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Abstract

The quadrature method of moments (QMOM) is extended to generally mixed multicomponent particle
populations using principal component analysis (PCA). The resulting PCA-QMOM provides a versatile method
for moment closure illustrated for generally mixed, multivariate, particle populations evolving under condensa-
tion, coagulation, sintering, and simultaneous processes. The method is illustrated using a 2h-point quadrature
version of the PCA-QMOM, where h is the number of coordinate dimensions, developed in the preceding
paper (Paper I). Calculations for multiple particle populations interacting through coagulation are also pre-
sented. A theory is developed for the time-dependence of the covariance matrix of a multicomponent particle
population evolving under a size-independent coagulation rate. It is found that the rank of the h×h covariance
matrix, for h components, approaches unity at long time as the particle population evolves to an internally
mixed, self-preserving size distribution state.
Published by Elsevier Ltd.
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1. Introduction

In addition to particle mass loading, the chemical and physical properties of aerosols are determined
by particle number density, composition, shape, and size distribution. In the atmosphere, particle
number and composition control the indirect e=ects that aerosols have on climate through their
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inEuence on cloud activation, drizzle production, and cloud radiative properties (Twomey, Piepgrass,
& Wolfe, 1984; Albrecht, 1989; McGraw & Liu, 2003). Another example, again from the atmosphere,
points to the mixing state of black carbon aerosols as having a signiHcant inEuence on radiative
forcing (Jacobson, 2001). The representation of such processes in models requires new multivariate
approaches to aerosol simulation, which on account of the large numbers of variables involved will
most likely have to be statistically based.

While particle populations of mixed shape and composition call for a multivariate description, the
extreme computational requirements of multivariate particle distribution function (pdf) simulation
have generally forced the use of zero dimensional (e.g. modeling sulfate mass), or univariate (e.g.
modeling the pdf using a single radial or mass coordinate) approximations. Likewise, most treatments
of multicomponent aerosols have been limited to the special cases of externally mixed or internally
mixed particle populations. External mixtures are non-interacting particle populations, e.g. dust, sea
salt, and sulfate in the atmosphere—to the extent that these are noninteracting—amenable to treat-
ment using separate radius or mass coordinates for each population. Limited interactions between
such populations (e.g. the aggregation of sulfate with the other particle types) have been accom-
modated within the univariate framework (Wright, McGraw, Benkovitz, & Schwartz, 2000), but the
methods are not extendable to general mixtures. Internal mixtures, characterized by the property that
all particles of the same total mass, m, have the same composition (Seinfeld & Pandis, 1998), are
also amenable to a univariate treatment. Here the component species distributions are each repre-
sented as functions of particle mass. Sectional methods, which fractionate the pdf into discrete size
classes, or sections, are naturally suited to the representation of internal mixtures (see for example
Meng, Dabdub, & Seinfeld, 1998). Nevertheless, the computational demands are formidable even for
univariate problems if a high-resolution description of the size distribution, requiring a large number
of sections, is desired. Extensions of the modal (Wilck, 1998) and moment (McGraw & Wright,
2003) methods to internal mixtures have also been developed.

A recent extension of sectional methods to include multiple size distributions can in principle
represent the intermediate (between internal and external) mixing states of the aerosol (Jacobson,
2002). The aerosol is partitioned into multiple distributions that are each characterized by their
own sectional size coordinate. Coagulation, condensation, nucleation, and reversible chemistry are
allowed to take place among the distributions. These results show the remarkable extent to which
sectional methods can be developed using high speed computers. Limitations include the large number
of variables that must be carried to represent the multiple size distributions. Additionally, only a
sampling of the full pdf is obtained. The composition coordinates of the multiple size distributions
must be assigned on a case-by-case basis prior to simulation, and these should be representative of
the full compositional-coordinate space of the aerosol. At present, the assignment appears to require
at least some degree of subjective model intervention.

In the previous paper (Part I) the quadrature method of moments (QMOM) was combined with
principal component analysis (PCA) in a novel and very general way that makes explicit the statis-
tical foundation of moment methods. This was achieved by adapting PCA to assign the quadrature
points in higher dimension. The resulting PCA-QMOM is developed below to provide a compu-
tationally eKcient, statistically based approach to multivariate aerosol dynamics simulation. The
new methods are illustrated through simulations requiring the representation of generally mixed,
multivariate, particle populations. These include multicomponent and mixed-shape particle popula-
tions evolving under typical aerosol microphysical processes including coagulation, sintering, and
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condensation growth. Part I described the application of PCA to the QMOM with an arbitrary num-
ber of quadrature points per variable. The present paper (Part II) implements the method using two
quadrature points per variable (e.g., 2h quadrature points for an aerosol having h components).

2. Assignment of quadrature points by PCA

The multivariate mixed moments of an h-variate particle distribution function, f(m1; m2; : : : ; mh),
are deHned as

〈mp
1 m

q
2 : : : m

w
h 〉f =

∫ ∫
· · ·

∫
mp

1 m
q
2 : : : m

w
h f(m1; m2; : : : ; mh) dm1 dm2 : : : dmh; (2.1)

where {mi} are the coordinates that characterize an individual particle, and f(m1; m2; : : : ; mh) gives
the number of particles per unit volume having coordinate mi between mi and mi + dmi for all
i. In most of the examples treated in this paper, mi will be the mass of species i present in a
multicomponent aerosol particle. In the bivariate model of Section 3.3, which describes nonspherical
particles undergoing coagulation and sintering, m1 and m2 represent particle volume and particle
surface area, respectively. PCA makes use of the probability density function, which is normalized
to unity. Thus we will also require the moments of the normalized distribution f̃(m1; m2; : : : ; mh) =
f(m1; m2; : : : ; mh)=N0 where N0 is the total number of particles per unit volume. These di=er only
by the factor 1=N0 from the moments of Eq. (2.1).

The calculations presented below are based on the most economical, 2h-quadrature point, version
of the PCA-QMOM, which tracks mixed-moments through second order, including the moments
entering the covariance matrix. The present description is limited to this case. Extensions of the
method to higher quadrature point densities, and correspondingly higher-order moments, is described
in Paper I. Assignment of the 2h points requires the following moments: the normalization 〈1〉f =
N0〈1〉f̃ = N0; the h coordinate means, 〈mi〉f̃ = 〈mi〉f=N0 for i = 1 through h; and the h(h + 1)=2
distinct elements of the symmetric h × h covariance matrix, �:

� =




〈m2
1〉f̃ − 〈m1〉2

f̃ 〈m1m2〉f̃ − 〈m1〉f̃〈m2〉f̃ · · · 〈m1mh〉f̃ − 〈m1〉f̃〈mh〉f̃
〈m1m2〉f̃ − 〈m1〉f̃〈m2〉f̃ 〈m2

2〉f̃ − 〈m2〉2
f̃ · · · 〈m2mh〉f̃ − 〈m2〉f̃〈mh〉f̃

...
...

...

〈m1mh〉f̃ − 〈m1〉f̃〈mh〉f̃ 〈m2mh〉f̃ − 〈m2〉f̃〈mh〉f̃ · · · 〈m2
h〉f̃ − 〈mh〉2

f̃




:

(2.2)

Thus the total number of moments required is 1 + h + h(h + 1)=2 = (h2 + 3h + 2)=2. For speciHed
values of these moments the assignment of quadrature points is straightforward, requiring only that
the eigenvectors and eigenvalues of � be obtained. The eigenvectors, which are necessary to trans-
form between coordinate systems, form the columns of an orthogonal matrix, G, that transforms
� to diagonal form. Thus GT�G = D where GT is the transpose of G and D = diag(i) is the
diagonal matrix containing as its elements the eigenvalues of �. These are non-negative and ordered
according decreasing size 1¿ 2¿ · · · h¿ 0. The eigenvalues give the variances of the probability
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distribution function in the principal coordinate frame. Thus the largest variance is along the direction
of the Hrst principal coordinate, y1: 〈y2

1〉−〈y1〉2 =1. The second largest variance, along y2, is given
by 2, etc.

Having diagonalized �, the 2h quadrature points are now trivial to assign in the principal frame.
The transformed and centered coordinates of the abscissas are simply:

{±
√

1;±
√

2;± · · · ±
√

h}: (2.3)

The weights are identical and equal to 2−hN0. It is convenient to number the quadrature points using
a single index, j, which takes on values from 1 through 2h. For example, a convenient mapping
can be carried out by assigning the ± signs in Eq. (2.3) according to the pattern of 0’s and 1’s
in the binary representation of j − 1. In the absence of nonlinear variable transformations, of the
kind described in Section 3.4 below, one is interested only in the quadrature points in the original
coordinate frame. Let the components of the vector ỹ j contain the centered principal coordinates of
quadrature point j, from Eq. (2.3), and x̃j the desired full coordinates (uncentered) for this same
point in the original frame. Then:

x̃j = Gỹ j + �̃; (2.4)

where the ith component of �̃ gives the corresponding normalized Hrst-order moment: �̃(i)=〈mi〉f=N0.
The quadrature weights (which sum to the total particle number density) are, of course, unchanged
by the transformation: wj = 2−hN0.

The steps for locating multivariate quadrature points from moments using the 2h-quadrature point
version of the PCA-QMOM are summarized as follows: (1) Set up the covariance matrix, �, consist-
ing of the normalized moments of second order in the original coordinates, and solve the eigenvalue
problem associated with this matrix to obtain the ordered principal values {i} and the matrix G.
(2) The location of the quadrature points in the principal frame is given immediately by Eq. (2.3).
Convert these to the original coordinates using Eq. (2.4) and normalize to N0. Eqs. (2.3) and (2.4)
complete the assignment of quadrature points from moments in this version of the PCA-QMOM.

3. Moment evolution

The assignment of quadrature points from moments by the PCA-QMOM having been described,
we complete closure by describing the method used to update the moments in terms of the quadra-
ture points so assigned. The procedure is basically the same as in the original QMOM (McGraw,
1997; Barrett & Webb, 1998), but is extended here to the multivariate applications that are the focus
of the present study. To illustrate, we consider below the mixed moments of (i) multicomponent
aerosols evolving under coagulation and condensation, and (ii) mixed-shape single-component par-
ticles evolving under simultaneous coagulation and sintering. The same general methods apply to
other kinds aerosol microphysical processes requiring a multivariate description; provided only that
the rate kernels for these processes are known.

3.1. Multivariate condensation

Consider particle growth through the condensation/evaporation of condensable molecular species
in a multicomponent vapor. The following equation gives the evolution of the mixed moment,
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〈mp
1 m

q
2 · · ·mw

h 〉f, for h component species under condensation:

d
dt

〈mp
1 m

q
2 · · ·mw

h 〉f

=
∫

· · ·
∫∫

d
dt

(mp
1 m

q
2 · · ·mw

h )f(m1; m2; : : : ; mh) dm1 dm2 · · · dmh

≈
N∑

j=1

d
dt

(mp
1jm

q
2j · · ·mw

hj)wj: (3.1)

The Hrst equality is derived in Appendix A of McGraw and Wright (2003) and the second gives
the N -point quadrature approximation, using a single index j to number the points. Thus the co-
ordinates (m1j; m2j; : : : ; mhj) give the location of quadrature point j having weight wj. Evaluation
of the derivatives on the right-hand side requires the growth rate law for each component species
(i). For example, the net addition (loss) of species i to (from) a particle having the composition
{m1; m2; : : : ; mh} can be represented quite generally as

dmi

dt
= �i(m1; m2; : : : ; mh) (3.2)

for i=1; 2; : : : ; h. The right-hand side of Eq. (3.2) gives a net rate that depends on both condensation
and evaporation Euxes, which in turn depend on the relative sizes of the particle and the mean free
path of the gas, and particle composition. In some cases particle growth may to a good approximation
depend only on radius, as with transport-limited growth, but in other cases, of high importance
to atmospheric aerosols, composition-dependent thermodynamic models are necessary for improved
prediction of evaporation rates and gas–particle exchange (Clegg, Brimblecombe, & Wexler, 1998;
Capaldo, Pilinis, & Pandis, 2000). For these cases, the resulting growth laws take the more general
multivariate form given by the right-hand side of Eq. (3.2) and their evaluation using thermodynamic
models can become the most computationally expensive part of an aerosol simulation run. A great
advantage of the PCA-QMOM is its property that the pdf is optimally represented by just a few
quadrature points, so the number of evaluations of the right-hand side of Eq. (3.2) required during
a simulation (one for each point) is minimized.

3.2. Multivariate coagulation

The moment evolution equations for coagulation are developed here for a trivariate (three compo-
nent species) particle model to illustrate the method. The extension to higher dimensions is straight-
forward. Consider the coagulation of two three-component particles to form a single particle of larger
size:

{m1; m2; m3} + {m′
1; m

′
2; m

′
3} ⇒ {m1 + m′

1; m2 + m′
2; m3 + m′

3}: (3.3)

For this event the change in the moment 〈mp
1 m

q
2m

w
3 〉f is

(m1 + m′
1)

p(m2 + m′
2)

q(m3 + m′
3)

w − mp
1 m

q
2m

w
3 − mp

1′mq
2′mw

3′ : (3.4)
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Factoring in the frequency at which events of type (3.3) occur, which is proportional to the product
of the distribution functions for each particle, and using Eq. (3.4), we obtain:

d
dt

〈mp
1 m

q
2m

w
3 〉f

=
1
2

∫
· · ·

∫∫
K(m;m′)[(m1 + m′

1)
p(m2 + m′

2)
q(m3 + m′

3)
w − mp

1 m
q
2m

w
3 − mp

1′mq
2′mw

3′]

×f(m1; m2; m3)f(m′
1; m

′
2; m

′
3) dm1 dm2 dm3 dm′

1 dm′
2 dm′

3: (3.5)

The factor 1/2 corrects for counting each pair of particles twice. In writing the kernel this way we
have assumed that the coagulation rate depends only on the total masses of the two particles and
not on their composition:

K(m;m′) = K(m1 + m2 + m3; m′
1 + m′

2 + m′
3): (3.6)

The quadrature approximation to Eq. (3.5) is:

d
dt

〈mp
1 m

q
2m

w
3 〉f ≈ 1

2

∑
j

∑
k

K(mj; mk)[(m1j + m1k)p(m2j + m2k)q(m3j + m3k)w

−mp
1jm

q
2jm

w
3j − mp

1km
q
2km

w
2k]wjwk; (3.7)

where the summation indices vary from 1 to the number of quadrature points, N . The coagulation
kernel is often reported in terms of the particle volume v(m1; m2; : : : ; mc), which will in general have
some dependence on the mixing state of the particle. For example, a homogeneous particle might well
have a di=erent volume than one of identical mass composition that is not homogeneously mixed.
Here we assume that individual particles are spherical and homogeneously mixed, so expressing the
coagulation kernel in terms of particle mass requires only an approximation for the particle density
to determine the speciHc form of K . The method is also capable of handling more general kernels
when their functional dependencies are known.

3.3. Simultaneous coagulation and sintering

Particles having identical composition but di=erent shapes have been represented by assigning
a volume, v, and surface area, a, to each particle (Koch & Friedlander, 1990). The v–a model
has proven useful for the representation of particle aggregates undergoing simultaneous coagulation
and sintering in Eames (Wright, McGraw, & Rosner, 2001; Rosner & Pyykonen, 2002; Rosner,
McGraw, & Tandon, 2003). Microphysical processes are represented through the dynamical equations
developed for evolving the bivariate number density distribution function, f(v; a), whose mixed
moments are:

〈vpaq〉f =
∫∫

vpaqf(v; a) dv da: (3.8)

It is useful to summarize the moment evolution equations used in the v–a model (Wright et al.,
2001) in preparation for the calculations of the following section. A coagulation event between
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two particles, under the assumption that area as well as volume is additive, can be represented
schematically as

{v; a} + {v′; a′} ⇒ {v + v′; a + a′}: (3.9)

The change in the bivariate v–a moment 〈vk ; al〉f for this one event is

(v + v′)p(a + a′)q − vpaq − v′pa′q: (3.10)

Integrating over the distribution, as in Eq. (3.5), gives[
d
dt

〈vpaq〉f
]

coag

=
1
2

∫
· · ·

∫
�(v; v′)[(v + v′)p(a + a′)q − vpaq − v′pa′q] × f(v; a)f(v′; a′) dv′ da′ dv da

≈ 1
2

N∑
j=1

N∑
k=1

�(vj; vk)[(vj + vk)p(aj + ak)q − vpj a
q
j − vpk a

q
k]wjwk; (3.11)

where it has been assumed that the coagulation kernel, �(v; v′), depends only on volume.
For particles undergoing sintering, volume is conserved and (Wright et al., 2001):[

d
dt

〈vpaq〉f
]

fusion

= q
∫∫

vpaq−1ȧf(v; a) dv da ≈ q
N∑

j=1

vpj a
q−1
j ȧ|a=ajwj: (3.12)

For the model calculations of the following section we use the linearized, surface-energy driven, rate
law of Koch and Friedlander (1990), under which the time rate of change of surface area for an
individual aggregate is

ȧ = − 1
tf

(a − amin); (3.13)

where amin is the area of the fully compacted (spherical) particle of the same volume, and tf is the
characteristic time of fusion/sintering. Eqs. (3.11)–(3.13) complete the model.

3.4. Coordinate transformations and the evolution of transformed moments

It is sometimes more accurate to track moments and quadrature points in a transformed coordinate
space. For example, aerosol distributions shaped by coagulation tend to be broad and transformation
to z = ln(m) might be expected to better approximate a normal distribution (normal in z, lognormal
in m) and better sampling of the pdf with the quadrature points assigned along z rather than along
m. Calculations presented in the following section will employ transformations of the type zi =zi(mi)
where zi(mi) is the logarithm, as above, or a power law of the form: zi = m�i

i , with an exponent
�i that will in general be coordinate dependent. Such coordinate transformations are easily carried
out within the framework of the QMOM as next illustrated for selected transformations used in the
calculations of the following section.
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The covariance matrix and quadratures are cast in terms of the transformed moments. To illustrate
for the bivariate case:

〈zp1 zq1〉 =
∫∫

zp1 z
q
2fz(z1; z2) dz1 dz2 ≈

∑
j

zp1jz
q
2jwj: (3.14)

Applying the fundamental transformation rule governing the mapping between coordinate systems:
fz(z1; z2) dz1 dz2 =f(m1; m2) dm1 dm2 greatly facilitates construction of the moment evolution equa-
tions in the transformed coordinates. For coagulation, Eq. (3.5) becomes:

d
dt

〈zp1 zq2〉

=
1
2

N∑
j=1

N∑
k=1

Kz(z1j; z2j; z1k ; z2k)[z
p
1 (m1j + m1k)z

q
2(m2j + m2k) − zp1 (m1j)z

q
2(m2j)

− zp1 (m1k)z
q
2(m2k)]wjwk; (3.15)

where the transformed kernel is

Kz(z1j; z2j; z1k ; z2k) = K(mj; mk) = K(z1=�1
1j + z1=�2

2j ; z1=�1
1k + z1=�2

2k )

for the power law transformation, and K(ez1j + ez2j ; ez1k + ez2k ) for the log.
For condensation, Eq. (3.1) becomes:

d
dt

〈zp1 zq2〉 =
∫∫

d
dt

(zp1 z
q
2)fz(z1; z2) dz1 dz2 ≈

N∑
j=1

d
dt

(zp1jz
q
2j)wj: (3.16)

The quadrature derivatives are evaluated using the chain rule and Eq. (3.2) for the growth law
written in terms of two components for the bivariate case. Thus, for the power law transformations,
z1 = m�1

1 and z2 = m�2
2 , we obtain

dz1j
dt

=
dz1j
dm1j

dm1j

dt
= �1z

(�1−1)=�1
1j

dm1j

dt
= �1z

(�1−1)=�1
1j �1(z

1=�1
1j ; z1=�2

2j ) (3.17a)

and for the log transformation

dz1j
dt

=
dz1j
dm1j

dm1j

dt
= exp(−z1j)

dm1j

dt
= exp(−z1j)�1[exp(z1j); exp(z2j)]: (3.17b)

Finally, for evolution of the transformed bivariate v–a moments under sintering: With z1 = v�1 and
z2 = a�2 , Eq. (3.12) becomes[

d
dt

〈zp1 zq2〉
]

fusion

=
∫∫

zp1
dzq2
dt

f(z1; z2) dz1 dz2 ≈ �2q
N∑

j=1

zp1jz
q−1
2j z(�2−1)=�2

2j ȧ|a=(z2j)1=�2wj: (3.18)

The preceding power law transformations are fully consistent with Eqs. (3.1), (3.7), and (3.12)
applied to the corresponding fractional moments. Thus one can change easily from integral moments
to fractional moments such as vp=3 or aq=2 which, in this example, are proportional to the radial
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moments for integer values of p and q. The log transformation is well suited to broad pdfs that
resemble log-normal form. On the other hand, for certain analytic coagulation kernels, such as
K(u; v)=const, K(u; v)=u+ v, and K(u; v)=uv, where u and v are particle volumes, the QMOM is
exact for the integral volume moments, but only approximate for the moments of log(v) and fractional
volume moments. Nevertheless, the QMOM remains highly accurate for transformed moments, as
shown recently in comparisons with the moments obtained from box model simulations of the full
pdf using high-resolution discrete models (McGraw & Wright, 2003).

4. Calculations

4.1. Simultaneous coagulation and sintering in the bivariate v–a model

Simulation of the full bivariate pdf in the volume–area (v–a) model of Section 3.3 was recently
reported (Wright et al., 2001). The pdf was evolved on a 150 × 150 discrete v–a grid, and selected
mixed moments were evaluated numerically as a function of time by summing over the grid. These
results will be used here to benchmark the PCA-QMOM for a nonanalytic case.

Fig. 1a shows evolution of the fractional volume moments, {〈1〉; 〈v1=3〉; 〈v2=3〉; 〈v〉; 〈v4=3〉; 〈v5=3〉},
and Fig. 1b the mixed moments, {〈v0a5=3〉; 〈v1=3a5=3〉; 〈v2=3a5=3〉; 〈va5=3〉; 〈v4=3a5=3〉; 〈v5=3a5=3〉}, deHned
as in Eq. (3.8). The discrete grid calculations are as in Wright et al. (2001). The coagulation kernel
was approximated as

�(vj; vk) = K(v−1=3
j + v−1=3

k )(v1=3
j + v1=3

k ); (4.1)

which applies for Brownian coagulation in the continuum regime. The constraint a¿ amin(v), where
amin(v) is the minimum surface area for a particle of volume v, is handled by building it into
the grid itself as described in Wright et al. (2001). The initial distribution is lognormal in these
modiHed volume and area coordinates. Time is expressed in reduced units, � = KN (0)t, where K is
the coagulation rate constant from Eq. (4.1) (assumed independent of time) and N (0) is the initial
number of particles per unit volume (initial value of 〈v0a0〉 ≡ 〈1〉 from Eq. (3.8)).

Fig. 2a shows a sampling of 1000 points from the initial distribution. Quadrature points were
assigned by the PCA-QMOM after Hrst transforming coordinates so that the initial distribution op-
timally approximates a bivariate normal form. Results from the Box–Cox transformation (Appendix
A) suggest a power law transformation with z1 = v1=10 and z2 = a−1=10 for the volume and area
coordinates, respectively. That these exponents are small in magnitude is consistent with an ini-
tial distribution nearly lognormal in v and a (Appendix A). The sampled points from Fig. 2a are
reproduced in Fig. 2b in the transformed coordinates, and the quadrature points assigned in these
coordinates using PCA (Section 2). Fig. 2b shows orientation of the principal axes, y1 and y2,
and initial placement of the four quadrature points obtained from the six transformed-coordinate
moments {〈1〉; 〈z1〉; 〈z2〉; 〈z2

1〉; 〈z2
2〉; 〈z1z2〉}. These give the normalization, the two coordinate means,

and the three distinct elements of the symmetric 2 × 2 covariance matrix, respectively. Fig. 2b also
shows the initial disposition of the probability ellipsoids for the  (1 standard deviation) and 2 (2
standard deviation) surfaces obtained from the covariance matrix as described in Paper I. The four
quadrature points, rectilinear in the coordinates of Fig. 2b, are shown after transformation back to
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Fig. 1. (a) Evolution of the volume moments (p= 0; 1=3; 2=3; 1; 4=3; 5=3; q= 0, in Eq. (3.8)). (b) Evolution of the mixed
moments (p = 0; 1=3; 2=3; 1; 4=3; 5=3; q = 5=3, in Eq. (3.8)). The exponent p increases from the lowest to highest curves
shown in each panel. Curves: reference results from numerical calculations using a 150 × 150 discrete grid model (from
Wright et al., 2001). Points, shown at integral values of the reduced time (see text), are the PCA-QMOM results obtained
by tracking four equal weight quadrature points.

the original v–a coordinates in Fig. 2a. These have equal weights (irrespective of coordinates) and
are seen to provide an excellent economical representation of the initial distribution.

Returning to Fig. 1, the data points, shown at integral values of the reduced time, were calculated
using this four-point quadrature version of the PCA-QMOM. Moments were evolved using the
di=erential equations for coagulation and sintering given by the coordinate transformed versions
of Eqs. (3.11) and (3.12), respectively (Section 3.4). The PCA-QMOM results are seen to be in
excellent agreement with the benchmark calculations for the lower-order moments (Fig. 1a and
lower curves of Fig. 1b), with the largest error, approaching 20%, encountered for the highest order
moment (upper curve of Fig. 1b). The systematically lower results from the PCA-QMOM seen for
the higher moments in Fig. 1b is likely due to failure to capture the tail of the distribution, which
has its greatest inEuence on the higher-order moments, using just three moments/two quadrature
points per variable. For comparison, the bivariate QMOM of Wright et al. (2001) gave errors within
1% using a 12-point quadrature technique (with the quadrature abscissas and weights determined
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Fig. 2. (a) Sampled bivariate distribution (1000 points) in volume and area coordinates. Initial location of the four
quadrature points obtained from the PCA-QMOM after coordinate transformation is also shown. (b) Sample points after
coordinate transformation. Initial locations of the principal axes, four quadrature points, and  and 2 elliptical surfaces
from the PCA-QMOM are also shown.

using 36 bivariate moments), and within 7% for a multiple three-point quadrature technique (four
sets of three-point quadratures) also using 36 bivariate moments. The accuracy of the four-point (six
moment) PCA-QMOM is comparable to that of a single three-point (nine moment) quadrature using
the original bivariate QMOM.

4.2. Interacting particle populations

There are important cases where the aerosol pdf is not well approximated by a single multivariate
normal pdf in any coordinate system. Examples include external mixtures of distinct particle popula-
tions as may be found near sources of primary emissions. While not mixed initially, such populations
can subsequently interact through coagulation, and also through condensation via the competition for
limited condensable vapor species. Recent studies have pointed to the mixing state of the aerosol
as important in climate and health e=ects, and one would like to have the capability to simulate
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Fig. 3. Simulation of interacting particle populations. (a) Initial condition. Sampled distributions and  and 2 surfaces
in species mass coordinates. These surfaces are elliptical in the log-mass coordinates employed in the simulation. (b) and
(c)  surfaces at reduced coagulation times tcoag = 5 and tcoag = 10, respectively. The mixed population, III, consists of
aggregates formed via coagulation of particles from either I, II, or III with the other populations. (d) Number density
of particles in each distribution as a function of reduced time. The initial total particle number density is normalized
to unity.

the general mixing state of a multivariate aerosol throughout its evolution. The great computational
eKciency of moment methods allows these kinds of problems to be handled with comparative ease
through the simultaneous tracking of multiple distributions. The following calculation illustrates how
the PCA-QMOM can be applied to the simulation of interacting particle populations.

Fig. 3a shows the initial condition for the test calculation. The aerosol is represented as a sum of
two, initially known, bivariate lognormal distributions (I and II), with moments:

{〈1〉I = N1; 〈z1〉I = 2; 〈z2〉I = 1; 〈z2
1〉I = 0:2; 〈z2

2〉I = 0:1; 〈z1z2〉I = 0:01}; (4.2a)

{〈1〉II = N2; 〈z1〉II = 1:2; 〈z2〉II = 2:2; 〈z2
1〉II = 0:1; 〈z2

2〉II = 0:2; 〈z1z2〉II = 0:01}: (4.2b)
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The  and 2 surfaces and sampled particle compositions from the initial distributions are shown in
the Hgure. These surfaces are elliptical in the logarithmic coordinate system, z1 =ln(m1), z2 =ln(m2),
used in the simulation. Interactions take place through coagulation both within and between the
di=erent populations. In the latter case we deHne a third, mixed, population (III) that gains through
the assignment to it of aggregates formed via coagulation of particles from either I or II with the
other populations. The pdf of the overall particle population is represented as a sum of contributions
from the component distributions: f(m1; m2) = fI(m1; m2) + fII(m1; m2) + fIII(m1; m2). Separately
assigned quadrature points and moments can be tracked for each of these distributions as well as
for the overall population. Extension of Eq. (3.3) to this case gives, now for two components, the
following representative processes:

{m1; m2}I + {m′
1; m

′
2}I ⇒ {m1 + m′

1; m2 + m′
2}I;

{m1; m2}I + {m′
1; m

′
2}II ⇒ {m1 + m′

1; m2 + m′
2}III;

{m1; m2}I + {m′
1; m

′
2}III ⇒ {m1 + m′

1; m2 + m′
2}III (4.3)

and similarly for other allowable combinations.
For special kernels [which include the constant kernel, K(m;m′)=K ; the sum kernel, K(m;m′)=m+

m′; the product kernel K(m;m′)=mm′; and their linear combinations] the moment evolution equations
in mass coordinates can be expressed in closed form and moment methods including the QMOM and
PCA-QMOM are exact. This property extends even to the case of multiply interacting populations.
For the total distribution, f(m1; m2), to illustrate for the constant kernel case, the evolution equations
for moments through second order are:

dN
dt

= −K
2

N 2;

d〈ma〉
dt

= 0;

d〈m2
a〉

dt
= K〈ma〉2;

d〈mamb〉
dt

= K〈ma〉〈mb〉; (4.4)

where a and b label di=erent species. This closed set of equations determines all of the moments
required by the simplest (2 points per coordinate) version of the PCA-QMOM. Multiple populations
are tracked using separate covariance matrices for each population. For three populations and two
components, a total of 18 moments is required. These generate three sets of four-point quadratures;
one set for each distribution. For simulations in mass coordinates using analytic kernels, this full set
of moment evolution equations is closed and the PCA-QMOM is exact.

Figs. 3b and 3c show evolved  surfaces for each of the populations at the reduced coagulation
times tcoag = 5 and 10 deHned below. These results were obtained from a PCA-QMOM simulation
carried out in the log-mass coordinate frame using Eq. (3.15) with constant K . Except for particle
number, moment evolution in the transformed coordinates is no longer exact. Nonetheless, the use
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of transformed-coordinate quadratures often provides superior sampling of pdf shape (as is evident
for the near lognormal distribution of Fig. 2), and better approximations to integrals over kernels
describing aerosol physical and optical properties, than if the analytic mass coordinates are used.
Fig. 3d shows the number of particles remaining in each distribution as a function of reduced time.
These results are independent of the total number concentration of particles initially present (shown
normalized to unity). Particle number enters the reduced coagulation time, deHned as tcoag=K[NI(0)+
NII(0)]t=KN (0)t. The Hgure shows decay of the initial populations (I and II) and growth, and later
decay, of the mixed population (III).

4.3. Evolution of generally mixed multicomponent aerosols

Calculations were completed for a number of test cases involving multicomponent aerosols evolv-
ing under condensation and coagulation to test the general numerical integration features of the
PCA-QMOM in higher coordinate dimensions. Again we Hnd for those special cases that closed-form
equations can be constructed for the moments, the PCA-QMOM integration is also exact. The pre-
sentation will be limited mainly to results obtained for coagulation, as this is the most interesting
case.

Fig. 4 shows evolution of a three-component aerosol in logarithmic mass coordinates. The initial
distribution is taken to be a product of lognormal distributions with identical distribution parameters
for each component:

fi(mi; 0)=N0 = (misi
√

2#)−1exp{−[ln(mi=mi)]2=(2s2i )}}; (4.5a)

where mi is the mass of species i in the particle, mi is the geometric mean mass, and si is the
logarithm of the geometric standard deviation. Here we set s1 = s2 = s3 ≡ s and m1 = m2 = m3 ≡ Um.
The initial distribution takes the factorable form:

f(m1; m2; m3; 0) = N0[m1m2m3(s
√

2#)3]−1exp

{
−

3∑
i=1

[ln(mi= Um)]2=(2s2)}
}

(4.5b)

with initial moments:

〈mp
1 m

q
2m

w
3 ; 0〉f = N0 exp{p Um + (ps)2=2} exp{q Um + (qs)2=2} exp{w Um + (ws)2=2}: (4.6)

Fig. 4a shows a sampling of the initial distribution (small black points) and the initial  and 2 
probability surfaces, colored blue and green respectively, for s2 =ln(4=3) and Um=

√
3=2. These initial

distribution surfaces are spherical in logarithmic coordinates. The 2h-point PCA-QMOM yields eight
equal weight quadrature points, initially at the vertices of the cube, indicated by the red points.
(Note that, because of the initial spherical symmetry of the pdf, there is a degeneracy here in
the initial assignment of quadrature points. This is irrelevant for computation as the moments and
 -surfaces evolve continuously—and the spherical pdf symmetry is broken immediately once the
particles begin to interact.) The test distribution is evolved under simultaneous coagulation (constant
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Fig. 4. Evolution of a three-component aerosol in logarithmic mass coordinates under simultaneous coagulation and
condensation. (a)  (blue) and 2 (green) surfaces and sampled compositions for the initial trivariate distribution given
by Eq. (4.5b). (b)  (blue) and 2 (green) surfaces at reduced time (see text) �= tcond = tcoag = 10. The red points in (a)
and (b) are the eight equal-weight quadrature points tracked in the PCA-QMOM at �=0 and 10, respectively. Elongation
of the ellipsoidal surfaces at � = 10 reEects the emergence of a dominant principal coordinate (particle mass) during the
approach to internal mixing.

kernel) and condensation growth. The condensation rate is taken to have the simple analytic form:

dm1

dt
= 0;

dm2

dt
=

C
3

m2;
dm3

dt
=

2C
3

m3; (4.7)
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where C is constant. The coagulation-to-condensation time constant ratio is set to unity: % =
KN (0)=C = 1, to obtain comparable time scales for these processes. Results are given in terms
of the reduced condensation time tcond = Ct, which for this case (% = 1) equals the reduced coag-
ulation time, tcoag. The PCA-QMOM is applied in logarithmic coordinates; evolving the moments
according to Eqs. (3.16) and (3.17b) for condensation, and Eq. (3.15) for coagulation. Disposition
of the eight quadrature points and the  and 2 surfaces is shown in Fig. 4b for �= tcond = tcoag =10.
The Hgure shows the initial stages of approach to an internal mixing state for which total particle
mass, the leading principal coordinate, becomes increasingly dominant while the orthogonal coor-
dinates become diminished in importance, having signiHcantly smaller variances in the principal
frame. Such reductions in dimensionality are well captured by the PCA-QMOM. This e=ect is next
examined more closely for a multicomponent aerosol evolving under coagulation alone.

Statistical features of the PCA-QMOM, including data compression, may be demonstrated through
analytic solutions for the covariance matrix, �(t), available when analytic growth laws are used.
Eqs. (4.4), for constant-kernel coagulation, apply to any number of aerosol component species
(coordinates) represented by the subscripts a and b. For h species, a and b will each vary from
1 through h. With the time dependence of the covariance matrix elements given by Eqs. (4.4) the
matrix can be integrated directly to obtain:

�(t) = �(0) + KAt: (4.8)

A is the matrix of derivatives, constant in time, from the right-hand side of Eq. (4.4):

A =




〈m1〉2 〈m1〉〈m2〉 · · · 〈m1〉〈mh〉
〈m1〉〈m2〉 〈m2〉2 · · · 〈m2〉〈mh〉

...
...

...

〈m1〉〈mh〉 〈m2〉〈mh〉 · · · 〈mh〉2




=




〈m1〉
〈m2〉

...

〈mh〉




( 〈m1〉 〈m2〉 · · · 〈mh〉
)
:

(4.9)

The second equality shows A written as the outer product of the vector of component masses,
v1 = (〈m1〉 〈m2〉 · · · 〈mh〉)T, with itself. Determined by a single vector, it follows that A has rank
1 and h − 1 of its eigenvalues are equal to zero. The eigenvector of nonzero eigenvalue is obtained
simply by multiplying Eq. (4.9) on the right-hand side by v1 to give

A




〈m1〉
〈m2〉

...

〈mh〉


 =




〈m1〉
〈m2〉

...

〈mh〉




( 〈m1〉 〈m2〉 · · · 〈mh〉
)



〈m1〉
〈m2〉

...

〈mh〉


 =

h∑
i=1

〈mi〉2




〈m1〉
〈m2〉

...

〈mh〉


 (4.10)

showing that v1 is the eigenvector (unnormalized) of A:

Av1 = (v1 · vT
1 )v1 = 1v1 (4.11a)
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with nonzero eigenvalue

1 = 〈m1〉2 + 〈m2〉2 + · · · + 〈mh〉2: (4.11b)

At long time the covariance matrix approaches KAt (see Eq. (4.8)) and its nonzero principal value is
given by Eq. (4.11b). Inspection of the corresponding eigenvector, v1, shows that the principal axes
is oriented along the coordinate direction, having constant component mass ratios m2=m1=〈m2〉=〈m1〉,
etc. This is the coordinate describing the internally mixed state of the aerosol, as expected on physical
grounds.

4.4. Scaling of multicomponent aerosol distributions under coagulation

The long time asymptotic behavior of an evolving aerosol can also be studied using the PCA-
QMOM. For this it is convenient to use nondimensional moments and scaled coordinates for the
multivariate particle distribution function. Nondimensional moments are deHned as

〈& j
1&

k
2 : : : &

l
h〉 =

∫∫∫
& j

1&
k
2 : : : &

l
h (&1; &2; : : : ; &h) d&1 d&2 : : : d&h; (4.12)

where &a =ma= Uma, etc. are scaled coordinates, Uma = 〈ma〉=N , and  (·) is the normalized, transformed
version of f(·). The nondimensional moments are readily expressed in terms of the mass moments:

〈& j
1&

k
2 : : : &

l
h〉 =

〈mj
1m

k
2 : : : m

l
h〉f

N

(
N

〈m1〉
)j (

N
〈m2〉

)k

× · · · ×
(

N
〈mh〉

)l

: (4.13)

Thus:

〈1〉 = 〈1〉f=N = 1; (4.14a)

〈&a〉 = 1; (4.14b)

〈&2
a〉 =

〈m2
a〉

N

(
N

〈ma〉
)2

= N
〈m2

a〉
〈ma〉2 ; (4.14c)

〈&a&b〉 =
〈mamb〉

N
N

〈ma〉
N

〈mb〉 = N
〈mamb〉

〈ma〉〈mb〉 : (4.14d)

The reduced covariance matrix, corresponding to the reduced mass probability distribution  (&1; &2),
is:

�̃(t) =




〈&2
1〉 − 1 〈&1&2〉 − 1 · · · 〈&1&h〉 − 1

〈&1&2〉 − 1 〈&2
2〉 − 1 · · · 〈&2&h〉 − 1

...
...

...

〈&1&h〉 − 1 〈&2&h〉 − 1 · · · 〈&2
h〉 − 1




: (4.15)
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The matrix elements of Eq. 4:15 are related to the elements of the original covariance matrix through
A of Eq. 4:9:

�ij(t) =
Aij

N (t)
�̃ij(t) +

Aij

N (t)
− Aij : (4.16)

For constant kernel:

�ij(t) = �ij(0) + KAijt;

�̃ij(t) + 1 =
(
�̃ij(0) + 1

) N
N0

+ KNt (4.17)

from Eq. (4.8), where N0 =N (0) is the initial particle number density. The Hrst of Eqs. (4.4) gives
the solution for N :

N (t) =
(

1
N0

+
K
2

t
)−1

(4.18)

and the second of Eqs. (4.17) gives the evolution of the reduced covariance matrix:

�̃(t) =
(

1 +
KN0t

2

)−1 [
�̃(0) + U + KN0Ut

] − U; (4.19)

where U is the constant element h× h matrix having each of its elements equal to unity. In reduced
time units, tcoag = KN0t, this becomes:

�̃(tcoag) =
(

1 +
tcoag

2

)−1 [
�̃(0) + U + Utcoag

] − U: (4.20)

Fig. 5 shows evolution from an initial distribution (sampled points) towards the self-preserving limit
for coagulation of a two component aerosol under constant kernel. The Hgure shows disposition of
the four quadrature points for several indicated values of the reduced time. These lie at the vertices
of rectangles into which can be inscribed the  -surfaces (not shown) derived from the covariance
matrix of Eq. (4.20). The corners of the small rectangle, oriented with the sampled points, mark
the locations of the initial quadrature points. Subsequent locations are marked by clockwise rotation
and lengthening of the principal axes with time. At long times the total mass coordinate dominates,
and the distribution approaches a self-preserving form in the reduced total mass, & ≡ m= Um. The
&-moments are known to approach, in the asymptotic limit, the factorial values 〈&k〉 = ((k + 1)
under constant-kernel coagulation (Wang, 1966). Inspection of the long-time behavior of Fig. 5
shows merging of pairs of quadrature points to & values of 0 and 2 with combined weights of 1/2
for each merged pair (since each of the merging points has weight 1/4). These quadrature Hxed
points yield asymptotic moments in agreement with the factorial values for k = 0; 1; 2, showing that
the PCA-QMOM gives the correct asymptotic behavior for this important analytic test case. These
results illustrate the compression features of the PCA-QMOM. Compression is obtained with the
dominance of a few principal coordinates (here just one) from the h originally required to specify
the pdf. This reduction in dimensionality is especially important when the original dimensionality is
large (h�1).
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Fig. 5. Evolution from an initial distribution (sampled points) towards the self-preserving limit for coagulation of a
two-component aerosol. Results are in scaled coordinates (mass divided by averaged mass). The Hgure depicts evolution
of four equal-weight quadrature points from the PCA-QMOM. These are located at the corners of the six rectangles
corresponding to reduced coagulation times of tcoag = 0; 0:1; 0:3; 1:0; 10:0, and 100.0. Subsequent locations are marked by
clockwise rotation and lengthening of the principal axes with time. At long times the total mass coordinate dominates,
and the pdf approaches a self-preserving, internally mixed, distribution in the reduced total mass & = m= Um.

5. Summary and discussion

The PCA-QMOM introduced in Paper I has been applied to the simulation of generally mixed,
multivariate particle populations evolving under condensation, coagulation, and simultaneous con-
densation/coagulation and coagulation/sintering processes. The new method was tested through com-
parisons with the bivariate pdf obtained numerically using a high-resolution discrete grid model, and
with analytic test cases in three and higher dimensions, where calculations of the full multivariate
pdf are too expensive, computationally, to carry out.

The statistically based PCA-QMOM, which like all QMOM-based methods works best with
lower-order moments, is in many ways complementary to the sectional and discrete grid approaches
that seek to represent the full pdf. For univariate problems, QMOM calculations have typically
employed three quadrature points (six moments). Although the QMOM has been shown to be re-
markably accurate at this level (Marchisio, Pikturna, Fox, Vigil, & Barresi, 2003; McGraw & Wright,
2003), one may still seek (at least in the univariate case) more information by computing the full
pdf using a high-resolution sectional model. On the other hand, for bivariate and especially for
multivariate problems, it becomes vastly more diKcult, even impractical, to track the full pdf, and
statistical approaches will likely win out. Beyond the advantages of data compression available with
PCA, there are many more lower-order (mixed) moments available in higher dimensions—and cor-
respondingly higher densities of quadrature points can be assigned and tracked with time using the
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methods we have described. Thus, much more information about a multivariate pdf, albeit of a
statistical nature, becomes available with the PCA-QMOM.
Note added: An anonymous reviewer raises the interesting question as to how the PCA-QMOM

incorporates a constraint such as a charge balance. To illustrate, consider a neutral particle containing
the three ionic species H+, NH+

4 , and SO2−
4 . The presence of neutral species such as water will give

rise to additional particle coordinates, but for purpose of illustration we limit discussion to just these
three. Let x1 = n(H+) , x2 = n(NH+

4 ), and x3 = n(SO2−
4 ) be the number of ions of each type in

the particle. Charge neutrality requires x1 + x2 − 2x3 = 0, deHning a plane in the three dimensional
coordinate space deHned by x1; x2, and x3. For an initial distribution satisfying neutrality, it is readily
shown that the leading principal axis y1 and y2 will automatically lie in the plane deHned by the
neutrality condition while the third coordinate, y3, will have zero variance (3 = 0) and zero mean.
It is then up to the particle growth laws to maintain charge balance if the neutrality condition is to
be preserved. For particle growth laws that maintain charge balance, the distribution will, ideally,
continue to evolve in the neutrality plane. More generally, y3 is proportional to particle charge and
nonzero values for its mean, 〈y3〉, or variance, 3, provide quantitative measures of any failure to
satisfy the neutrality condition. In general, if the dimensionality of the problem can be reduced, PCA
will Hnd this and get the optimal solution.
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Appendix A. Data transformation technique

The Box–Cox method (Box & Cox, 1964) is a popular way to determine transformations on
variables so that, after transformation, the pdf better approximates a multivariate normal form. The
method is designed for positive variables, however this is not as restrictive as it seems because a
single constant can be added to each observation in the data. The method requires that a sampling of
the initial pdf be available. We choose the power transformation to bring the data closer to normal
form. The method transforms the variable x to x() where the family of transformations indexed by
 is

x() =




x − 1


 �= 0

ln x  = 0


 : (A.1)
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For Hxed x¿ 0, x() is continuous is . Given the set of observations, {x1; x2; : : : ; xn}, along a partic-
ular coordinate, the Box–Cox solution for  is the one which maximizes the likelihood expression:

L() = −n
2

ln(RSS=n) + ( − 1)
n∑

i=1

ln xi; (A.2)

where RSS is the residual sum of squares of x(), that is

RSS =
n∑

i=1

(x()
i − x())2; (A.3)

where

x() =
1
n

n∑
i=1

x()
i =

1
n

n∑
i=1

(
xi − 1



)
(A.4)

is the sample mean of the transformed observations.
We have also employed a simple alternative method based on moments. From the n observations,

we deHne the new variables z()
i =(xi −�)=  where � and   are the mean and standard deviation

of the positive distribution {xi }. By deHnition the expectation values for the z() distribution are:
E[z()] = 0 and E[(z())2] = 1. For a normal distribution we would also have E[(z())3] = 0, which is
the case for any distribution {xi } that is symmetric about �. Accordingly, we choose  to be the
exponent that minimizes |E[(z())3]|.

Both methods were applied separately to the volume and area coordinates of the sampled points
shown in Fig. 2a, and gave similar results: a power  near 1/10 for volume and −1=10 for area.
Because these exponents are not signiHcantly di=erent from zero, the logarithmic Box–Cox trans-
formation (Eq. (A.1)) also gives near normal results. Both methods were applied here to statistical
samplings from an initially known pdf, however, because the second method can be applied directly
to moments, it has the potential advantage of enabling coordinate transformations to be updated
with time even though the pdf is unknown. Fractional moments, of order dependent on the contin-
uous parameter , can be estimated from the tracked moments for this purpose using polynomial
interpolation methods (Frenklach, 2002; Diemer & Olson, 2002).
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