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ABSTRACT

The kinetic potentid of nucleation theory is extended to describe cloud droplet
growth processes that can lead to drizzle formation. Inthismodd drizzle formation is
identified as a statistical barrier crossing phenomenon that transforms cloud droplets to
much larger drizzle size with arate dependent on turbulent diffusion, droplet collection
efficiency, and properties of the underlying cloud droplet Sze distribution. Closed-form
expressons for the kinetic potentid, critica drop volume, barrier height, and both steady-
date and trandent barrier crossing drizzle rates are obtained in terms of measurable cloud
properties. In an andogy with the theory of phase transformation, clouds are classified
into two regimes. an activated metastable regime, in which thereisa sgnificant barrier
and drizzle initiation resembles nuclestion, and an unstable regime where kinetics
dominates anaogous to the spinodd regime of phase transformation. Observationa
evidence, including the threshold behavior of drizzle formation and the well-known effect
that aerosols have on drizzle suppression, is shown to favor drizzle formation under
activated conditions (more like nucleation than spinoda decomposition) and under
transent conditions rather than steady-state. These new gpplications of the kinetic
potentia theory should lead to more accurate parameterizations of aerosol-cloud

interaction and improved agorithms for westher forecasting and climate prediction.
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1. Introduction

Drizzle is an important cloud process that plays a crucid rolein regulaing the
Earth's energy baance and water cycle (1). Drizzle dso affects climate through its
influence on cloud lifetime and cloud cover (2). The formation of drizzle corsists of two
steps: cloud formation, and the subsequent autoconversion process whereby large cloud
droplets collect smaler ones and become embryonic raindrops. The first process
involves heterogeneous nucleation on aerosol particles aready present in the pre-cloud
environment. These particles, depending on their number concentration and wetting
properties, determine the cloud droplet number concentration, N, . Meteorological
conditions including temperature and concentration of water vapor aso play an important
role in determining number concentration through their influence on the fraction of
aerosol particles that activate to become cloud droplets (3). Meteorologica conditions
aso determine the liquid water fraction, L =cm*(liquid)/ cm®(air) , which isthe product of

N, and average cloud droplet volume.

The present study is focused on the autoconversion process, whereby large droplets
form, fal through, and collect the smdler ones under warm rain conditions for which the
ice phase playsnorole (4, 5). Understanding and accurate parameterization of
autoconverson is epecialy important for studies of cloud lifetime and of the so-cadled
second aerosol indirect effect: namely, the observation that higher cloud droplet number
concentrations result in suppression of rain (6,7).

The drizzle process has long been apuzzle in that the droplets would seem to take longer to
form than the lifetime of atypica rain doud. A key property of the new modd isthat it provides

abarrier mechaniam for limiting the number of very smal (embryonic) drizzledrops. This



reduces the subsequent competition for cloud water and thus the time required for measurable
drizzleformation. Drizzle formation isidentified as adatigtica barrier crossing phenomenon

that transforms cloud droplets to drizzle size with a rate dependent on turbulent diffusion, droplet
collection efficiency, and properties of the Sze didribution.

To develop the present drizzle mode we adapt methods traditionaly used in homogeneous
nuclegtion theory even though autoconverson is not usudly thought of as a nuclegtion process.
Closed-form expressons for the barrier profile, height, and critical droplet Size are derived in
Sec. 2. The steady-dtate rate of barrier crossing is obtained in Sec. 3. The gpproach used here
follows the Becker- Ddring type multistate kinetics cal culations of homogeneous nuclegtion rate
but the underlying physicsis different. In particular the droplet surface tenson, whichiscrucid
to nuclestion, plays no explicit role in drizzle formation. A new scaling theory is developed and
auniversd, closed-form expression for the steady- state barrier crossing rate is obtained in terms
of two nondimensiond variable groups that characterize properties of the cloud. Transent
effects are andlyzed in Sec. 4 using amatrix approach borrowed from time-dependent nucleation
theory and modified here to handle a sub-sampled lattice of discrete droplet szes. We conclude
with evidence that in most cases drizzle formation occurs under activated cloud conditions (i.e.
with asignificant barrier to the formation of large drops present) and under transient conditions
rather than steady- state.

2. Kinetic potential theory of drizzle formation
Congder awater droplet containing g molecules interacting and exchanging
materia with its surrounding vapor. Itskinetic potentia (8) is defined as.
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where b (s™") isthe rate of monomer addition to adrop containing i molecules, and g, is
the corresponding evaporation rate. These fluxes are corrdated with the equilibrium

population of drops of sizeg, n, (cm ), through the detailed balance condition:

b, =9,..n,.,- (2.2

9 g+1 g+l

Combining Egs. 2.1 and 22 givesn_, /n =b /9 . =exp{-[F(g+1)- F (g)]} andthus

g
aBoltzmann-type proportionality for the equilibrium population: n, 1 exp[ - F (g)] .
These considerations support the ideathat Eq. 2.1 defines a"potentid”, adbet onethat is
defined solely in terms of kinetic coefficients. In nucleetion theory, n_ isidentified with
the constrained equilibrium cluster population (9,10) and the kinetic potentid is
equivaent to the reduced thermodynamic potentia, W (g)/ kT , where T istemperature, k
is the Boltzmann congant, and W (g) isthe reversible work required to assemble a cluster
of sze g from the parent phase.  Nevertheless, the kinetic potentia, defined solely in
terms of rate congtants, is more
generd and can be gpplied even in the absence of awell-defined temperature,
thermodynamic potentid, or equilibrium condition.

To apply the kinetic potentid to drizzle formation, the growth of cloud dropletsis
modeled as a sum of contributions from condensation and collection processes:

b, =b™ + b (2.3

together with an effective evaporation rate g . Collection refers to the volumetric gain

of a gpecified drop large enough to have asgnificant gravitationd fal velocity so asto
accrete the smdler, dower faling droplets, that typify the main population of the cloud.

Coallection isthus an additiona growth mechanism that, following the axiom "the rich get



richer”, becomes available to those relatively few droplets that through chance
fluctuations reach fal velocity size.  For collector drops of radius lessthan 50 mm the

volumetric gain is approximated as (11):

dv
— =kv°L 24
& KV (24)

where v is the volume of the collector droplet, k =1.1" 10*° (cm™’s™"), and L isthe dloud

liquid water volume fraction. In molecular units:

- = :kV19 L (25)

where v, isthe volume per moleculein the liquid water phase.

The condensation rate includes effects due to turbulence fluctuations thet in turn
cause fluctuations in the loca supersaturation in the cloud. If S denotesthe saturation
ratio (equa to unity for adrop in equilibrium with its vapor) then fluctuationsin Swill
cause random sustained periods of droplet growth or evaporation depending on whether S
exceeds or islessthan unity. Thisisdepicted schematicdly in Fig. 1. Inaddition to
turbulence fluctuations there are complicated interactions between dropletsin a cloud

due, for example, to the competition for available water vapor. To include such

cond

9 S0 asto

processes, we introduce an effective evaporation rate g :” determined from b

yield a specified cloud droplet distribution through detailed baance. The collection term
(EqQ. 2.5) applies to the much fewer number of large drops and is assumed to have
negligible effect on the background cloud droplet distribution.

Asinour initid sudy (5) we assume an exponentid cloud droplet distribution:

o _ N
n, _?Dexp(- g/ a). (2.6)



N, isthe number of droplets per unit volumeand a = L/(v,N,) =V /v ,wherev isthe
mean droplet volume, controls the faloff of the distribution. The superscript refersto the
digtribution of the typical-sze cloud droplets in the absence of collection. Subgtitution

into the detailed ba ance condition (Eq. 2.2) gives

cond
n;)*'l —_9 —
——=—5—=exp(-1/a). (2.7)
n

g g+l
Although it is possible to carry asize dependencein b®™ through the calculations to

follow, we will assume for the present study thet this quantity is independent of size:

cond cond

b~ (g)=b"" . Thesecond equdity of Eq. 2.7 gives
g¥ =b*™ exp(1/ a) (2.8)

showing that for this assumed droplet distribution g* is aso independent of size. In

cond
9

generd the effective evaporation rate, gj" ,isdetermined from b, and the cloud

droplet distribution by the first equality of Eq. 2.7, and b." is determined using amodel

collection kernd such asthe Long kernd used to obtain Eq. 2.5. Thus the turbulent

condensation rate remains as the sole adjustable parameter in the modd. Equations 2.5

cond

and 2.8, together with an estimate for b™" , suffice to define dl of the sepwise rate
coefficients needed to complete the present drizzle modéd.

Thereis an interesting analogy between the physics underlying g, chosen here
to satisfy detailed baance while yidding a specified population of droplets, and the early
physics behind the 'spontaneous emission probability' used by Eingtein in his derivation
of the Planck radiaion law (12) . Inthat derivation the spontaneous emisson rate was

obtained by the same arguments used here - detailed balance and a Boltzmann population



- long before details of the quantum theory of radiation, which permits adirect
caculation of this quantity, were understood.

The shape of the kinetic potentid barrier can be obtained asfollows. Each
increment of g corresponds to the addition of one molecule - avery smdl step Sze onthe
scale of cloud dropletsl Accordingly, the derivative of the potential, following Egs. 2.1
and 2.3, isto excellent approximation:

dF (g) N &b 9_ oy cond bcoll?
- In Z=-In =. 2.9a
" é_ngH p g—g_geﬁ : (2.99)

Defining

booll leL , ,
bcgond = bcond g ° Cg

the quantity in parenthesis becomes:

cond coll
b

—————— =1 +cg’)exp(-1/a).
g

Becausetheterm cg” isaways much less than unity, the logarithm in Eq. 2.9a can be
gpproximated to obtain:

dF (g) _ %cond + booll O

1 1
| I —T=—-In{lL+cg?)»—-cg’. 2.9b
dg nnga a n( « )»a « (2.90)
Integration of this lasgt result gives the kinetic potentid:

F(9) =§- cg’ (2.10a)

1
3
where the congtant of integration has been chosen such that the potential vanishes at g=0.

On subdtitution for the previoudy defined parameter groupings a and ¢, Eq. 2.10a

describes a barrier having amaximum height at the critical droplet Sze:



b cond N 5
kL

(g*)" = (2119

which satifies the flux balance condition, b™™ +b> =g“ . Thebarier height is

9

2 *
F* = F(g*) =3 9% (2.124)

The lead term on the right hand side of Eq. 2.10a, F °(g) = g/a , givesthe kinetic
potential without collection and a Boltzmann population:
n, K expl - F'(g)]

in agreement with Eq. 2.6. Itsclear that in the absence of collection the critical droplet
size and barrier height are infinite and drizzle cannot occur.

For gpplications to atmaospheric physics the kinetic potentid is more conveniently
described in terms of the bulk parameters that characterize the cloud. Theseinclude the
critical drop volumev_ ° v g* (Eg. 2.11a):

cond , 2
DTN,

2.11b
V=2t (2.11b)
and barrier height
pr=2¥e (2.12b)
3v
Thefull potentid takes the form:
F(z2)= . (3z- 2°) (2.10b)

where z=g/g* = v/v_ istheratio of drop volumeto the critical drop volume. Figure 2

(top) shows the kinetic potentid a severd different barrier heights according to Eq.

2.10b. The bottom pand of Fig. 2 shows a schematic depiction of the fluxes for



condensation, collection, and evaporation. In the precritical droplet regime the reverse
flux (evaporation) exceeds the sum of the forward fluxes due to condensation and
collection and the barrier can only be surmounted due to favorable fluctuations in droplet
sze. Thisflux dominance is reversed in the posteritica, or collection, regime (i.e., the
forward fluxes dominate) with the result that growth isfavored in thisregime.

It isingructive to compare Eq. 2.10b with the reduced thermodynamic barrier
profile of dlassical nucleation theory (CNT). ThereF o (2) =F *or (32" ° - 22) where
z=g/g*,, iStheratio of thecluster szeto thecritica cluster sze of the classical
theory (8, 13). Indicative of fundamentd differences in the underlying physcs, the
scaed kinetic potentid for drizzle has a digtinctly different shape (sharper and less
rounded near the maximum) than the barrier of classical nucleation theory.

The remaining molecular grouping, b ™ v,* (cm®s "), appearing in Eq. 2.11b, has
an important physicd interpretation:  Molecular number diffuson dong the g-coordinate

is given by the diffusion coefficient (14, 13)

D =%nl » b (2.13)

o
where nisthe tota jump frequency (forward and backward jumps included) and | isthe
jump distance (equd to unity for sngle-molecular jumps). The last equdity loses the
factor of 1/2 due to the fact that b*™ gives the frequency of only the forward jumps. By
analogy we seethat b v,* isthe (turbulent) diffusion coefficient dong the volume
coordinate - with jump Szev, . Onthelarger scde of cloud droplet volumesit isnaturd

to represent processes using a sub-sampled lattice of droplet sizes with renormaized



trangition rates between adjacent sizes defined so that physica quantities such asthe
diffuson congtant are invariant to the lattice spacing (5). For

example, for alattice spacing v, Wherev, <<v,, <<v, and rescaled coordinate
d =v/v__,weobtan step-invariant diffusion aong the volume coordinate:

D, =b;™v2_ =b™™ v’ (2.149)

step 1
provided

b;:ond — bcond (Vlz /V (214b)

2
sep )

is used for the (renormalized) turbulent condensation rate. This sub-sampled lattice plays

an essentid rolein the trangent drizzle rate caculations of Sec. 4.

cond

A typicd range for the unknown model parameter D, , which dependson b

(aso unknown), can be estimated as follows. Congider thetime, t, , it takesto add

through Browniantlike diffuson dong the volume coordinate, a sufficient volume,
Dv » 127 mm? , to bring about a 1% change in atypical cloud drop radius from 10 to

10.12nm . The mean square displacement due to diffusion dong the volume coordinaeis

S, =2D,t dteratimet. Equating s, and Dv gives

=D (2.159)
‘2D,
Equivaently, D, could be set in a seemingly less arbitrary way by conddering thetime it
takes for droplets to gain or lose volumes comparabl e to the average cloud droplet
volume:
L2
t. = , 2.15b
Y 2D N? ( )

10



which is a measure of the overal relaxation time of the cloud droplet digtribution.  The

disadvantages of setting D, using Eq. 2.15b areits dependencieson both L and N, and
the fact that afull turbulence smulation over the congderably longer time scde t,, will
be much more difficult to carry out for comparison with the present Brownian modd.
Following (McGraw and Liu, 2003), we estimate D, (or b“™ ) through the assignment of

areasonable range of valuestot  :
D,(Mn’s™") »8.94 10" b*™ »8.05" 10’/ t,,(s) (2.16)

Wewill generaly choosevauesof t,, intherange0.1 - 10s. Longer times would not
dlow for sgnificant fluctuations in drop Sze over the lifetime of atypica doud and
shorter times would imply growth rates faster than are likely to occur under the typica
range of supersaturation found in clouds. Figure 3a shows a Monte-Carlo smulation of
Brownian fluctuationsin droplet radiusfor ¢, = 0.1s and atypica cloud particle sizein
the pre-collection regime. The method of smulation has been described previoudy in the
context of nucleation clusters (13) and cloud droplets (5). Figure 3b shows the results of
two different smulations beginning with aninitid particle radius of 40 nmin the
collection regime. Here fluctuations are evident even in the presence of net steedy
growth from drift motion in the downward doping part of the kinetic potentia in the
callection regime. The solid curve isthe result of the deterministic (fluctuations averaged
out) caculation of the growth rate described in Appendix A.
3. Steady-dtate barrier crossing rate

The present derivation of the steady-dtate drizzle rate follows closdy the Becker-
Daoring molecular kinetics gpproach of classica nucleation theory (9) with important

differences due to boundary conditions, barrier profile, and scae. It isagain convenient
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to begin with the molecular-leve description, reporting find resultsin terms of rdlevant

parameters on the cloud physics scale.

Let f, denote the population of clusters (droplets) of sizeg. The net flux for

conversonfromgtog+lis.

_ B 1
‘Jg,g+1 - bg fg - gg +1 fg 1 bg”gé# - n a (31)
g g+l

where the last equality follows Eq. 2.2. The Steady-state current (J,.) iscongtant dong

the growth sequence and summation of Egs. 3.1 gives.

Bymax 0
1 - f min f max
Jsé a T= o g (3.2)
g=gmin bgngg I’]gmin rbmax

In nuclegtion theory the ratios on the right-hand-sdein g, and g, are set to unity and

zero, respectively, as"monomer” and Szilard boundary conditions. The summation on
the left is dominated by clusters near the critical size (where n assumesits smallest
vaues) with the result that the computed flux is not terribly senstive to the placement of
the boundariesprovided g, << g* <<g__ S0 asto include awide range of terms about

the criticd 9ze. Inthedrizzlemodd weset g, in the range of the smallest cloud

droplet sze (1 <<g_ <<V/v,). Inthislimit Eqg. 2.6 reducesto:

(3.3)

and for the lower boundary f,,, / n,,;, =1. Thisboundary condition is assumed to hold

even with collection: Smdl droplets are, of course, consumed during the collection

12



process, just as monomer is consumed during nucleation and this can prevent the
occurrence of a dable steady state (15). However, like nucleation theory, the present
drizzle modd is limited to the onset regime and depletion effects are beyond its scope.
Candidate approaches to future treatments of the later stages of drizzle formation are

briefly discussed in Sec. 5.

A naturd placement for the Szilard boundary condition, f /n . =0, isto set
0, =/3¢g*. Thisszeissufficiently beyond g * and at the zero potentid crossing (see
Eq. 2.10b): F (g, ) = 0. With these boundary conditionsin place, the right-hand-side of
Eq. 3.2isunity yidding for the steedy- state crossing rate:

] _a@g 1 9_1_V1ND2%Q§X 1 0"
B §g=gmin bgnga L §g=gmin bg eXp[ - F(g)]a '

(3.4)

In the last equdity the condition F(g,,,) » 0 hasbeenused. The b, appearing in Eq. 3.4

min)
isthe total forward growth rate, which as aready noted is dominated by the condensation
rate. Thisistrue even for clusters many times critical Sze. Thus we can neglect the
collection term in the kinetic prefactor [it is of courseincluded in F (g) ] and make the
excedlent gpproximation:

b, »b®™, (3.5)

9

This and replacement of the discrete sum by an integration smplifiesthe fina result:

1

&l o)
=KLv_N, %Qexp[ F (z)]deﬂ . (3.6)

1

_ by N &g

.
1, =g el Fo)lg
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To obtain the last equdity, subgtitute for the critical drop volume using Eg. 2.11b and
used theintegration limits z_ =g /g* »0and z_ =g_ /g*=/3.

Theintegrd of Eq. 3.6 is now gpproximated using the method of steepest descent
(9,9): Firg, expand the potentid in a Taylor series about its maximum:

F(z):F*-gF*(z- 1) +0{(z- 1)%. (3.7)

Subgtitution into Eq. 3.6 retaining through the quadratic term gives a Gaussian integra

that is reedily evauated in closed form. Theresultis

(‘¥ex[F (z)]dz)l » /3F*ex(-|:*) (38)
Q, &Pl Fo V2 &® :

where the subscripted kinetic potentia denotes the Gaussian approximation. Provided

the integrand is sharply peaked near the critica Sze, the limits of integration can be

replaced by z

min

and z_ , asinEq. 3.6, with inggnificant error. Thefind result for the

barrier crossing rate (cm’s™’) is

F =
Jo» kLvCND-,’ 32}0 exp(- F*) =b“n, Zexp(- F*). (3.9

In classca nucleation theory aterm smilar to:

P (3.10)
g*\ 2p

is known as the Zeldovich factor (9) and corrects for barrier re-crossing. Not

surprisngly, its precise form in nuclestion theory differs from the result obtained here,
Equation 3.9 provides a convenient andytic expresson that isin excellent

agreement with the full Becker-Ddring integration of Eq. 3.6 for the steady- state drizzle
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rate in the activated cloud regime (see below). Figure 4 shows rates predicted from Eq.
3.9 asafunction of droplet concentration for different values of L and t10,. Associated
with each dashed curve from Eq. 3.9 isa solid curve showing the corresponding result
obtained from numerica integration of Eq. 3.6 without the Gaussan approximation.

Each family of curves hasidentica shape on the log-log scale and can be compressed to a

single universa curve in appropriady scaed units. The rdevant dimensionless groups

are:
DN & 0
e0 Db —-cct: 3.11a
kU & o (3113
with D, in cgs units, and
wo = (3.11b)
kL®
in terms of which Eq. 3.9 takes the universal form:
- l 3/4 & 2 1/2(.-j 3 12
w—_Jae expg-se o (312

Figure 5 (top panel) shows the universal curves from Eq. 3.12 (dashed curve) and from
numerical integration of Eq. 3.6 (solid curve). That the latter is aso scaeable follows
because the integra depends only on reduced barrier height. The bottom pandl shows the
reduced barrier height as afunction of the logarithm of e.

Conditions a the maximum value of the scaed drizzlerate{e = (3/2)",
F* =3/2} separate the kinetically controlled and activated drizzle formation regimes.
Returning to the top pand of Fig. 5it is seen that the discrepancy between Eg. 3.12 and
the exact integration appears as one enters the kinetic regime. Thisis dueto fallure of the

Gaussian gpproximation used in the derivation of Eq. 3.9 (theintegrand is no longer
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sharply pesked near the critical Sze). On the other hand, the figures show the
approximation working very well in the activated regime. Figure 6 shows a number of
properties predicted by the mode! for ¢, = 0.1s. The solid contours are curves of
congtant nucleetion rate obtained from the full integration of Eq. 3.6 so asto accurately
describe conditionsin the kinetic regime. Dashed contour lines are lines of constant

radius determined from the average cloud droplet volume, v =L/ N . Thethick line

marks the separation boundary, at e = (3/2)" , between the kinetic and activated regimes.
Above this boundary (in the kinetic regime) the rate is seen to depend only on drop
number, increasing as N, isincreased and, unlike the Stuation below the boundary, there
is no sharp threshold effect.

The activated and kinetic regimes of clouds (Fig. 6) are quditatively andogous to
the nucleation and spinodd regimes of phase separation. I1n the spinoda regime, phase
separation is activationless and kinetics dominates. Strictly speaking the nuclestion
barrier vanishes at atrue spinoda as the systemn passes from a thermodynamicaly stable
dtate to an ungtable one (16). Classica nucleation theory has the weakness that the
barrier does not vanish at the spinodal unless refinements to the theory are made (17).
The KP drizzle modd dso gives a nonvanishing barrier dong the separation boundary,

F* =3/2, but because the analogy is only quditative thisis not necessarily aweakness
inthetheory. In practice, the distinction between 3/2 and zero is inconsequentia as such
smdl vaduesfor F * would correspond, in a true thermodynamic system, to a barrier
height of only 3/2 KT (Appendix A). Under these conditions fluctuations will dominate
with the result that neither barrier height nor critica droplet volume play significant roles

in the kinetic regime. Another difference from CNT isthat droplet models of phase
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separation cannot be used within the spinoda region, whereas the KP theory continuesto
apply both within and outside of the kinetic regime to yield definite predictions for
drizzlerae (Fig. 6).

At larger vdues of e, the drizzle rateis controlled mainly by the barrier height. In
this activated regime the cloud can be thought of as metastable (as opposed to unstable)
and the analogy between drizzle formation and nuclestion most applies. Here increases
in droplet concentration result in higher barriers and sharp, threshold-like reductionsin
drizzlerate. This behavior, opposite to the trend found in the kinetic regime, is consstent
with the well-known effect that aerosols, which increase cloud droplet concentration,
have on drizzle suppression (7, 2). This behavior isaso consastent with the Kesder-type
parameterizations of the autoconversion process (4, 18), which prescribe both a critical
radius, as an empirical congtant, and a threshold condition such that thereis no
autoconverson when a characteristic radiusis less than the prescribed critical radius.
The kinetic potentia theory provides an anaytic expression (Eq. 2.11b) for predicting the
critical radius in autoconverson parameterizations (19). These considerations point to
observationd evidence aswel asto empirica mode support for drizzle formation in the
activated cloud regime.

4. Transent drizzle formation

The matrix formulation of Shugart and Reiss, developed to describe transgent
effectsin nuclestion (20), is a powerfull and elegant kinetic approach that can dso
gpplied to the problem of transent drizzle formation. Here we give a more complete
description of the method than was possblein (5). Severa modifications to the origina

formulation including scaling and sampling of the Sze coordinate, and renormaization of
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the corresponding growth/evaporation rates, are introduced to extend the method from the
molecular cluster scale of nuclestion to the macroscopic scae of clouds and drizzle drop
formation.
4.1 Matrix formulation:

The effectively continuous population of droplet Szesisfirg discretized dong the
volume coordinate in order that the rate matrix, whose dimension will equa the number
of sampled droplet sizesor lattice grid points, d =0,1,2,....G, whered =v/v,, inthe
case of equa spacing, be of manageable size. Truncating asbeforeat v, = V3 V. gives
Ve = V3V, /G. Thecloud droplet distribution is dso defined on the lattice. From Eq.

2.6:

2

0 VS( ND 0
g === expl - F*() (4.1)

d

where F° isthe kinetic potentia in the absence of collection, as defined in Sec. 2, and

the shortened notation F °(d) © F°(d ~ vstep ) isused. Inthelimit of avery finegid,

n, . For coarser grids the normalization isimproved using half-integer values of

Qoo

N =

D

d=0

d:d ® d +1/2 inthe equations below. Evolution of the drop populétion, f_, followsthe

correspondingly sub-sampled version of Eq. 3.1:

(.j
ifd + bvst

. €p
nd 7] r-]d+1

o, _

e n
— d-
dt - Jd-l,d - ‘]d,d+1 - bvstep fd-l - gbvstep + bvstep :

Ny

f (4.29)

d+1
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where b . © b™™ (v /vZ,) istherenormalized condensation rate from Eq. 2.14b. For a

constant step Szethisisaso congtant.  For the smallest droplets the boundary condition

f /n =1 gives

s TP nog- Lg (4.2b)
’ n, o
where the constrained smallest cluster population, n, , is goproximated using n, » n;
from Eq. 4.1.
Equations 4.2 are conveniently collected in matrix-vector form:
df
o =Kf +a (4.3)

withf" =[f,f,,.., f, ,, f,] wheref' denotesthetransposeof f . The growth sequence

PEEERT)

is terminated by placing the Szilard boundary @ G +1: f,,,/ ns,, =0. Thevector a

accounts for the small-drop boundary condition (Eg. 4.2b). Its only nonzero eement is

a, = DbgeN, » DN, . Elementsof thetridiagona matrix K follow inspection of Egs.
4.2
Kd,d-l = bvstep
Kd,d =- bvstep - bvstep (nd-l/ nd) (44)

Kygo = bVstep (nd /ndH)
To obtain the steady-<tate droplet population let
f=gs +g, (4.5)
where g and g, ae the Steady date and transent components, respectively, of f .
Subdtitution into Eq. 4.3 gives

9+

dt

=—a+Kg  +Kg ;- (4.6)
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The requirement thet the trangent solution vanish & long timeimpliesa +Kg =0,
yielding the steady- state droplet population through matrix inversion:

g.=-K™a 4.7)
Asthereisno return flux from drops of Sze d = G +1, due to the boundary condition, the
steady-date drizzle rate is Smply equd to the forward flux:

J_=Db

ES vstep(gSS)G

(4.8)
where (g_)¢ = f5(¥) isthelast component of g, which equalsthe last component of f
at =¥ . Theratefrom Eq. 4.8 is equivaent to the Becker-Ddring result (Eq. 3.2), but
with summeation here over the coarser lattice grid.

The combination of Egs. 4.6 and 4.7 yields an equation for the trangent solution:

dg

4:Kg

- . (4.9)

The standard approach to solving Eq. 4.9 (20, 21) involvesfirgt bringing K to Hermitian
form. Ingpection of Egs. 4.4 for the lementsof K reved s that dthough this matrix is
nonsymmetric, its off-diagona eements are related through detailed balance. Rewriting
the nuclegtion current, J, 4, ,, gives

Jaar = Kynafe = Kygi fon
which, under conditions of constrained equilibrium (J, 4,, =0) givesthe detaled balance
condiition:

Kysg = Ky ger (g 11,) = Ky xp [F (d) - F(d +1)] (4.10)
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where the shortened notation F(d)° F(d ™ vstep) isused. Equation 4.10 providesthe
bags for transforming Kk  to Hermitian form. The square of the matrix of
transformation, D , is diagond with eements

Dyq =exp[ F (d)/KT]. (4.12)
To demongtrate Hermiticity, condder the following matrix product:

H =-D"KD (4.12)
where D isthe squareroot of D and the minus Sign is used to give positive dgenvaues
for H . LikeK , H istridiagond with redl dements. For H ', thetranspose of H ,

HT :_(D1/2 KD '1/2)T :_D'l/ZKTDl/Z
:_D'1/2DKD '1D1/2 :_D1/2KD =12 :H

showing that H isHermitian. Thethird equality uses the detailed balance condition in
the form:

K' =DKD ™ (4.13)
which follows Egs. 4.10 and 4.11.

In the frame of the transformed matrix H , EQ. 4.9 becomes

dy
=- 4.14
dt Y (414)
where
y.,=D"g,. (4.15)
The formd solutionto Eq. 4.14 is
Y. (t)=Vexp(-D t)V'y (0) (4.16)

where v diagondizesH (specificdly, the columnsof v are comprised of the

eilgenvectorsof H ):
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V'HV =D, . (4.17)
D, isthediagond matrix having the corresponding eégenvaluesof H as eements
(D) =1,.
With these definitions, Eq. 4.16 can be put into more explicit form. In Dirac notation:
ly ()= éi(vi ly . (0))exp( -1 t)|V,) (4.18)
showing the dependence of the trangent solution on the eigenva ues and eigenvectors of
H . Thetransent droplet distribution isrecovered formy _ (t) using Egs. 4.5 and 4.15:
(=g, +0""ly, (1) (4.19)

Finally, because there is no contribution to the net flux from evaporation of drops of sze

d=G+1, the trangent drizzle rate, defined here as the flux to the Szilard boundary is:

I =b, f.®)=Jg +b__D " (G,G)A {y (O, )exp(-1 (V). (4.20)

where D2 (G,G) =/n, and (V), isthe last component of eigenvector |V,).

4.2 Calculations
To mogt efficiently implement Eq. 4.20 it is useful to employ the scaled z-

coordinate in terms of which the barrier again depends on only asingle parameter, e or

barrier height (F * :2-@/3). This enables the transent drizzle rates to be mapped to a

one-parameter family of curves characterized by e.

For the calculations that follow we set vstep such the number of sampled droplets
G (equd to the dimendondity H ) is100: vstep = 3 v_ /100 . Resultsare presentedin

terms of the trangent rate divided by the Steady- State rate:
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bvsepD'“z(G,G)é<y (O)|V, Yexp( - I 1)(V)),

] ) =1+ ; (4.21)

S

Further scaling is accomplished by defining the dimensonlesstimet = bt and

vsep
dividing concentrations by the concentration of smallest droplets: n, » n, . In these units,
the dements K, for example, depend only on e, which determines the population ratios
appearing in Egs. 4.4 or 4.10. The same holds for the reduced nucleation rate (left hand
sdeof Eq. 4.21). Origina units are easily restored at the end of acaculation by
multiplying scaled ratesby b __n,. For theinitial conditions we set the population of
clugtersto follow Eq. 4.1, which is the cloud droplet distribution in the absence of
collection and there is no current. At t =0 collection is turned on and the population
evolves according to Eq. 4.18, and current according to Eq. 4.21.

Figure 7 shows the reduced trandent rate, J(t) / J_ , in reduced time units for

different valuesof e. The calculations are described in Appendix B. Results from the
full matrix caculaions of Eq. 4.21 (solid curvesin Fig. 7) are compared with those
obtained using asimple lognorma parameterization provided in Appendix B (dashed
curves). The parameterization gives excellent results for higher values of the barrier
height and continues to work reasonably well throughout the activated regime.
Unfortunately it is the important short time behavior for which the parameterization first
hasdifficulty - beginning a about F* » 5 asthe barrier height is reduced - forcing oneto
return to Eq. 4.21 if very accurate prediction of the early onset of drizzle formation is
desred in thisregime. Similar difficulties arise when the lognorma parameterization is

used to approximate trangent rates in nucleation theory (8).
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From the results of Fig. 7 it is seen that the onsat of drizzle formation will
typicaly occur on time scales that are fractionally much shorter than those required to
reach steady dtate. Thus, when drizzle occurs, it will likely be initiated under transent
conditions. Thisisillugrated further in Fig. 8 which shows the conditions required to
reach transient drizzle onset rates, J(t), of 10™° t010™° cm s, or 1-10 drops per cubic
meter of cloud per second.  These are estimated rates required for sgnificant drizzle
formation assuming aradius of 100mm for the collected droplets (5). The figure shows
the conditions required to obtain these rates within time periods of 10 min, 20 min, and 1
hr following the turning on of collection inthemodd & t =0. The steady-state contours
for J(¥)=10"cm s "and 10 °cm’s™* from Fig. 6 are dso reproduced (solid curvesin
Fig. 8). It isseen that asthe dlowed onset time for observable drizzle formation is
reduced, the contours shift towards larger vaues of e ; conditions that aso favor ahigher
steady-date drizzlerate. In the limit of an infinite onset period, the trangent contours
coincide with those for the same rate at steady state. Figure 9 shows the collection time,
defined here as the time required for anewly-formed drizzle droplet to reach aradius of
50mm, which isthe largest sze for which Eq. 2.4 gpplies (Long, 1974). The cdculation
is described in Appendix A. The collection time added to the drizzle formation time (Fig.

8) givesthe totd time required to form the corresponding flux of 50nm drizzle drops.

5. Summary and discussion
A new description of the onseat of drizzle formation has been developed using kinetic
potentid theory. Drizzleis described quantitatively as an activated barrier crossing

phenomenon using methods borrowed from homogeneous nuclegtion theory. Two types of
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caculations were presented: (1) matrix-egenvaue caculations of the kinetics of steady-state
and trangent drizzle formation, and (2) comparisons of these with results from smple anaytic
expressions and parameterizations vdid in the dl-important activated cloud regime. This ability
to yied andytic expressons for the Steady-dtate drizzle rate, activation barrier height, and

critical droplet Sze is an especidly attractive feature of the kinetic potentid theory. More work
remainsto be done, especialy in the post-drizzle-initiation regime, but the new methods should
lead to improved parameterizations for aerosol-cloud interactions and subsequent improvements
to westher forecast and climate models.

Modeling of the later stages of drizzle formation will require relaxing both of the
nucleation boundary conditions employed in Secs. 3 and 4. Candidate approachesinclude
method- of-moments (MOM) type cd culations in which lower-order moments of the combined
doud and drizzle droplet distributions are tracked in time; smilar to the description of vapor
depletion effects through the integrated treatment of nucleation and growth processes during gas
to particle conversion (15). Closure of the moment evolution equeations can be obtained using
quadrature methods developed for aerosol dynamics smulation (22). Another approach, which
would yidd a sampled representation of the drizzle droplet spectrum, instead of moments, isto
amply extend the range of the matrix caculations of Sec. 4 usng asampling grid that extends
beyond the Szilard boundary so asto include much larger droplet Sizes. Both gpproaches are
good candidates for future extensions of the present threshold mode!.

Of dl of the cloud processes successtully integrated into the kinetic potentia
theory of drizzle formation, the role of turbulence remains the least understood. At its
present stage of development, the mode requires that the turbulence parameter, b*™ | the

underlying doud droplet distribution, and the collection rate congtant, K , each be
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prescribed. Accordingly the present modd isincapable of addressing likely correlations
between b*™ and the cloud droplet distribution, and between b*™ and K . Once such
correlations are understood and incorporated, the model should provide a much clearer
understanding of how doud turbulence fluctuations couple with drizzle formétion.
Theandyssof Sec. 3 has shown the possibility for two digtinct regimes of drizzle
formation: a kineticaly-controlled regime and an activated regime. It isthe activated
regime of drizzle formation that is best supported by observations. These include: (1) the
negative correlation seen between cloud droplet concentration and drizzle rate, and (2)
the generd observation, built into current sate-ot-the-art empirical parameterizations,
that drizzle formation is a threshold phenomenon (4, 18). Because cloud droplets form
on aerosol particles, the negative correlation between droplet concentration and drizzle
rate is manifested through the well-known effect that aerosols have on drizzle
suppression (7, 2). The present caculations are fully consistent with both observationsin
the activated regime while predicting very different behavior in the kinetic regime. This
raises an interesting paradox for the modd: how can the existence of a barrier to drizzle
actualy serve to promote drizzle formation? While a complete answer requires
including effects from cloud droplet depletion during collection, consderableinsight is
available from results dready obtained: The barrier regulates the rate a which cloud
droplets can enter the
collection regime. Out of the millions of cloud droplets present in a cubic meter of cloud,
only 1-10 (per second) are needed to provide an observable drizzle rate. The barrier
samply servesto limit the rate a which collection size droplets can form so that such

amadl frequencies of crossing events can be redlized. Droplets that do manage through
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chance fluctuations to cross the barrier will experience rapid growth to fallout size before
the effects of depletion setin. If instead the process was activationless, so that many
drops of collection Sze could be initiated at the same time, the subsequent competition
for cloud water would likely prevent any of them from reaching large sze.

Thereis another property of depletion that will tend to favor drizzle formation in
the activated regime: To first order the collection process depends on the size of the
collecting drop but isindependent of the smaller cloud droplet size (Eq. 2.4). Thuswe
might expect that during depletion, both N, and L will be reduced at a proportiond rate
aong the direction of the dashed contour lines of congtant averge droplet volume shown
inFig. 6. A comparison of the dopes of the solid and dashed contoursin Fig. 6 impliesa
threshold reduction in the drizzle rate with proportiona depletionof N, and L. Under
these conditions, the depletion of cloud droplets through collection will exert an
inhibitory feedback control that quenches drizzle formation in much the same way that
vapor depletion quenches nuclegtion, often resulting in oscillatory rates of nucleation and
growth (15). While the full dynamics of the later tages of drizzle remain to be
incorporated in the modd, the preceding arguments suggest that depletion will act asa
nonlinear feedback mechanism for keeping cloud conditions within the activated regime

and close to or below the threshold for drizzle formation.

This paper has devel oped the kinetic potentia theory and extended its range of
application beyond its originsin nucleation theory to a system, drizzle formation, for
which neither temperature nor thermodynamic potential are well defined. These

advances will open the door to gpplications of the kinetic potentia theory to other areas
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of statistica physics, applied mathematics, and perhaps economics, where phenomena

that can be modeled as sequences of trangition rates or trangtion probabilities arise.
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Appendix A: Fluctuations and growth in the collection regime

From Eqg. 2.10b:

é ..30 é ..30
Fragv &0Y 1v5v &y
F=—8— gz === . g ! (A1)
2 gV veg g 3VEVe Ved [
and
é "Zl:l
F_ 18 &0y
aF _le ge (A2)
dv Vvg V. g H
Thislast result gives the gradient of the kinetic potentiad dong the droplet volume
coordinate. The gradient is proportiona to force (but in the opposite direction) and
should therefore be proportiond to the velocity adong the volume coordinate in a
Brownian fluctuation modd!:
Y e (A3)
dt
where h ismohility. Long's collection kernel requires that in the collection limit the
growth velocity be given by Eq. 2.4
dv
= =kLv? A4
b (A4)

It isinteresting to explore the equivalence of Egs. A.3 and A.4 and determine the
mobility.

Inthe callection limit (v >> v, ) Eq. A.2 is gpproximated as:

— »- -+ =-——V (A.5)
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where the last equdity follows substitution from Eq. 2.11bfor v.*. Together Egs. A.4

and A. 5 give alinear response relation between the potentid gradient and the rate of
growth:

&v =- bm"dvlZﬁ =- DV£ =kLv’ (A.6)
dt av dv

This analys's shows consstency between the collection growth law, the shape of the
kinetic potentid in the collection regime, and the turbulence fluctuations in evaporation
and growth embodied in the diffusion parameter D, .

It isinteresting to notice that Eq. A.6 has the form one would expect by anaogy

with thermodynamic fluctuation theory gpplied to sysemswhich, unlike the drizzle

moddl, have well defined temperature (T) and thermodynamic potentid (W). To
illugtrate, let X denote a genera coordinate and set F (x) = W(x) / kT . The anadogous

rdaionto Eq. A.6is

X hE = ) E)  p IFG) (A7)
dt dx dx dx
Inthefirs equdity F isforceand h ismohbility. The fourth equdity is the well-known
Eingtein relation between diffusion and mobility (23):
D =kTh. (A.8)

The preceding analysis shows that EQ.A.6 is congstent with the thermodynamic result

despite the fact that in its derivation neither temperature nor thermodynamic potential

have been defined. The preceding argument also demondtrates the validy of equating
cond 2

v, with the diffusion coefficient D, . Nevertheless an important difference remains:

in the drizzle modd fluctuations occur on the energy scale of turbulence - not KT.

31



The determinitic growth of freshly nucleated particles, once they crossthe

Srilard boundary a v = /3 v, is described by Eq. A. 2

é u
dF 1A &Vou

—=-D,—=-D,— T o=KLy - A9

dt ' vg Q_gg ' (A9

The lagt equdity follows Eq. A.5. Thisisafirg-order nonlinear differentiad equation of a

fairly sandard form whose solution is:

VC
v = tanh(d - kLv t) (A.109

The congant of integration is obtained from the initia condition, and isfor particles
beginning their growth at the Szilard boundary, v(0) =+/3 v, :

d =tanh *(1/~/3) » 0.658.. (A.10b)
The time required for droplets to grow from the Szilard boundary to 50mm radius (the

limit of the collection kernd of EQ. 2.4) is accordingly:

_d-tanh (v, /v,,) (A1)
* KLv '

c

where v, isthevolume of a50mm radius drop. This added to the drizzle formetion time

givesthetota time required to form aflux of 50mm radius drops.

Appendix B: A parameterization for thetransient barrier crossngrate
As found in nucleation theory, the approach to steedy state is described with good

accuracy in terms of the tempora moments (8):

= d - =13 o Dhu B.1
Qt'[L- 3w/ ]ar k+1Q “p(t)dt 1 (B.1)
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whereand J(t) and J_ are, respectively, the transient and Steady- Stete drizzle rates and

m isthe k™ moment of p(t) :
1 d
t) =——J(1). B.2
p(t) 3 d () (B.2)

M, = m isthelag timefor drizzle formation. The second equdity of Eq. B.1 follows an
integration by parts.

In the case of the nucleation time lag it has been found that alog-norma
distribution can give agood approximation to P(t) yielding a parameterization for J(t) in
terms of lowest -order moments (8). A smilar result isfound for the drizzle
rate provided the barrier height F * isnot too small. From Egs. B. 2, 4.8 and 4.21 we

obtain:

Jne aly V), ep-1 1V, (B.3)

P(t) = -
() (gss)G j

which on integration over t yields the moments

_ o 1
m=- %k!a {y (0)|vj>|7(vj)e (B.4)

Approximating P(t) by the normaized log-normd didtribution:

f. () =(tsv/2p) *expl - (In t- m)?/2s%], (B.5)
which has the moments
(‘;tk f., (1) = exp[km +(ks)*/2], (B.6)

enables the log-normal parameters m and s* to be expressed in terms of moments:

,_ Fm6 /w0
S —|I’1§EB—|NQM—OZB (B.78)
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1 @m0 By
m_-2|ngﬁa_-2lngM_o46 (B.7b)

In reduced time unitst = b, t the transent profile depends only on the non-

dimensiona parameter e of Sec. 3. This property enables a parameterization of the log-
normd parameters soldy interms of e. Caculations were carried out for the moments
over therange of barrier height from 5-20 (56 £ e £ 900 ) using the matrix method (Eq.

B.4). From the momentswe obtained s* and m from Egs. B.7 and the fits:

®./e9
m(€e) = 5.80882 - 0.0583523 Je +0.000451818 e +0.296341 In ET: (B.8a)
2

) %./e0
s?(€) = 0.968544 +0.0281779 /€ - 0.000219704 €- 0.504727 In§T+. (B.8h)
a

The trangent rate behavior is given by Eq. B.2, with the log-norma approximation to

P(t), asthe cumulative digtribution:

JE 1 Gn(f)- my
E0) )»1-—erfce—( ) u
J 2 8 J2s? 0

ss

(B.9)

where erfc isthe complementary error function. Vauesfor m and s* are obtained for a
specified, in-rangevdueof e from Egs. B.8. Equation B.9 was used to obtain the
normalized trandent rate curves of Fig. 7, which are in very good agreement with the

results of the full matrix eigenvaue cacudion.



Figure captions.

1. Schematic depiction of droplet evaporation and growth processin a turbulent cloud.
Droplet growth (represented by the downward arrows) occurs at times when the local
saturation ratio, S, exceeds unity. When Sisless than unity evaporation of the droplet

occurs. Such fluctuationsin S can result in Brownian-like fluctuations in droplet Sze.

2. Top. Kinetic potentid barrier profiles from Eq. 2.10b for severa different barrier
heights. Droplet Szeis given in reduced unitswhere v_ isthe critical droplet volume.
Bottom. Schematic depiction of fluxes for condensation (middle row of arrows),
evaporation (lower row of arrows) and collection (upper row of arrows). The forward
and reverse fluxes are balanced at the critical droplet Sze. Drizzle formation requires

barrier crossng, which can only occur due to fluctuaionsin droplet Sze.

3. Monte-Carlo smulation of Brownian fluctuations in the radius of a specified droplet
for t 105 =0.1s, L=0.5cm®m®, Np=100. (a) pre-collection regime, initiad droplet radius
= 10nm; (b) collection regime, initia droplet radius = 40mm. The determinigtic

(fluctuetions averaged out) growth curve in the collection regime is from Eq. A.10.

4. Steady Sate barrier transmission rate (cmi>s ). Results are for cloud liquid water
contents of L=0.5 cn°m® (three lower pairs of curves) and L=1.0 cnPm® (three upper
pairsof curves). Ineach set of curvesfor fixed L, the values of ty, , increasing from
left toright, are 0.1, 1.0, and 10s. The dashed curves are from Eq. 3.9. The
corresponding solid curves give the exact results from numericd integration of Eq.

3.6.
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5. (&) Universd curvesfor the steady-ate barrier crossing rate in dimensionless
coordinates (e, w ) defined in terms of cloud properties by Eq. 3.11. Dashed curveis
the analytic result from Eq. 3.12, solid curve isthe exact result from numerica

integration of Eq. 3.6. (b) Barrier height vse.

6. Contours of constant steady state barrier crossing rate, J cm s *. Solid curves
bottom to top: {log,,Jss =-6,- 5,- 4,- 3,- 2.5,- 2,- 1.§ . Resultsarefrom
numerica integration of Eq. 3.6. Dashed lines, contours of constant mean droplet
radiusin micrometers, vaues bottom to top: { r =5, 10, 15, 20, 30mm}. Thick line,
separation boundary between the kinetic and activated cloud regimes{e = (3/2)} .
Resultsarefor t,, =0.1s. Theclose contour spacing in the activated regime is

indicative of threshold behavior.

7. Trandent drizzlerate. Barrier crossing rate divided by the steady- state rate versus the
logarithm of the reduced time. Solid curves: full matrix-egenvaue cdculaion from

Eq. 4.21. Dashed curves: lognorma parameterization of Egs. B.8 and B.9.

8. Contours of constant transient drizzle formation rate, J(t) cm °s™* for severd drizzle

waiting times (t) defined as the time since collection isturned on (t =0) . Solid
curves: log,,J (t) = - 6; top to bottom: t = 600s, 1200s, 3600s, infinity = steady State.
Dashed curves: log,,J (t) = - 5; top to bottom: t = 600s, 1200s, 3600s, infinity =

seady state.  Contours caculated using the parameterization Eqgs B.8 and B.9 with
Eq. 3.12 for the steady-Sate drizzlerate. Thick line, separation boundary between the

kinetic and activated cloud regimes {e = (3/2)*}. Resultsarefort,, =0.1s.
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9. Cadllectiontime. Time required in seconds for a post-critica drizzle embryo (of
volumev = /3 v, Where v, isthe critica droplet volume) to reach 50nm rediusin
size. Contoursright to left{ t.,, =500, 1000, 1500, 2000} from Eq. A. 11. Results
arefort, =0.1s. Thisadded to the drizzle formation (waiting) times from Fig. 8
givesthetota time required to form a corresponding flux of 50mm radius drops.
Thick line, separation boundary between the kinetic and activate cloud regimes{e =

(3/2)"}. Resultsarefort, =0.1s.
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