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Analytic formulation and parametrization of the kinetic potential theory for drizzle formation
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The kinetic potential of nucleation theory is extended to describe cloud droplet growth processes that can
lead to drizzle formation. In this model drizzle formation is identified as a statistical barrier crossing phenom-
enon that transforms cloud droplets to much larger drizzle size with a rate dependent on turbulent diffusion,
droplet collection efficiency, and properties of the underlying cloud droplet size distribution. Closed-form
expressions for the kinetic potential, critical drop volume, barrier height, and both steady-state and transient
barrier crossing drizzle rates are obtained in terms of measurable cloud properties. In an analogy with the
theory of phase transformation, clouds are classified into two regimes: an activated metastable regime, in which
there is a significant barrier and drizzle initiation resembles nucleation, and an unstable regime where kinetics
dominates analogous to the spinodal regime of phase transformation. Observational evidence, including the
threshold behavior of drizzle formation and the well-known effect that aerosols have on drizzle suppression, is
shown to favor drizzle formation under activated conditiomere similar to nucleation than spinodal decom-
position) and under transient conditions rather than steady state. These new applications of the kinetic potential
theory should lead to more accurate parametrizations of aerosol-cloud interaction and improved algorithms for
weather forecasting and climate prediction.
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[. INTRODUCTION required for measurable drizzle formation. Drizzle formation
is identified as a statistical barrier crossing phenomenon that
Drizzle is an important cloud process that plays a cruciatransforms cloud droplets to drizzle size with a rate depen-
role in regulating the Earth’s energy balance and water cyclelent on turbulent diffusion, droplet collection efficiency, and
[1]. Drizzle also affects climate through its influence onproperties of the size distribution.
cloud lifetime and cloud covdi2]. The formation of drizzle To develop the present drizzle model we adapt methods
consists of two steps: cloud formation, and the subsequerttaditionally used in homogeneous nucleation theory even
autoconversion process whereby large cloud droplets colle¢chough autoconversion is not usually thought of as a nucle-
smaller ones and become embryonic raindrops. The first pration process. Closed-form expressions for the barrier pro-
cess involves heterogeneous nucleation on aerosol particléie, height, and critical droplet size are derived in Sec. Il.
already present in the precloud environment. These particle§he steady-state rate of barrier crossing is obtained in Sec.
depending on their number concentration and wetting propHl. The approach used here follows the Becker-Doring-type
erties, determine the cloud droplet number concentrdfipn  multistate kinetics calculations of homogeneous nucleation
Meteorological conditions including temperature and con+ate but the underlying physics is different. In particular the
centration of water vapor also play an important role in de-droplet surface tension, which is crucial to nucleation, plays
termining number concentration through their influence omo explicit role in drizzle formation. A scaling theory is de-
the fraction of aerosol particles that activate to become cloudeloped and a universal, closed-form expression for the
droplets[3]. Meteorological conditions also determine the steady-state barrier crossing rate is obtained in terms of two
liquid water fractionL=cm’(liquid)/cm3(air), which is the nondimensional variable groups that characterize properties
product ofNp and average cloud droplet volume. of the cloud. Transient effects are analyzed in Sec. IV using
The present study is focused on the autoconversion praa matrix approach borrowed from time-dependent nucleation
cess, whereby large droplets form, fall through, and collectheory and modified here to handle a subsampled lattice of
the smaller ones under warm rain conditions for which thediscrete droplet sizes. We conclude with evidence that in
ice phase plays no rolg4,5. Understanding and accurate most cases drizzle formation occurs under activated cloud
parametrization of autoconversion is especially important foconditions(i.e., with a significant barrier to the formation of
studies of cloud lifetime and of the so-called second aerosdhrge drops presentand under transient conditions rather
indirect effect: namely, the observation that higher cloudthan steady state.
droplet number concentrations result in suppression of rain

[6,7].
The drizzle process has long been a puzzle in that the ||, KINETIC POTENTIAL THEORY OF DRIZZLE
droplets would seem to take longer to form than the lifetime FORMATION

of a typical rain cloud. A key property of the new model is

that it provides a barrier mechanism for limiting the number Consider a water droplet containiggmolecules interact-
of very small (embryonig drizzle drops. This reduces the ing and exchanging material with its surrounding vapor. Its
subsequent competition for cloud water and thus the timdinetic potential[8] is defined as
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whereg;(s™) is the rate of monomer addition to a drop con-
taining i molecules andy, is the corresponding evaporation S-1
rate. These fluxes are correlated with the equilibrium popu-
lation of drops of sizey, ny(cm™), through the detailed bal-
ance condition. 0

:

ByNg = Ygr1Ng+1- (2.2

Combining Egs.(2.1) and (2.2) gives Ng.1/Ng= Byl ¥g+1
=exp{—-[P(g+1)-P(g)]} and thus a Boltzmann-type propor-
tionality for the equilibrium populationngeexg-P(g)]. FIG. 1. Schematic depiction of droplet evaporation and growth
These considerations support the idea that(Ed) defines a  process in a turbulent cloud. Droplet growttepresented by the
“potential,” albeit one that is defined solely in terms of ki- downward arrowjsoccurs at times when the local saturation raio
netic coefficients. In nucleation theony, is identified with  exceeds unity. Whe8 is less than unity evaporation of the droplet
the constrained equilibrium cluster populatif@10 and the occurs. Such fluctuations i8 can result in Brownian-like fluctua-
kinetic potential is equivalent to the reduced thermodynamidions in droplet size.
potential W(g)/kT, whereT is temperaturek is the Boltz-
mann constant, and/(g) is the reversible work required to ceeds or is less than unity. This is depicted schematically in
assemble a cluster of sigefrom the parent phase. Neverthe- Fig. 1. In addition to turbulence fluctuations there are com-
less, the kinetic potential, defined solely in terms of rateplicated interactions between droplets in a cloud due, for
constants, is more general and can be applied even in thexample, to the competition for available water vapor. To
absence of a well-defined temperature, thermodynamic pdnclude such processes, we introduce an effective evapora-
tential, or equilibrium condition. tion rateyS" determined frompc®™so as to yield a specified

To apply the kinetic potential to drizzle formation, the cloud droplet distribution through detailed balance. The col-
growth of cloud droplets is modeled as a sum of contribuiection term[Eq. (2.5)] applies to the much fewer number of

tions from condensation and collection processes large drops and is assumed to have negligible effect on the
— pgeond . gcoll 2.3 background cloud droplet distribution.
By= By By : As in our initial study[5] we assume an exponential cloud

together with an effective evaporation ra€”. Collection  droplet distribution

refers to the volumetric gain of a specified drop large enough N

to have a significant gravitational fall velocity so as to ac- ng: —Lexp(-g/a). (2.6
crete the smaller, slower falling droplets, that typify the main a

population of the cloud. Collection is thus an additional N, js the number of droplets per unit volume ard
growth mechanism that, following the axiom “the rich get | /(;,N,)=v7v,, wherev is the mean droplet volume, con-
richer,” becomes available to those relatively few dropletsyo|s the falloff of the distribution. The superscript refers to
that through chance fluctuatlons reach fall veI00|tyIS|ze.. FOkne distribution of the typical-size cloud droplets in the ab-
collector drops of radius less than an the volumetric gain - sence of collection. Substitution into the detailed balance

is approximated apll] condition[Eg. (2.2)] gives
dv nO ond
PraR (2.4 e E‘Zﬁ— = exp(~ 1/a). (2.7)
ng 7g+l

Wh‘gl% v '_2 _t[\e volume of the collector droplew=1.1  ajhough it is possible to carry a size dependencesf
x 107" cm™s™, andL is the cloud liquid water volume frac-  hrqugh the calculations to follow, we will assume for the

tion. In molecular units present study that this quantity is independent of size:
. dg_ 1dv , B"qg) =" The second equality of E¢2.7) gives
ool= === = = v PL, 2.5
P =Gt "oy ar vl 2.9 V21t = BNty 1/a) (2.9
where v, is the volume per molecule in the liquid water showing that for this assumed droplet distributigif is also
phase. independent of size. In general the effective evaporation rate

The condensation rate includes effects due to turbulencagff is determined frompc®and the cloud droplet distribu-

fluctuations that in turn cause fluctuations in the local supertion by the first equality of Eq(2.7), and 8" is determined
saturation in the cloud. IfS denotes the saturation ratio using a model collection kernel such as ﬁwe Long kernel used
(equal to unity for a drop in equilibrium with its vapathen  to obtain Eq.(2.5). Thus the turbulent condensation rate re-
fluctuations inS will cause random sustained periods of mains as the sole adjustable parameter in the model. Equa-
droplet growth or evaporation depending on whetBeax-  tions (2.5) and (2.8), together with an estimate fqg®"
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suffice to define all of the stepwise rate coefficients needed t zo
complete the present drizzle model. D(z)
There is an interesting analogy between the physics ur
derlying ¥*, chosen here to satisfy detailed balance while
yielding a specified population of droplets, and the early
physics behind the “spontaneous emission probability” use: 10
by Einstein in his derivation of the Planck radiation Igix2].
In that derivation the spontaneous emission rate was ok
tained by the same arguments used here—detailed balan
and a Boltzmann population—long before details of the
quantum theory of radiation, which permits a direct calcula- 0
tion of this quantity, were understood.
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The shape of the kinetic potential barrier can be obtaines z=vlv,
as follows: Each increment @ corresponds to the addition > > —> —p
of one molecule—a very small step size onthe scale of clour =+ ¢« —Pre —Ppee o Ppoe o Po Ppo o
droplets. Accordingly, the derivative of the potential, follow- ‘ ¢ ¢ ¢ ¢
ing Egs.(2.1) and(2.3), is to excellent approximation AR fégfﬁfé @~1) fé’gliféf‘é‘ >1)

FIG. 2. Top: Kinetic potential barrier profiles from E.10b
for several different barrier heights. Droplet size is given in reduced
units whereu, is the critical droplet volume. Bottom: Schematic
depiction of fluxes for condensatigmiddle row of arrowy, evapo-
,8°°" e ration (lower row of arrows$, and collection(upper row of arrows
g _ 1 gz = 092 The forward and reverse fluxes are balanced at the critical droplet
Bcond ,Bcond size. Drizzle formation requires barrier crossing, which can only

Lo . occur due to fluctuations in droplet size.
the quantity in parenthesis becomes P

dCD(g) (ﬁg_) ~ (Bcond+ Bcoll)
2~ =—Inl——21]. (2.9
dg g Yg+1 " '}ﬁﬁ (2.9

Defining

B By Ay =(1+cgexp- 1/a). g exiL-¢(@)]

ff
¥ in agreement with Eq2.6). Its clear that in the absence of
Because the terrag? is always much less than unity, the collection the critical droplet size and barrier height are infi-
logarithm in Eq.(2.99 can be approximated to obtain nite and drizzle cannot occur.
cond.. ol For applications to atmospheric physics the kinetic poten-
dd(g) _ In(ﬂ + By ) _1 IN(L +cgf) ~ 1 ? tial is more conveniently described in terms of the bulk pa-
dg v =2 cQ) = a cq.

rameters that characterize the cloud. These include the criti-
cal drop volumev.=v,g" [EQ. (2.113]:

(2.9b
Integration of this last result gives the kinetic potential 2_ ﬂcondviND
ve = 5 (2.11b
1 kL
_9_:2
®(g)= a 3093' (2.108  anq barrier height
where the constant of integration has been chosen such that P = 2v, (2.121
the potential vanishes gt=0. 3v '
On substitution for the previously defined parameter _
groupingsa andc, Eq. (2.103 describes a barrier having a The full potential takes the form
maximum height at the critical droplet size "
g, d(2) = ?(32— 2, (2.10b
(9 )2:7, (2.119

wherez=g/g =v/v. is the ratio of drop volume to the criti-

which satisfies the flux balance conditiggi+ 852" = 2",
The barrier height is

* * 2 )
®" = d(g ):59—_”1. (2.123
v

The lead term on the right-hand side of E8.109, ®°(g)

cal drop volume. Figure &op) shows the kinetic potential at
several different barrier heights according to Efj10b. The
bottom panel of Fig. 2 shows a schematic depiction of the
fluxes for condensation, collection, and evaporation. In the
precritical droplet regime the reverse flgavaporation ex-
ceeds the sum of the forward fluxes due to condensation and
collection and the barrier can only be surmounted due to

=g/a, gives the kinetic potential without collection and a favorable fluctuations in droplet size. This flux dominance is

Boltzmann population

reversed in the postcritical, or collection, regirfies., the
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forward fluxes dominatewith the result that growth is fa-
vored in this regime.
It is instructive to compare Eq2.10b with the reduced

thermodynamic barrier profile of classical nucleation theory

(CNT). There®cyr(2) =Dy 1(3273-22), wherez=g/geyy is

the ratio of the cluster size to the critical cluster size of the;c
classical theory8,13. Indicative of fundamental differences &

in the underlying physics, the scaled kinetic potential for
drizzle has a distinctly different shapsharper and less
rounded near the maximynthan the barrier of classical
nucleation theory.

The remaining molecular grouping®"%2(cm®s™), ap-
pearing in Eq(2.11b, has an important physical interpreta-
tion: Molecular number diffusion along thg coordinate is
given by the diffusion coefficieni14,13

1

ni? = cond,
> B

D, (2.13

wheren is the total jump frequencgforward and backward
jumps includeglandl is the jump distancéequal to unity for
single-molecular jumps The last equality loses the factor of
1/2 due to the fact thgg®" gives the frequency of only the
forward jumps. By analogy we see thgt°"%? is the (turbu-
lent) diffusion coefficient along theolumecoordinate—with
jump sizev,. On the larger scale of cloud droplet volumes it
is natural to represent processes using a subsampled lattice

droplet sizes with renormalized transition rates between aa-
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jacent sizes defined so that physical quantities such as the FIG. 3. Monte Carlo simulation of Brownian fluctuations in the

diffusion constant are invariant to the lattice spadibp For,
example, for a lattice spacinge, Wherev; <vge,<v and
rescaled coordinatd=v/vg,, We obtain step-invariant dif-
fusion along the volume coordinate

= gt

D, = B8 VZep (2.143

provided

"= B0y (2.14b

is used for the(renormalized turbulent condensation rate.
This subsampled lattice plays an essential role in the tra
sient drizzle rate calculations of Sec. IV.

A typical range for the unknown model paramet@y,
which depends o (also unknowi, can be estimated as
follows: Consider the timetyo, it takes to add through
Brownian-like diffusion along the volume coordinate, a suf-
ficient volumeAv =127 um?, to bring about a 1% change in
a typical cloud drop radius from 10 to 104m. The mean

square displacement due to diffusion along the volume coor-

dinate iSOf:ZDUt after a timet. Equatingo, and Av gives

(3

t19= 2.15
196% o (2.159

v

radius of a specified droplet fa,,=0.1s,L=0.5 cn? m™3, Nyq
=100. (a) Precollection regime, initial droplet radius=10n; (b)
collection regime, initial droplet radius=40m. The deterministic
(fluctuations averaged gugrowth curve in the collection regime is
from Eq.(A10a and(A10b).

L2

tr=——,
* 2D,N3

(2.15bh
which is a measure of the overall relaxation time of the cloud
droplet distribution. The disadvantages of settibg using
Eq. (2.15h are its dependencies on bdthand Ny and the
act that a full turbulence simulation over the considerably
longer time scalé;-will be much more difficult to carry out
for comparison with the present Brownian model. Following
McGraw and Liu[5], we estimateD, (or 8" through the
assignment of a reasonable range of valuetgqto

D,(um® s71) = 8.94X 107228~ 8.05X 10%/t;0,(S).
(2.1

We will generally choose values of;,, in the range
0.1-10 s. Longer times would not allow for significant fluc-
tuations in drop size over the lifetime of a typical cloud and
shorter times would imply growth rates faster than are likely
to occur under the typical range of supersaturation found in

Equivalently,D, could be set in a seemingly less arbitrary clouds. Figure &) shows a Monte Carlo simulation of
way by considering the time it takes for droplets to gain orBrownian fluctuations in droplet radius foy,,=0.1 s and a
lose volumes comparable to the average cloud droplet volypical cloud particle size in the precollection regime. The
ume method of simulation has been described previously in the
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context of nucleation clusterdl3] and cloud dropletg5]. place, the right-hand-side of E¢3.2) is unity yielding for
Figure 3b) shows the results of two different simulations the steady-state crossing rate
beginning with an initial particle radius of 40m in the gmax 1 5 / gmax 4
collection regime. Here fluctuations are evident even in the ; _ D 1) _ulNp D 1
presence of net steady growth from drift motion in the down- ™S L\ g=gmin Bg exd—- ®(g)]
ward sloping part of the kinetic potential in the collection
regime. The solid curve is the result of the deterministic 34
(fluctuations averaged outalculation of the growth rate de- |n the last equality the conditio(gy,,) =0 has been used.
scribed in Appendix A. The B, appearing in Eq(3.4) is the total forward growth
rate, which as already noted is dominated by the condensa-
Ill. STEADY-STATE BARRIER CROSSING RATE tipn rate. This is true even for cluste(s many t_imes C(iticgl
size. Thus we can neglect the collection term in the kinetic
The present derivation of the steady-state drizzle rate folprefactor[it is of course included ind(g)] and make the
lows closely the Becker-Doring molecular kinetics approachexcellent approximation
of classical nucleation theor@] with important differences g
due to boundary conditions, barrier profile, and scale. It is By = B (3.5
again convenient to begin with the molecular-level descriprhis and replacement of the discrete sum by an integration
tion, reporting final results in terms of relevant parameters ORimplifies the final result
the cloud physics scale.

g=gmin BgMg

Let f, denote the population of clustefgroplety of size B NG [ [Omax -1
g. The net flux for conversion frorg to g+1 is Jss= L . exf ®(g)]dg
Juges = Bafa— Ygesfges = Bl 2 - 22) (3.1 3 -
g.g+1= Bglg ~ Ygr1fgrr = BgNg ng Nget)’ (3.1 :KLUCND<JO exr{cb(z)]dz) _ (3.6)

where the last equality follows Eq2.2). The steady-state
current(Jsg is constant along the growth sequence and sum
mation of Eqs(3.1) gives

To obtain the last equality, substitute for the critical drop
volume using Eq(2.11h and use the integration limitg;,

:gmin/g* ~0 andzy,= gmax/g* =\3.

gmax _ The integral of Eq(3.6) is nhow approximated using the
1 fgmln 1:gmax X J -
Jsd > = . 3.2 method of steepest descgfi. First, expand the potential in
g=gmin Bg"g Mgmin  MNgmax a Taylor series about its maximum

In nucleation theory the ratios on the right-hand-sideg;if 3

and gna are set to unity and zero, respectively, as “mono- O()=P - ECD*(z— 1%+ 0{(z-1)%. (3.7
mer” and Szilard boundary conditions. The summation on

the left is dominated by clusters near the critical Siwbere  Substitution into Eq.(3.6) retaining through the quadratic
ng assumes its smallest valyesith the result that the com- term gives a Gaussian integral that is readily evaluated in
puted flux is not terribly sensitive to the placement of theclosed form. The result is

boundaries providedni,<g < 0max SO as to include a wide . —1 =
range of terms about the critical size. In the drizzle model we e

set gmin in the range of the smallest cloud droplet side (jxex;ﬁ)G(z)]dz) - 2 exp-2), (3.9
<gmin<<v/vy). In this limit Eq. (2.6) reduces to

where the subscripted kinetic potential denotes the Gaussian
Np le% approximation. Provided the integrand is sharply peaked
Mgmin = a L 3.3 near the critical size, the limits of integration can be replaced
by zin @and z,4y as in Eq.(3.6), with insignificant error. The

and for the lower boundaryymin/Ngmin=1. This boundary fina| result for the barrier crossing ratem3s?) is
condition is assumed to hold even with collection: Small

droplets are, of course, consumed during the collection pro- 39" . .

cess, just as monomer is consumed during nucleation andJss™ &LvcNp ZGXP(‘CD )= By Z exp(— @),

this can prevent the occurrence of a stable steady Et&ie

However, similar to nucleation theory, the present drizzle (3.9

model is_ limited to theonsetregime and depletion effects are |, ¢1assical nucleation theory a term similar to

beyond its scope. Candidate approaches to future treatments

of the later stages of drizzle formation are briefly discussed 1 /30

in Sec. V. Z= g V2 (3.10
A natural placement for the Szilard boundary condition

fgmax/ Ngmax=0, is t0 setgq,=+3g". This size is sufficiently is known as the Zeldovich fact§®] and corrects for barrier

beyond g° and at the zero potential crossinigee Eq. recrossing. Not surprisingly, its precise form in nucleation

(2.10D]: P(gmaw=0. With these boundary conditions in theory differs from the result obtained here.
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FIG. 4. Steady state barrier transmission (ate™® s'1). Results ®* 5
are for cloud liquid water contents &f=0.5 cn? m™2 (three lower 125
pairs of curvesandL=1.0 cn¥ m™3 (three upper pairs of curves
In each set of curves for fixeld, the values ot increasing from
left to right, are 0.1, 1.0, and 10 s. The dashed curves are from Ec 7.5
(3.9. The corresponding solid curves give the exact results fromr
numerical integration of Eq3.6).

Equation(3.9) provides a convenient analytic expression 0
that is in excellent agreement with the full Becker-Doring -0-5 0 0-5 1 315 \ 2 25
integration of Eq(3.6) for the steady-state drizzle rate in the log, (e =D,N, /L")

activated cloud regimésee below. Figure 4 shows rates _ _ )
predicted from Eq(3.9) as a function of droplet concentra- FI_G. 5 (a) U_mversal curves for the stegdy-s_tate barrier crossing
tion for different values oL andt,q, Associated with each rate in dimensionless coordinatés, w) defined in terms of cloud
dashed curve from Eq3.9) is a solid curve showing the properties by Eq(3.1139 f;lnd(S.llb. Dashed curve is the analytlc
corresponding result obtained from numerical integration of €SUlt from Eq(3.12, solid curve is the exact result from numerical

. : . . .. Integration of Eq(3.6). (b) Barrier height vse.
Eq. (3.6) without the Gaussian approximation. Each family

of curves has identical shape on the log-log scale and can kgoximation used in the derivation of E.9) (the integrand
compressed to a single universal curve in appropriatelys no longer sharply peaked near the critical yizZ@n the

scaled units. The relevant dimensionless groups are other hand, the figures show the approximation working very
D N3 0. \2 well in the activated regime. Figure 6 shows a number of
e= ”—AD = (:°> (3.113 properties predicted by the model for,=0.1 s. The solid

wlL v contours are curves of constant nucleation rate obtained from

with D, in cgs units, and the full integration of Eq(3.6) so as to accurately describe
conditions in the kinetic regime. Dashed contour lines are
0= Jss (3.11b lines of constant radius determined from the average cloud

kL2 ' droplet volumev =L/Np. The thick line marks the separation

boundary, ate=(3/2)* between the kinetic and activated
regimes. Above this boundarin the kinetic regimgthe rate

1 2 is seen to depend only on drop number, increasinifss
w=—=g3* exp(— _81/2> . (3.12 b y P Y

in terms of which Eq(3.9) takes the universal form

increased and, unlike the situation below the boundary, there
is no sharp threshold effect.
Figure 5(top panel shows the universal curves from Eq.  The activated and kinetic regimes of cloudsg. 6) are
(3.12 (dashed curveand from numerical integration of Eq. qualitatively analogous to the nucleation and spinodal re-
(3.6) (solid curvg. That the latter is also scalable follows gimes of phase separation. In the spinodal regime, phase
because the integral depends only on reduced barrier heigldeparation is activationless and kinetics dominates. Strictly
The bottom panel shows the reduced barrier height as a fungpeaking the nucleation barrier vanishes at a true spinodal as
tion of the logarithm ofe. the system passes from a thermodynamically stable state to
Conditions at the maximum value of the scaled drizzlean unstable ong16]. Classical nucleation theory has the
rate {e=(3/2)*,®"=3/2} separate the kinetically controlled weakness that the barrier does not vanish at the spinodal
and activated drizzle formation regimes. Returning to the topunless refinements to the theory are madé]. The KP
panel of Fig. 5 it is seen that the discrepancy between Eddrizzle model also gives a nonvanishing barrier along the
(3.12 and the exact integration appears as one enters theeparation boundargp*=3/2, but because the analogy is
kinetic regime. This is due to failure of the Gaussian ap-only qualitative this is not necessarily a weakness in the

N
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empirical model support for drizzle formation in the acti-
vated cloud regime.

IV. TRANSIENT DRIZZLE FORMATION

The matrix formulation of Shugart and Reiss, developed
to describe transient effects in nucleati@®], is a powerful
and elegant kinetic approach that can also applied to the
problem of transient drizzle formation. Here we give a more
complete description of the method than was possible in Ref.
[5]. Several modifications to the original formulation includ-
ing scaling and sampling of the size coordinate, and renor-
malization of the corresponding growth/evaporation rates,
are introduced to extend the method from the molecular clus-
ter scale of nucleation to the macroscopic scale of clouds and
drizzle drop formation.

A. Matrix formulation

The effectively continuous population of droplet sizes is

first discretized along the volume coordinate in order that the
longD rate matrix, whose dimension will equal the number of
sampled droplet sizes or lattice grid points0,1,2,... G,

FIG. 6. Contours of constant steady state barrier crossing ratavhered=v/uvgepin the case of equal spacing, be of manage-
Jsscm3 s7L. Solid curves bottom to topflog;oJss=-6,-5,-4,  able size. Truncating as before af.=\3v, gives vy
-3,-2.5,-2,-1.5 Results are from numerical integration of Eq. =v3v./G. The cloud droplet distribution is also defined on
(3.6). Dashed lines, contours of constant mean droplet radius ithe lattice. From Ec(2.6)
micrometers, values bottom to tofp:=5,10,15,20,3Qum}. Thick

l.6 1.8 2 2.2 24 26 2.8

2
line, separation boundary between the kinetic and activated cloud n0 = Ustedﬁ'oexp:_ CDO(d)] (4.1)
regimes{e=(3/2)%. Results are fot;,,=0.1 s. The close contour d L ’ ’

spacing in the activated regime is indicative of threshold behavior.

whered? is the kinetic potential in the absence of collection,
theory. In practice, the distinction between 3/2 and zero i€S (gefmed in Sec. Il, and the shortened notatibf(d)
inconsequential as such small values ff would corre- =@ (dgstep) is used. In the limit of a very fine grid\,
spond, in a true thermodynamic system, to a barrier height 6f Z¢=o"g- FOr coarser grids the normalization is improved
only 3/2kT (Appendix A). Under these conditions fluctua- Using half-integer values of:d—d+1/2 in theequations
tions will dominate with the result that neither barrier heightP€low. Evolution of the drop populatiofy follows the cor-
nor critical droplet volume play significant roles in the ki- respondingly subsampled version of E8g.1):
netic regime. Another difference from CNT is that droplet n
models of phase separation cannot be used within the spin- — =‘]d—1,d_‘]d,d+1=:8ustepfd—1_ (Bustep+ ﬁvstepil)fd
odal region, whereas the KP theory continues to apply both i
within and outside of the kinetic regime to yield definite Ng
predictions for drizzle ratéFig. 6).  Bogepy Tl (4.29

At larger values ok, the drizzle rate is controlled mainly drl

by the barrier height. In this activated regime the cloud carwhere 8, = ﬁcond(vi/vgte,; is the renormalized condensa-
be thought of as metastalfas opposed to unstabland the tion rate from Eq(2.140. For a constant step size this is also
analogy between drizzle formation and nucleation most apeonstant. For the smallest droplets the boundary condition
plies. Here increases in droplet concentration result in highef,/n,=1 gives
barriers and sharp, thresholdlikeductionsin drizzle rate.
This behavior, opposite to the trend found in the kinetic re- Jo1=8 n0<1 _ﬂ> (4.2h
gime, is consistent with the well-known effect that aerosols, ' Ustep n,
which increase cloud droplet concentration, have on drizzle

suppressionj7,2]. This behavior is also consistent with the é\gvrrc])?(ri;;rt]ee dcl?;ig]a'ier?) fsrrgri”(ézt (CJUf)ter populatigns ap-
_ . . . 0~ 0 . . .
Kessler-type parametrizations of the autoconversion process Equations(4.23 and (4.2b are conveniently collected in

[4,18], which prescribe both a critical radius, as an empiricalmatrix-vector form
constant, and a threshold condition such that there is no au-
toconversion when a characteristic radius is less than the df

prescribed critical radius. The kinetic potential theory pro- q Cfra (4.3
vides an analytic expressidig. (2.11b] for predicting the

critical radius in autoconversion parametrizatiohg]. These ~ with fT=[fy,f,, ... fc_1,fc], wherefT denotes the transpose
considerations point to observational evidence as well as tof f. The growth sequence is terminated by placing the
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Szilard boundary atG+1:fg,1/ngy1=0. The vectora ac- Dyg=exd ®(d)/kT]. (4.1

counts for the small-drop boundary conditigityg. (4.2b)]. Its o _ . .
only nonzero element is;=8, ny=p, ng. Elements of T0 demonstrate Hermiticity, consider the following matrix
ste ste

the tridiagonal matriX follow inspection of Eqs(4.29 and ~ Product

(42b) H=- Dl/2K . D_1/2, (412)
Kag-1 Bogey whereD'? is the square root db and the minus sign is used
to give positive eigenvalues fat. Similar toK, H is tridi-
Kad =~ Bugey™ BogedNe-2/Na) agonal with real elements. FétT, the transpose dfl,
HT:_ Dllz'K 'D_l/ T
Kd,d+l = ﬂvstep(nd/nd_‘_l) . (44) ( 2)
' . [ D—l/Z i KT i D1/2
To obtain the steady-state droplet population let D25 .k .D.DI2
f= Osstdr (45) —_ D1/2 K. D_1/2
wheregss and gr are the steady state and transient compo- —H

nents, respectively, df Substitution into Eq(4.3) gives

d showing thatH is Hermitian. The third equality uses the
a9t _ . e
at a+K -gsst K - 0or. (4.6) detailed balance condition in the form

T - -1
The requirement that the transient solution vanish at long K'=D-K-D (4.13
time impliesa+K -gss=0, yielding the steady-state droplet \yhich follows Eqs.(4.10 and(4.19).

population through matrix inversion In the frame of the transformed matrix, Eq. (4.9) be-
Oss= - K—l .a. (47) comes
As there is no return flux from drops of sideG+1, due to dip = —Hy (4.14
the boundary condition, the steady-state drizzle rate is simply dt n '
equal to the forward flux
where
Jss= Bug, (9s9c (4.8 o
Yr=D""-0r. (4.19

where (gsdg=fg() is the last component ofisg which _ )

equals the last component bfat t=c. The rate from Eq. The formal solution to Eq(4.14) is

(4.8) is equivalent to the Becker-Doring resyEq. (3.2)], _ _ -1

but with summation here over the coarser lattice grid. Yr() =V exp(- DOV (0), (4.19
The combination of Eqs4.6) and (4.7) yields an equa- whereV diagonalizeH (specifically, the columns o¥ are

tion for the transient solution comprised of the eigenvectors Hif):
d 1y o\ =
ditT:K ‘o, 4.9 V™H -V =D,. (4.17

D, is the diagonal matrix having the corresponding eigenval-
The standard approach to solving E4.9) [20,2] involves  ues ofH as elements
first bringingK to Hermitian form. Inspection of Eq$4.4)
for the elements oK reveals that although this matrix is (DVi =\
nonsymmetric, its off-diagonal elements are related throug

detailed balance. Rewriting the nucleation curreif,, With these definitions, EqA.16 can be put into more ex-

plicit form. In Dirac notation

gives
Ja.dr1 = Kar1afa = Kaarafara, | (1) = E (Vilgr (0))exp(= NiD) Vi) (4.18
I
which, under conditions of constrained equilibriu@y 4.1
=0) gives the detailed balance condition showing the dependence of the transient solution on the ei-
genvalues and eigenvectors léf The transient droplet dis-
Kar1,d= Kaara(Nge1/Ng) = Kggeq €XgP(d) - P(d + 1)], tribution is recovered fromy(t) using Eqs(4.5) and(4.15):
(4.10 - R
f(0) = Gss+ D™y (1)). (4.19

where the shortened notatidr(d) = ®(dvge,) is used. Equa-

tion (4.10) provides the basis for transformig to Hermit-  Finally, because there is no contribution to the net flux from
ian form. The square of the matrix of transformatibnis  evaporation of drops of sizd=G+1, the transient drizzle
diagonal with elements rate, defined here as the flux to the Szilard boundary is
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‘](t) = Bvstepr(t) 10F ] I

o =724

=Jss*t ﬂvstepD‘”z(G,G)E_ (HO)|Vpexp- \(V))e, osp TNT°
j

0.6

g,

(4.20

whereD™Y%G,G)=ng and (V))g is the last component of
eigenvectorV;). 02

B. Calculations

To most efficiently implement Eq4.20) it is useful to L L
employ the scaled coordinate in terms of which the barrier ¢ =20
again depends on only a single parameter barrier height 08l -
(®"=2ve/3). This enables the transient drizzle rates to be
mapped to a one-parameter family of curves characterized by

I,

E. 04 e

For the calculations that follow we sef;.,such the num-
ber of sampled droplets &qual to the dimensionalityl) is 02~ 7
100: vgep= V3v./100. Results are presented in terms of the oo L L
transient rate divided by the steady-state rate 00 05 10 :-5 o 2-0) 25 30 35

0815, gtept]
ﬂ = fo(t) FIG. 7. Transient drizzle rate. Barrier crossing rate divided by
Jss  f(=) the steady-state rate versus the logarithm of the reduced time. Solid
12 _ curves: full matrix-eigenvalue calculation from Eg.21). Dashed
’BvstepD (G’G)Ej <¢(O)|Vj>exp( AD(Ve curves: lognormal parametrization of E¢B8) and(B9).
=1+ .
Jss From the results of Fig. 7 it is seen that the onset of

(4.21)  drizzle formation will typically occur on time scales that are

o ) o ) . fractionally much shorter than those required to reach steady
Further scaling is accomplished by defining the dimensiongiate. Thus, when drizzle occurs, it will likely be initiated
less timet=p,__tand dividing concentrations by the concen- ynder transient conditions. This is illustrated further in Fig. 8
tration of smallest dropleta,~nJ. In these units, the ele- which shows the conditions required to reach transient
mentsK, for example, depend only oty which determines drizzle onset rated(t) of 10° to 108 cm=3s?, or 1-10
the population ratios appearing in Eqé.4) or (4.10. The  drops per cubic meter of cloud per second. These are esti-
same holds for the reduced nucleation faét-hand side of mated rates required for significant drizzle formation assum-
Eq. (4.27)]. Original units are easily restored at the end of a
calculation by multiplying scaled rates b&uste ny. For the
initial conditions we set the population of clusters to follow
Eq. (4.1), which is the cloud droplet distribution in the ab-
sence of collection and there is no currenttAD collection
is turned on and the population evolves according to Eg.
(4.19, and current according to E.21).

Figure 7 shows the reduced transient rag/Jsg in re-
duced time units for different values ef The calculations
are described in Appendix B. Results from the full matrix
calculations of Eq(4.2)) (solid curves in Fig. Y are com- ,
pared with those obtained using a simple lognormal param- TR o ao e ae o8 3
etrization provided in B(dashed curvgs The parametriza-
tion gives excellent results for higher values of the barrier
height and continues to work reasonably well throughout the FIG. 8. Contours of constant transient drizzle formation rate,
activated regime. Unfortunately it is the important short timeJ(t)Cm-s 1 for several drizzle waiting time&) defined as the time
behavior for which the parametrization first has difficulty— gjnce collection is turned oft=0). Solid curves: log,)(t)=—6: top

beginning at about” ~5 as the barrier height is reduced— o pottom: t=-600, 1200, 3600, infinity=steady state. Dashed
forcing one to return to Eq4.21) if very accurate prediction  cyrves: logoJ(t)=-5; top to bottom:t=600, 1200, 3600, infinity

of the early onset of drizzle formation is desired in this re-=steady state. Contours calculated using the parametrization Eqs
gime. Similar difficulties arise when the lognormal param-(B8) and(B9) with Eq.(3.12 for the steady-state drizzle rate. Thick
etrization is used to approximate transient rates in nucleatioline, separation boundary between the kinetic and activated cloud
theory[8]. regimes{e=(3/2)%. Results are fot;,=0.1 s.

log,Np,
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is an especially attractive feature of the kinetic potential
theory. More work remains to be done, especially in the post-
drizzle-initiation regime, but the new methods should lead to
improved parameterizations for aerosol-cloud interactions
and subsequent improvements to weather forecast and cli-
mate models.

Modeling of the later stages of drizzle formation will re-
quire relaxing both of the nucleation boundary conditions
employed in Secs. lll and IV. Candidate approaches include
method-of-moments type calculations in which lower-order
moments of the combined cloud and drizzle droplet distribu-
tions are tracked in time; similar to the description of vapor
depletion effects through the integrated treatment of nucle-
ation and growth processes during gas to particle conversion
[15]. Closure of the moment evolution equations can be ob-
tained using quadrature methods developed for aerosol dy-
log (N, namics simulation[22]. Another approach, which would
yield a sampled representation of the drizzle droplet spec-
trum, instead of moments, is to simply extend the range of
the matrix calculations of Sec. IV using a sampling grid that
extends beyond the Szilard boundary so as to include much
larger droplet sizes. Both approaches are good candidates for

FIG. 9. Collection time. Time required in seconds for a post-
critical drizzle embrydqof volumev=+3uv., whereu, is the critical
droplet volumeg to reach 50um radius in size. Contours right to
left {t5pb=500,1000,1500,2000from Eq. (Al1l). Results are for
t10,=0.1 s. This added to the drizzle formati(waiting) times from

Fig. 8 gives the total time required to form a corresponding flux ofotgfe (Tl)(tintf]lonsl Ofdthe present threShOIS Irlno.dfl' ted int
50 um radius drops. Thick line, separation boundary between the all ot the cloud processes successiully integrated into

kinetic and activate cloud regime=(3/2)%. Results are for the kinetic poten_tial theory of drizzle formati(_)n, the role of

t1,=0.1 s. turbulence remains the least und_erstood. At its present stage
of development, the model requires that the turbulence pa-
rameterB®™ the underlying cloud droplet distribution, and

ethe collection rate constant each be prescribed. Accord-
ﬁﬁgly the present model is incapable of addressing likely cor-
relations betweedrﬁCond and the cloud droplet distribution,

- i ; and betweerB®"® and «. Once such correlations are under-

contours forJ(=:)=10"° and 10° cm™ s from Fig. 6 are stood and incorporated, the model should provide a much

a[so reprc_)ducecdlowest solid and lowest das_hed CUTVES IN clearer understanding of how cloud turbulence fluctuations
Fig. 8). It is seen that as the allowed onset time for observ-

. Lot ; couple with drizzle formation.
able drizzle formation is reduced, the contours shift toward X

| | £ dit hat also f hiah q S The analysis of Sec. Il has shown the possibility for two
arger values ot; conditions that also favor a higher steady- yigiinct regimes of drizzle formation: a kinetically-controlled
state drizzle rate. In the limit of an infinite onset period, the

regime and an activated regime. It is the activated regime of

transient contours coincide with those _for the same raté aji;,le formation that is best supported by observations.
steady s_tate. Flggre 9 shows the collection tlme, defined her19hese include(1) the negative correlation seen between
as the time required for a newly formed drizzle droplet to

. o ) - cloud droplet concentration and drizzle rate &Rylthe gen-
reach a radlu_s of 5am, which is _the_largest size for which eral obse?vation, built into current state-of-trfe—art e?npirical
E.q.(2.4) applles[lll]. Th_e calculation is descr_|bed n Appen- parametrizations, that drizzle formation is a threshold phe-
d_|x A. _The cqllecnon time gdded to the drizzle formation nomenori4,18]. Because cloud droplets form on aerosol par-
time (E|g. 8 gives the totgl time required to form the corre- ticles, the negative correlation between droplet concentration
sponding flux of 5Qum drizzle drops. and drizzle rate is manifested through the well-known effect
that aerosols have on drizzle suppresdioy2]. The present
calculations are fully consistent with both observations in the
activated regime while predicting very different behavior in

A description of the onset of drizzle formation has beenthe kinetic regime. This raises an interesting paradox for the
developed using kinetic potential theory. Drizzle is describednodel: how can the existence of a barrier to drizzle actually
quantitatively as an activated barrier crossing phenomenoserve to promote drizzle formation? While a complete an-
using methods borrowed from homogeneous nucleatioswer requires including effects from cloud droplet depletion
theory. Two types of calculations were presentdglmatrix-  during collection, considerable insight is available from re-
eigenvalue calculations of the kinetics of steady-state andults already obtained: The barrier regulates the rate at which
transient drizzle formation an@) comparisons of these with cloud droplets can enter the collection regime. Out of the
results from simple analytic expressions and parametrizamillions of cloud droplets present in a cubic meter of cloud,
tions valid in the all-important activated cloud regime. Thisonly 1-10(per 9 are needed to provide an observable
ability to yield analytic expressions for the steady-statedrizzle rate. The barrier simply serves to limit the rate at
drizzle rate, activation barrier height, and critical droplet sizewhich collection-size droplets can form so that such small

ing a radius of 10Qum for the collected droplet§5]. The

figure shows the conditions required to obtain these rat
within time periods of 10, 20 min, and 1 h following the
turning on of collection in the model &:0. The steady-state

V. SUMMARY AND DISCUSSION
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do manage through chance fluctuations to cross the barrier d
will experience rapid growth to fallout size before the effects v

of depletion set in. If instead the process was activationlesshjs |ast result gives the gradient of the kinetic potential
so that many drops of collection size could be initiated at theyjong the droplet volume coordinate. The gradient is propor-
same time, the subsequent competition for cloud watefional to force (but in the opposite directignand should

would likely prevent any of them from reaching large size. therefore be proportional to the velocity along the volume
There IS anothel’ pI’Operty Of depletlon that W|" tend to coordinate in a Brownian fluctuation model:

favor drizzle formation in the activated regime: To first order
the collection process depends on the size of the collecting dv = oF (A3)
drop but is independent of the smaller cloud droplet §Egp dt ’

(2.9)]. Thus we might expect that during depletion, bbl where 7 is mobility. Long’s collection kernel requires that in

andL will be reduced at a proportional rate along the direc- . ) . )
tion of the dashed contour lines of constant averge dropletthe collection limit the growth velocity be given by E@.4):

volume shown in Fig. 6. A comparison of the slopes of the dv
solid and dashed contours in Fig. 6 implies a threshold re- dt wLo®. (A4)

duction in the drizzle rate with proportional depletiony o ) )

andL. Under these conditions, the depletion of cloud drop-lt is interesting to explore the equivalence of EGs3) and
lets through collection will exert an inhibitory feedback con- (A4) and determine the mobility. _ _

trol that quenches drizzle formation in much the same way In the collection limit(v>uv) Eq. (A2) is approximated
that vapor depletion quenches nucleation, often resulting i&S

oscillatory rates of nucleation and growttb]. While the full dd 1/ v \2 W
—“%‘) = (A9)

frequencies of crossing events can be realized. Droplets that dd ﬂ ( v >2J
—=-1-|— (A2)
1%

Uc

dynamics of the later stages of drizzle remain to be incorpo- o
rated in the model, the preceding arguments suggest that v

depletion will act as a nonlinear feedback mechanism fokyhere the last equality follows substitution from Eg.11h
keeping cloud conditions within the activated regime andqr vﬁ. Together Eqs(A4) and (A5) give a linear response

Uc

close to or below the threshold for drizzle formation. relation between the potential gradient and the rate of growth
This paper has developed the kinetic potential theory and

extended its range of application beyond its origins in nucle- dv - _'8condu2@ --D dae = wlv2. (A6)

ation theory to a system, drizzle formation, for which neither dt td Y dv

temperature nor thermodynamic potential are well definedThis analysis shows consistency between the collection

T_hes_e advanges will open the door to appl!ca_\tlons of .thegrowth law, the shape of the kinetic potential in the collec-
kinetic potential theory to other areas of statistical physmstion regime, and the turbulence fluctuations in evaporation

omenathat can be modelod 28 Sequences of tansiion rafild Srowth embodied in the difision parame
q It is interesting to notice that EGA6) has the form one

or transition probabilities arise. would expect by analogy with thermodynamic fluctuation
theory applied to systems which, unlike the drizzle model,
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tential (W). To illustrate, letx denote a general coordinate

The authors thank Drs. Peter H. Daum and Stephen Eand setd(x)=W(x)/kT. The analogous relation to EGAG)
Schwartz of BNL for helpful discussions. This research wass
supported by the Environmental Sciences Division of the

uU.S. Department of Energy, as part of the Atmospheric dx = pF=- ,]M - nkT&(X) - D&(X)_
Chemistry Program under Contract No. DE-ACO02- dt dx dx dx
76CHO00016, the Atmospheric Radiation Measurements Pro- (A7)
gram under Contract DE-AC03-98CH10886, and a LDRD . o _ _.
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APPENDIX A: FLUCTUATIONS AND GROWTH IN THE
COLLECTION REGIME D =kTx. (A8)
The preceding analysis shows that E&6) is consistent
with the thermodynamic result despite the fact that in its

derivation neither temperature nor thermodynamic potential
P 3l 1 3 have been defined. The preceding argument also demon-
q)(v)zﬂsi—(i)J:—ﬂ ° —(”)J (A1)
Uc v

From Eq.(2.10b,

37 3U_ strates the validy of equating®"%? with the diffusion co-
¢ efficient D,. Nevertheless an important difference remains:
in the drizzle model fluctuations occur on the energy scale of
and turbulence—nokT.

Uc Uc
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The deterministic growth of freshly nucleated particles, \nG
once they cross the Szilard boundary at/3v., is described P(t) == —— 2 (H(O)[V)\; expl=\)(V))g  (BI)
by Eq (AZ) ( SQG j
dv dd i{ v \2 D which on integratlon over yields the moments
—=-D,—=-D,=|1-|—| |=«Lv?-=.
dt Ydv v (vc> ] v
= - k! 2< ONV)(V) (B4)
(A9) e SS)G . (VO e

The last equality follows Eq(AS). This is a first-order non-  Approximating P(t) by the normalized log-normal distribu-
linear differential equation of a fairly standard form whosetjon

solution is —
fL(t) = (tsv2m) ™t exd - (In t—m)%/25?], (B5)
Uc
v(t) = ————. A10
® tanh(d - xLvt) ( 9 which has the moments
The constant of integration is obtained from the initial con- Jm £, () = exgkm-+ (k9%/2] (B6)
dition, and is for particles beginning their growth at the 0 tn ’

Szilard boundary(0)=3v,:
enables the log-normal parametensands? to be expressed

- 101/ [2)
d=tanh~(1/v3) =~ 0.658. (A10b) in terms of moments:
The time required for droplets to grow from the Szilard 2= -In 2M, B7
boundary to 5Qum radius[the limit of the collection kernel n Mi 0/ (B7a)
of Eq. (2.4)] is, accordingly,
d - tanh (v /vsy) 1 (Mz) <2M )
= 75U Al1l m=-=In - In (B7b)
50 KLUC ’ ( ) 2 ,le 2 M4

In reduced time unit§:,6’vstept the transient profile de-
pends only on the non-dimensional parametaf Sec. Ill.
This property enables a parameterization of the log-normal
parameters solely in terms ef Calculations were carried
out for the moments over the range of barrier height from
5-20(56=<e=<900 using the matrix methodEg. (B4)].
APPENDIX B: A PARAMETRIZATION FOR THE From the moments we obtainetlandm from Eqgs.(B7) and

TRANSIENT BARRIER CROSSING RATE the fits

As found in nucleation theory, the approach to steady m(e) = 5.80882 — 0.0583523 + 0.000451818
state is described with good accura in terms of the temporal

=
2y
moments[8]: +0.296341 |r<%8> , (B8a)

whereuvs is the volume of a 5Qwm radius drop. This added
to the drizzle formation time gives the total time required to
form a flux of 50um radius drops.

N 1 N Mi+1
M:f 1 - It Jdt= — t"*ltdt_ —
s t1L =I0Rs k+1 p(t) k+1' (e) = 0.968544 + 0.0281773 — 0.000219704

(B1) ’62\' )
-0.504727 | 3 (B8Db)

whereJ(t) andJs are, respectively, the transient and steady-

state drizzle rates any is thekth moment ofp(t): The transient rate behavior is given by EB2), with the

log-normal approximation t@(t), as the cumulative distri-

p(t) = J—SSEJ(D (B2)  bution

J() 1 erfc llnﬁ)—m], B9)

Mo=u, is the lag time for drizzle formation. The second J 1‘5 =
equality of Eqg.(B1) follows an integration by parts. ss v

In the case of the nucleation time lag it has been foundvhere erfc is the complementary error function. Valuesnfior
that a log-normal distribution can give a good approximationands? are obtained for a specified, in-range valuesdfom
to P(t) yielding a parametrization fak(t) in terms of lowest-  Eqgs.(B8). Equation(B9) was used to obtain the normalized
order momentg8]. A similar result is found for the drizzle transient rate curves of Fig. 7, which are in very good agree-
rate provided the barrier heigld” is not too small. From ment with the results of the full matrix eigenvalue calcula-
Egs.(B2), (4.8), and(4.21) we obtain tion.
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