D. E., and Pyykonen J. (2002) Bi-variate moment method for simulation of
coagulation and sintering of alumina nano-particles in flames.  AIChE Journal, 4 (3) 476-
491.

Rosner D. E., McGraw R., and Tandon P. (2003).  Multi-variate population balances via
moment and Monte Carlo simulation methods, I/EC-Research , in press.

Seinfeld J. H., and Pandis S. N. (1998)  Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change  (Wiley, New York).

Twomey S, A., Piepgrass M., and Wolfe T. L. (1984). An assessment of the impact of
polution on global cloud albedo, Tellus 36B, 356-366.

Wang C.-S. (1966).  A Mathematical Study of the Size Distribution of Coagulating Disperse
Systems.  Doctoral thesis, California Institute of Technology, Pasadena, California (p.45).

Wilck M. (1998).  Modal Modelling of Multicomponent Aerosols, (Doctoral
Dissertation, Leipzig University).

Wright D. L., McGraw R., and Rosner D. E. (2001). Bivariate extension of  the quadrature
method of moments for modeling simultaneous coagulation and sintering of particle
populations, J. Coll. Interface Sci. 236, 242-251.

Wright D. R., McGraw R., Benkovitz C. M., and Schwartz S. E. (2000).
Six-moment representation of multiple aerosol populations in a
sub-hemispheric chemical transformation model, Geophys. Res. Letts. 27, 967-970.



FIGURE CAPTIONS

Figure 1.  (a) Evolution of the volume moments (p=0,1/3,2/3,1,4/3,5/3; q=0, in Eq. 3.8).

(b) Evolution of the mixed moments (p=0,1/3,2/3,1,4/3,5/3; q=5/3, in Eq. 3.8).  The

exponent p increases from the lowest to highest curves shown in each panel of the figure.

Curves: results from numerical calculations using a 150 x 150 discrete grid model (from

Wright et al., 2001).  Points, shown at integral values of the reduced time (see text), are

the PCA-QMOM results obtained by tracking 4 equal weight quadrature points.

Figure 2. (a) Sampled bivariate distribution (1000 points) in volume and area coordinates.

Initial location of the 4 quadrature points obtained from the PCA-QMOM after

coordinate transformation are also shown.  (b)  Sample points after coordinate

transformation.  Initial locations of the principal axes,  4 quadrature points, and σ and 2σ

elliptical surfaces from the PCA-QMOM are also shown.

Figure 3.  Simulation of interacting particle populations. (a) Initial condition.  Sampled

distributions and σ  and 2σ  surfaces in species mass coordinates.  These surfaces are

elliptical in the log-mass coordinates employed in the simulation.  (b) and (c) σ  surfaces

at reduced coagulation times tcoag = 5 and tcoag = 10, respectively.  The mixed population,

III, consists of aggregates formed via coagulation of particles from either I, II, or III with

the other populations.  (d) Number density of particles in each distribution as a function

of reduced time.  The initial total particle number density is normalized to unity.



Figure 4.  Evolution of a three-component aerosol in logarithmic mass coordinates under

simultaneous coagulation and condensation.  (a) σ  (blue) and 2σ  (red) surfaces and

sampled compositions for the initial trivariate distribution given by Eq. 4.5b.  (b) σ

(blue) and 2σ  (red) surfaces at reduced time (see text) τ = = =t tcond coag 10.  The red

points in (a) and (b) are the eight equal-weight quadrature points tracked in the PCA-

QMOM at τ = 0 and τ = 10, respectively.  Elongation of the ellipsoidal surfaces at τ = 10

reflects the emergence of a single principal coordinate (particle mass) during the

approach to internal mixing.

Figure 5.  Evolution from an initial distribution (sampled points) towards the self-

preserving limit for coagulation of a two-component aerosol.  Results are in scaled

coordinates (mass divided by averaged mass).  The figure depicts evolution of four equal-

weight quadrature points from the PCA-QMOM.  These are located at the corners of the

six rectangles corresponding to reduced coagulation times of tcoag  = 0, 0.1, 0.3, 1.0, 10.0,

and 100.0.  Subsequent locations are marked by clockwise rotation and lengthening of the

principal axes with time.  At long times the total mass coordinate dominates, and the pdf

approaches a self-preserving, internally-mixed, distribution in the reduced total mass

η = m m/ .
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