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ABSTRACT 

 
 

The kinetic potential of nucleation theory is extended to describe cloud droplet 

growth processes that can lead to drizzle formation.  In this model drizzle formation is 

identified as a statistical barrier crossing phenomenon that transforms cloud droplets to 

much larger drizzle size with a rate dependent on turbulent diffusion, droplet collection 

efficiency, and properties of the underlying cloud droplet size distribution.  Closed-form 

expressions for the kinetic potential, critical drop volume, barrier height, and both steady- 

state and transient barrier crossing drizzle rates are obtained in terms of measurable cloud 

properties.  In an analogy with the theory of phase transformation, clouds are classified 

into two regimes: an activated metastable regime, in which there is a significant barrier 

and drizzle initiation resembles nucleation, and an unstable regime where kinetics 

dominates analogous to the spinodal regime of phase transformation.  Observational 

evidence, including the threshold behavior of drizzle formation and the well-known effect 

that aerosols have on drizzle suppression, is shown to favor drizzle formation under 

activated conditions (more like nucleation than spinodal decomposition) and under 

transient conditions rather than steady-state.  These new applications of the kinetic 

potential theory should lead to more accurate parameterizations of aerosol-cloud 

interaction and improved algorithms for weather forecasting and climate prediction. 
 

PACS numbers:  05.40.-a, 92.60Nv, 82.60.Nh, 64.60.Qb 
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1. Introduction 

Drizzle is an important cloud process that plays a crucial role in regulating the 

Earth's energy balance and water cycle (1). Drizzle also affects climate through its 

influence on cloud lifetime and cloud cover (2).   The formation of drizzle consists of two 

steps: cloud formation, and the subsequent autoconversion process whereby large cloud 

droplets collect smaller ones and become embryonic raindrops.  The first process 

involves heterogeneous nucleation on aerosol particles already present in the pre-cloud 

environment.  These particles, depending on their number concentration and wetting 

properties, determine the cloud droplet number concentration, N D .  Meteorological 

conditions including temperature and concentration of water vapor also play an important 

role in determining number concentration through their influence on the fraction of 

aerosol particles that activate to become cloud droplets (3).  Meteorological conditions 

also determine the liquid water fraction, L = cm 3 (liquid)/ cm 3 (air) , which is the product of 

N D  and average cloud droplet volume.   

The present study is focused on the autoconversion process, whereby large droplets 

form, fall through, and collect the smaller ones under warm rain conditions for which the 

ice phase plays no role (4, 5).   Understanding and accurate parameterization of 

autoconversion is especially important for studies of cloud lifetime and of the so-called 

second aerosol indirect effect:  namely, the observation that higher cloud droplet number 

concentrations result in suppression of rain (6,7).   

The drizzle process has long been a puzzle in that the droplets would seem to take longer to 

form than the lifetime of a typical rain cloud.  A key property of the new model is that it provides 

a barrier mechanism for limiting the number of very small (embryonic) drizzle drops.  This 
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reduces the subsequent competition for cloud water and thus the time required for measurable 

drizzle formation.  Drizzle formation is identified as a statistical barrier crossing phenomenon 

that transforms cloud droplets to drizzle size with a rate dependent on turbulent diffusion, droplet 

collection efficiency, and properties of the size distribution.   

To develop the present drizzle model we adapt methods traditionally used in homogeneous 

nucleation theory even though autoconversion is not usually thought of as a nucleation process.  

Closed-form expressions for the barrier profile, height, and critical droplet size are derived in 

Sec. 2.  The steady-state rate of barrier crossing is obtained in Sec. 3.  The approach used here 

follows the Becker-Döring type multistate kinetics calculations of homogeneous nucleation rate 

but the underlying physics is different.  In particular the droplet surface tension, which is crucial 

to nucleation, plays no explicit role in drizzle formation.  A new scaling theory is developed and 

a universal, closed-form expression for the steady-state barrier crossing rate is obtained in terms 

of two nondimensional variable groups that characterize properties of the cloud.  Transient 

effects are analyzed in Sec. 4 using a matrix approach borrowed from time-dependent nucleation 

theory and modified here to handle a sub-sampled lattice of discrete droplet sizes.  We conclude 

with evidence that in most cases drizzle formation occurs under activated cloud  conditions (i.e. 

with a significant barrier to the formation of large drops present) and under transient conditions 

rather than steady-state.   

2. Kinetic potential theory of drizzle formation 

Consider a water droplet containing g molecules interacting and exchanging 

material with its surrounding vapor.  Its kinetic potential (8) is defined as: 

Φ( g) = − ln
β

i

γ i + 1i = 1

g− 1

∏
 

 
  

 

 
  = − ln

β
i

γ i +1

 

 
  

 

 
  

i =1

g −1

∑     (2.1) 
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where β
i (s − 1 )  is the rate of monomer addition to a drop containing i molecules, and γ

i
 is 

the corresponding evaporation rate.  These fluxes are correlated with the equilibrium 

population of drops of size g, ng (cm −3
) , through the detailed balance condition: 

β
gng

= γ
g + 1ng+1

.     (2.2) 

Combining Eqs. 2.1 and 2.2 gives ng +1 / ng
= β

g / γ
g +1

= exp{ −[Φ( g + 1) − Φ (g)]}  and thus  

a Boltzmann-type proportionality for the equilibrium population: ng ∝ exp[ −Φ (g)] .  

These considerations support the idea that Eq. 2.1 defines a "potential", albeit one that is 

defined solely in terms of kinetic coefficients.   In nucleation theory, n
g
 is identified with 

the constrained equilibrium cluster population (9,10) and the kinetic potential is 

equivalent to the reduced thermodynamic potential, W (g ) / kT , where T is temperature, k 

is the Boltzmann constant, and W (g )  is the reversible work required to assemble a cluster 

of size g from the parent phase.   Nevertheless, the kinetic potential, defined solely in 

terms of rate constants, is more 

general and can be applied even in the absence of a well-defined temperature, 

thermodynamic potential, or equilibrium condition. 

 To apply the kinetic potential to drizzle formation, the growth of cloud droplets is 

modeled as a sum of contributions from condensation and collection processes: 

β g = βg

cond + β g

coll     (2.3) 

together with an effective evaporation rate γ g

eff .  Collection refers to the volumetric gain 

of a specified drop large enough to have a significant gravitational fall velocity so as to 

accrete the smaller, slower falling droplets, that typify the main population of the cloud.  

Collection is thus an additional growth mechanism that, following the axiom "the rich get 
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richer", becomes available to those relatively few droplets that through chance 

fluctuations reach fall velocity size.   For collector drops of radius less than 50 µm  the 

volumetric gain is approximated as (11): 

dv

dt
= κv 2 L      (2.4) 

where v is the volume of the collector droplet, κ = 1.1 × 1010  (cm −3
s −1

) , and L is the cloud 

liquid water volume fraction.  In molecular units: 

β g

coll =
dg

dt
=

1

v1

dv

dt
= κv1g

2 L    (2.5) 

where v1  is the volume per molecule in the liquid water phase. 

The condensation rate includes effects due to turbulence fluctuations that in turn 

cause fluctuations in the local supersaturation in the cloud.  If S denotes the saturation 

ratio (equal to unity for a drop in equilibrium with its vapor) then fluctuations in S will 

cause random sustained periods of droplet growth or evaporation depending on whether S 

exceeds or is less than unity.  This is depicted schematically in Fig. 1.  In addition to 

turbulence fluctuations there are complicated interactions between droplets in a cloud 

due, for example, to the competition for available water vapor.  To include such 

processes, we introduce an effective evaporation rate γ g

eff  determined from β g

cond  so as to 

yield a specified cloud droplet distribution through detailed balance.  The collection term 

(Eq. 2.5) applies to the much fewer number of large drops and is assumed to have 

negligible effect on the background cloud droplet distribution.   

As in our initial study (5) we assume an exponential cloud droplet distribution: 

     n
g

0 =
N D

a
exp( − g / a) .    (2.6) 
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N D  is the number of droplets per unit volume and a = L /(v
1
N D ) = v / v

1  , where v  is the 

mean droplet volume, controls the falloff of the distribution.  The superscript refers to the 

distribution of the typical-size cloud droplets in the absence of collection.  Substitution 

into the detailed balance condition (Eq. 2.2) gives 

ng+1

0

ng

0 =
βg

cond

γ g+1

eff = exp( −1 / a ) .   (2.7) 

Although it is possible to carry a size dependence in β cond  through the calculations to 

follow, we will assume for the present study that this quantity is independent of size: 

β cond
( g) = β cond  .   The second equality of Eq. 2.7 gives 

γ eff = β cond exp( 1 / a)     (2.8) 

showing that for this assumed droplet distribution γ eff  is also independent of size.  In 

general the effective evaporation rate, γ g

eff , is determined from β g

cond  and the cloud 

droplet distribution by the first equality of Eq. 2.7, and β g

coll  is determined using a model 

collection kernel such as the Long kernel used to obtain Eq. 2.5.  Thus the turbulent 

condensation rate remains as the sole adjustable parameter in the model.  Equations 2.5 

and 2.8, together with an estimate for β cond , suffice to define all of the stepwise rate 

coefficients needed to complete the present drizzle model.   

There is an interesting analogy between the physics underlying γ eff , chosen here 

to satisfy detailed balance while yielding a specified population of droplets, and the early 

physics behind the 'spontaneous emission probability' used by Einstein in his derivation 

of the Planck radiation law (12) .  In that derivation the spontaneous emission rate was 

obtained by the same arguments used here - detailed balance and a Boltzmann population 
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- long before details of the quantum theory of radiation, which permits a direct 

calculation of this quantity, were understood.  

The shape of the kinetic potential barrier can be obtained as follows:  Each 

increment of g corresponds to the addition of one molecule - a very small step size on the 

scale of cloud droplets!  Accordingly, the derivative of the potential, following Eqs. 2.1 

and 2.3, is to excellent approximation: 

dΦ(g)

dg
≈ − ln

β
g

γ g+1

 

 
  

 

 
  = − ln

β cond + β
g

coll

γ eff

 

 
  

 

 
  .  (2.9a) 

Defining 

β g

coll

β cond =
κv1 L

β cond g2 ≡ cg 2  

the quantity in parenthesis becomes: 

β cond + β g

coll

γ eff = (1 + cg 2 ) exp( −1 / a ) . 

Because the term cg
2  is always much less than unity, the logarithm in Eq. 2.9a can be 

approximated to obtain: 

dΦ(g)

dg
= − ln

β cond + β g

coll

γ eff

 

 
  

 

 
  =

1

a
− ln 1 + cg 2( )≈

1

a
− cg 2 .  (2.9b) 

Integration of this last result gives the kinetic potential: 

Φ( g) =
g

a
−

1

3
cg 3     (2.10a) 

 

where the constant of integration has been chosen such that the potential vanishes at g=0. 

On substitution for the previously defined parameter groupings a and c, Eq. 2.10a 

describes a barrier having a maximum height at the critical droplet size: 
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(g*) 2 = β cond N
D

κL2
,    (2.11a) 

which satisfies the flux balance condition, β cond + β g *

coll = γ eff .  The barrier height is: 

            Φ* = Φ(g*) =
2

3

g * v1

v 
.    (2.12a) 

The lead term on the right hand side of Eq. 2.10a, Φ 0
(g) = g / a , gives the kinetic 

potential without collection and a Boltzmann population: 

ng

0 ∝ exp[ −Φ0
( g)]  

in agreement with Eq. 2.6.  Its clear that in the absence of collection the critical droplet 

size and barrier height are infinite and drizzle cannot occur. 

 For applications to atmospheric physics the kinetic potential is more conveniently 

described in terms of the bulk parameters that characterize the cloud.  These include the 

critical drop volume vc
≡ v1 g *  (Eq. 2.11a): 

vc
2 = βcond v1

2 N D

κL2     (2.11b) 

and barrier height    

     Φ* =
2

3

vc

v 
.     (2.12b) 

The full potential takes the form:  

     Φ( z ) =
Φ*

2
(3 z − z

3
)     (2.10b) 

 

where z = g / g* = v / v
c
 is the ratio of drop volume to the critical drop volume.  Figure 2 

(top) shows the kinetic potential at several different barrier heights according to Eq. 

2.10b.  The bottom panel of Fig. 2 shows a schematic depiction of the fluxes for 
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condensation, collection, and evaporation.  In the precritical droplet regime the reverse 

flux (evaporation) exceeds the sum of the forward fluxes due to condensation and 

collection and the barrier can only be surmounted due to favorable fluctuations in droplet 

size. This flux dominance is reversed in the postcritical, or collection, regime (i.e., the 

forward fluxes dominate) with the result that growth is favored in this regime.   

It is instructive to compare Eq. 2.10b with the reduced thermodynamic barrier 

profile of classical nucleation theory (CNT).  There Φ CNT (z ) = Φ *CNT (3z
2 / 3 − 2z )  where 

z = g / g *CNT
 is the ratio of the cluster size to the critical cluster size of the classical 

theory (8, 13).  Indicative of fundamental differences in the underlying physics, the 

scaled kinetic potential for drizzle has a distinctly different shape (sharper and less 

rounded near the maximum) than the barrier of classical nucleation theory.    

The remaining molecular grouping, β cond
v1

2  (cm 6s
−1 ), appearing in Eq. 2.11b, has 

an important physical interpretation:   Molecular number diffusion along the g-coordinate 

is given by the diffusion coefficient (14, 13) 

     Dg =
1

2
nl 2 ≈ β cond     (2.13)  

where n is the total jump frequency (forward and backward jumps included) and l is the 

jump distance (equal to unity for single-molecular jumps).  The last equality loses the 

factor of 1/2 due to the fact that β cond  gives the frequency of only the forward jumps.  By 

analogy we see that β cond v1

2  is the (turbulent) diffusion coefficient along the volume 

coordinate - with jump size v1 .  On the larger scale of cloud droplet volumes it is natural 

to represent processes using a sub-sampled lattice of droplet sizes with renormalized 
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transition rates between adjacent sizes defined so that physical quantities such as the 

diffusion constant are invariant to the lattice spacing (5).  For  

example, for a lattice spacing v step  where v1 << vstep << v c  and rescaled coordinate 

d = v / v
step

, we obtain step-invariant diffusion along the volume coordinate:  

Dv = βd

cond vstep
2 = β cond v

1

2    (2.14a) 

 provided  

       β d

cond = β cond
(v1

2 / vstep
2 )     (2.14b) 

is used for the (renormalized) turbulent condensation rate.  This sub-sampled lattice plays 

an essential role in the transient drizzle rate calculations of Sec. 4. 

A typical range for the unknown model parameter Dv , which depends on β cond  

(also unknown), can be estimated as follows:  Consider the time, t1% , it takes to add 

through Brownian-like diffusion along the volume coordinate, a sufficient volume, 

∆v ≈ 127 µm 3 , to bring about a 1% change in a typical cloud drop radius from 10 to 

10.1 µm .  The mean square displacement due to diffusion along the volume coordinate is 

σ v

2 = 2 Dvt  after a time t.  Equating σ v and ∆v  gives: 

t
1%

=
(∆v )2

2 D
v

.     (2.15a) 

 

Equivalently, D
v
 could be set in a seemingly less arbitrary way by considering the time it 

takes for droplets to gain or lose volumes comparable to the average cloud droplet 

volume:  

t
v 

=
L2

2 D
v
N

D

2 ,     (2.15b) 
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which is a measure of the overall relaxation time of the cloud droplet distribution.   The 

disadvantages of setting Dv  using Eq. 2.15b are its dependencies on both L and N D   and 

the fact that a full turbulence simulation over the considerably longer time scale t v  will 

be much more difficult to carry out for comparison with the present Brownian model.  

Following (McGraw and Liu, 2003), we estimate D
v
 (or β cond ) through the assignment of 

a reasonable range of values to t
1%

:   

 D
v
(µm

6
s −1

) ≈ 8.94 ×10 − 22 β cond ≈ 8.05 × 10
3

/ t1 % (s)   (2.16) 

We will generally choose values of t1%  in the range 0.1 - 10s.  Longer times would not 

allow for significant fluctuations in drop size over the lifetime of a typical cloud and 

shorter times would imply growth rates faster than are likely to occur under the typical 

range of supersaturation found in clouds.  Figure 3a shows a Monte-Carlo simulation of 

Brownian fluctuations in droplet radius for t1%
= 0.1s  and a typical cloud particle size in 

the pre-collection regime.  The method of simulation has been described previously in the 

context of nucleation clusters (13) and cloud droplets (5).  Figure 3b shows the results of 

two different simulations beginning with an initial particle radius of 40 µm in the 

collection regime.  Here fluctuations are evident even in the presence of net steady 

growth from drift motion in the downward sloping part of the kinetic potential in the 

collection regime.  The solid curve is the result of the deterministic (fluctuations averaged 

out) calculation of the growth rate  described in Appendix A.   

3.  Steady-state barrier crossing rate 

The present derivation of the steady-state drizzle rate follows closely the Becker-

Döring molecular kinetics approach of classical nucleation theory (9) with important 

differences due to boundary conditions, barrier profile, and scale.  It is again convenient 
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to begin with the molecular-level description, reporting final results in terms of relevant 

parameters on the cloud physics scale. 

Let f
g
 denote the population of clusters (droplets) of size g.  The net flux for 

conversion from g to g+1 is: 

J
g, g+1 = β

g
f
g

− γ
g +1 f

g +1 = β
g
n

g

f
g

n
g

−
f
g+ 1

n
g+ 1

 

 
  

 

 
     (3.1) 

where the last equality follows Eq. 2.2.  The steady-state current ( J ss )  is constant along 

the growth sequence and summation of Eqs. 3.1 gives: 

J ss

1

β gngg =gmin

gmax

∑
 

 
  

 

 
  =

fgmin

ngmin

−
fgmax

ngmax

.   (3.2) 

In nucleation theory the ratios on the right-hand-side in g
min  and gmax  are set to unity and 

zero, respectively, as "monomer" and Szilard boundary conditions.  The summation on 

the left is dominated by clusters near the critical size (where n
g
 assumes its smallest 

values) with the result that the computed flux is not terribly sensitive to the placement of 

the boundaries provided g
min

<< g* << g
max

 so as to include a wide range of terms about 

the critical size.  In the drizzle model we set gmin  in the range of the smallest cloud 

droplet size (1 << g
min

<< v / v
1 ).  In this limit Eq. 2.6 reduces to: 

ngmin
≈ N D

a
= v1 N D

2

L
.    (3.3) 

and for the lower boundary fgmin / ngmin = 1 .  This boundary condition is assumed to hold 

even with collection:  Small droplets are, of course, consumed during the collection 
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process, just as monomer is consumed during nucleation and this can prevent the 

occurrence of a stable steady state (15).  However, like nucleation theory, the present 

drizzle model is limited to the onset regime and depletion effects are beyond its scope.  

Candidate approaches to future treatments of the later stages of drizzle formation are 

briefly discussed in Sec. 5.   

A natural placement for the Szilard boundary condition, f
gmax

/ n
gmax

= 0 , is to set 

gmax = 3 g * .  This size is sufficiently beyond g *  and at the zero potential crossing (see 

Eq. 2.10b): Φ( gmax ) = 0 .  With these boundary conditions in place, the right-hand-side of 

Eq. 3.2 is unity yielding for the steady-state crossing rate: 

J ss =
1

β g
n

gg= gmin

gmax

∑
 

 
  

 

 
  

−1

=
v

1
N

D
2

L

1

βg
exp[ −Φ(g)]g =gmin

gmax

∑
 

 
  

 

 
  

−1

. (3.4) 

In the last equality the condition Φ( g
min

) ≈ 0  has been used.  The β g  appearing in Eq. 3.4 

is the total forward growth rate, which as already noted is dominated by the condensation 

rate.  This is true even for clusters many times critical size.  Thus we can neglect the 

collection term in the kinetic prefactor [it is of course included in Φ( g) ] and make the 

excellent approximation: 

β g ≈ β cond .     (3.5) 

This and replacement of the discrete sum by an integration simplifies the final result: 

 

     J
ss =

β cond v
1
N D

2

L
exp[ Φ(g )]dg

g min

g max

∫
 
  

 
  

−1

= κLv
c
N

D
exp[ Φ (z )]dz

0

3

∫
 
  

 
  

−1

. (3.6) 
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To obtain the last equality, substitute for the critical drop volume using Eq. 2.11b and 

used the integration limits z
min

= g
min

/ g* ≈ 0  and zmax = gmax / g* = 3 . 

 The integral of Eq. 3.6 is now approximated using the method of steepest descent 

(9, 9):  First, expand the potential in a Taylor series about its maximum:  

    Φ( z ) = Φ * −
3

2
Φ * (z − 1) 2 + O{( z − 1)3} .  (3.7)  

Substitution into Eq. 3.6 retaining through the quadratic term gives a Gaussian integral 

that is readily evaluated in closed form.  The result is 

exp[ ΦG (z)]dz
−∞

∞

∫( )−1

≈
3Φ *

2π
exp( −Φ*)   (3.8) 

where the subscripted kinetic potential denotes the Gaussian approximation.  Provided 

the integrand is sharply peaked near the critical size, the limits of integration can be 

replaced by z
min  and z

max
, as in Eq. 3.6, with insignificant error.  The final result for the 

barrier crossing rate (cm −3
s −1

)  is: 

J ss ≈ κLv c N D

3Φ *

2π
exp( −Φ*) = β cond

ngmin
Z exp( −Φ*) . (3.9) 

 

 

 

In classical nucleation theory a term similar to:  

Z =
1

g *

3Φ *

2π
    (3.10) 

is known as the Zeldovich factor (9) and corrects for barrier re-crossing.  Not 

surprisingly, its  precise form in nucleation theory differs from the result obtained here.   

Equation 3.9 provides a convenient analytic expression that is in excellent 

agreement with the full Becker-Döring integration of Eq. 3.6 for the steady-state drizzle 
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rate in the activated cloud regime (see below).  Figure 4 shows rates predicted from Eq. 

3.9 as a function of droplet concentration for different values of L and t1%.  Associated 

with each dashed curve from Eq. 3.9 is a solid curve showing the corresponding result 

obtained from numerical integration of Eq. 3.6 without the Gaussian approximation.  

Each family of curves has identical shape on the log-log scale and can be compressed to a 

single universal curve in appropriately scaled units.  The relevant dimensionless groups 

are: 

     ε ≡
Dv N D

3

κL
4 =

vc

v 

 
  

 
  

2

    (3.11a) 

with Dv
 in cgs units, and 

     ω ≡ Jss

κL2
     (3.11b) 

in terms of which Eq. 3.9 takes the universal form: 

    ω = 1

π
ε 3 / 4 exp − 2

3
ε 1 / 2

 
  

 
  .    (3.12) 

Figure 5 (top panel) shows the universal curves from Eq. 3.12 (dashed curve) and from 

numerical integration of Eq. 3.6 (solid curve).  That the latter is also scaleable follows 

because the integral depends only on reduced barrier height.  The bottom panel shows the 

reduced barrier height as a function of the logarithm of ε.    

Conditions at the maximum value of the scaled drizzle rate {ε = (3 / 2)
4 , 

Φ* = 3 / 2 } separate the kinetically controlled and activated drizzle formation regimes.  

Returning to the top panel of Fig. 5 it is seen that the discrepancy between Eq. 3.12 and 

the exact integration appears as one enters the kinetic regime.  This is due to failure of the 

Gaussian approximation used in the derivation of Eq. 3.9 (the integrand is no longer 
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sharply peaked near the critical size).  On the other hand, the figures show the 

approximation working very well in the activated regime.  Figure 6 shows a number of 

properties predicted by the model for t1%
= 0.1s .  The solid contours are curves of 

constant nucleation rate obtained from the full integration of Eq. 3.6 so as to accurately 

describe conditions in the kinetic regime.  Dashed contour lines are lines of constant 

radius determined from the average cloud droplet volume, v = L / N D .  The thick line 

marks the separation boundary, at ε = (3 / 2)
4 , between the kinetic and activated regimes.  

Above this boundary (in the kinetic regime) the rate is seen to depend only on drop 

number, increasing as N D  is increased and, unlike the situation below the boundary, there 

is no sharp threshold effect.   

The activated and kinetic regimes of clouds (Fig. 6) are qualitatively analogous to 

the nucleation and spinodal regimes of phase separation.  In the spinodal regime, phase 

separation is activationless and kinetics dominates.  Strictly speaking the nucleation 

barrier vanishes at a true spinodal as the system passes from a thermodynamically stable 

state to an unstable one (16).  Classical nucleation theory has the weakness that the 

barrier does not vanish at the spinodal unless refinements to the theory are made (17).  

The KP drizzle model also gives a nonvanishing barrier along the separation boundary, 

Φ* = 3 / 2 , but because the analogy is only qualitative this is not necessarily a weakness 

in the theory.  In practice, the distinction between 3/2 and zero is inconsequential as such  

small values for Φ *  would correspond, in a true thermodynamic system, to a barrier 

height of only 3/2 kT (Appendix A).  Under these conditions fluctuations will dominate 

with the result that neither barrier height nor critical droplet volume play significant roles 

in the kinetic regime.  Another difference from CNT is that droplet models of phase 
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separation cannot be used within the spinodal region, whereas the KP theory continues to 

apply both within and outside of the kinetic regime to yield definite predictions for 

drizzle rate (Fig. 6).   

At larger values of ε, the drizzle rate is controlled mainly by the barrier height.  In 

this activated regime the cloud can be thought of as metastable (as opposed to unstable) 

and the analogy between drizzle formation and nucleation most applies.  Here increases 

in droplet concentration result in higher barriers and sharp, threshold-like reductions in 

drizzle rate.  This behavior, opposite to the trend found in the kinetic regime, is consistent 

with the well-known effect that aerosols, which increase cloud droplet concentration, 

have on drizzle suppression (7, 2).  This behavior is also consistent with the Kessler-type 

parameterizations of the autoconversion process (4, 18), which prescribe both a critical 

radius, as an empirical constant, and a threshold condition such that there is no 

autoconversion when a characteristic radius is less than the prescribed critical radius.   

The kinetic potential theory provides an analytic expression (Eq. 2.11b) for predicting the 

critical radius in autoconversion parameterizations (19).  These considerations point to 

observational evidence as well as to empirical model support for drizzle formation in the 

activated cloud regime. 

4. Transient drizzle formation 

 The matrix formulation of Shugart and Reiss, developed to describe transient 

effects in nucleation (20), is a powerfull and elegant kinetic approach that can also 

applied to the problem of transient drizzle formation.  Here we give a more complete 

description of the method than was possible in (5).  Several modifications to the original 

formulation including scaling and sampling of the size coordinate, and renormalization of 
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the corresponding growth/evaporation rates, are introduced to extend the method from the 

molecular cluster scale of nucleation to the macroscopic scale of clouds and drizzle drop 

formation.  

4.1 Matrix formulation: 

The effectively continuous population of droplet sizes is first discretized along the 

volume coordinate in order that the rate matrix, whose dimension will equal the number 

of sampled droplet sizes or lattice grid points, d = 0,1,2, ....G , where d = v / vstep  in the 

case of equal spacing, be of manageable size.  Truncating as before at v max = 3  v
c
 gives 

v step = 3  vc / G .   The cloud droplet distribution is also defined on the lattice.  From Eq. 

2.6: 

n
d

0 =
v

step
N

D
2

L
exp[ −Φ0 (d )]    (4.1) 

where Φ0  is the kinetic potential in the absence of collection, as defined in Sec. 2, and 

the shortened notation Φ 0
(d ) ≡ Φ 0

(d × vstep )  is used.  In the limit of a very fine grid, 

N
D

= n
d

0

d = 0

G

∑ .  For coarser grids the normalization is improved using half-integer values of  

 

 

d: d → d + 1 / 2  in the equations below.  Evolution of the drop population, fd
, follows the 

correspondingly sub-sampled version of Eq. 3.1: 

df d

dt
= J d −1, d − J d , d + 1

= βvstep fd −1
− βvstep + β vstep

nd−1

nd

 

 
  

 

 
  fd + β vstep

nd

nd + 1

fd +1
  (4.2a) 
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where β vstep ≡ β cond (v
1

2 / v step
2 )  is the renormalized condensation rate from Eq. 2.14b.  For a 

constant step size this is also constant.   For the smallest droplets the boundary condition 

f
0

/ n
0

= 1  gives: 

         J0 ,1
= βvstep n0 1 − f1

n1

 

 
  

 

 
  .    (4.2b) 

where the constrained smallest cluster population, n0 , is approximated using n0 ≈ n0

0  

from Eq. 4.1.   

Equations 4.2 are conveniently collected in matrix-vector form: 

     
df

dt
= Kf + a      (4.3) 

with f T = [ f1 , f 2 , ..., fG − 1 , fG ]  where f T  denotes the transpose of f .  The growth sequence 

is terminated by placing the Szilard boundary at G +1: fG +1 / nG + 1 = 0 .  The vector a  

accounts for the small-drop boundary condition (Eq. 4.2b).  Its only nonzero element is 

a1 = βvstep n0 ≈ βvstep n0

0 .  Elements of the tridiagonal matrix K  follow inspection of Eqs. 

4.2: 

K
d , d−1 = β

vstep

K
d ,d = −βvstep − β vstep

n
d −1 / n

d
( )

K
d ,d +1 = βvstep

n
d

/ n
d + 1( )

   (4.4)  

To obtain the steady-state droplet population let 

f = g SS + g T      (4.5) 

where g SS  and g T  are the steady state and transient components, respectively, of f .  

Substitution into Eq. 4.3 gives 

    dg T

dt
= a + Kg SS + Kg T .    (4.6) 
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The requirement that the transient solution vanish at long time implies a + Kg SS = 0 , 

yielding the steady-state droplet population through matrix inversion: 

g
SS

= −K
−1 a      (4.7) 

As there is no return flux from drops of size d = G + 1 , due to the boundary condition, the 

steady-state drizzle rate is simply equal to the forward flux: 

J
ss

= β
vstep

( g ss )
G

    (4.8)  

where (g ss )G = fG (∞)  is the last component of   
r 
g ss , which equals the last component of f  

at t = ∞ .  The rate from Eq. 4.8 is equivalent to the Becker-Döring result (Eq. 3.2), but 

with summation here over the coarser lattice grid. 

The combination of Eqs. 4.6 and 4.7 yields an equation for the transient solution: 

dg
T

dt
= Kg T

.     (4.9) 

The standard approach to solving Eq. 4.9 (20, 21) involves first bringing K  to Hermitian 

form.  Inspection of Eqs. 4.4 for the elements of K  reveals that although this matrix is 

nonsymmetric, its off-diagonal elements are related through detailed balance.  Rewriting 

the nucleation current, J d , d + 1 , gives 

J
d , d + 1

= K
d +1, d

f
d

− K
d , d+ 1

f
d + 1

 

 

which, under conditions of constrained equilibrium ( J d , d + 1
= 0 ) gives the detailed balance 

condition: 

  Kd +1, d = K d , d+ 1 nd+1 / nd
( )= K d ,d +1 exp Φ( d ) − Φ( d +1)[ ]  (4.10) 
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where the shortened notation Φ( d ) ≡ Φ(d × vstep )  is used.  Equation 4.10 provides the 

basis for transforming K  to Hermitian form.  The square of the matrix of 

transformation,D , is diagonal with elements: 

Dd ,d = exp[ Φ (d ) / kT ] .   (4.11) 

To demonstrate Hermiticity, consider the following matrix product: 

H = −D
1/2

KD −1/2     (4.12) 

where D 1/2  is the square root of D  and the minus sign is used to give positive eigenvalues 

for H .  Like K , H  is tridiagonal with real elements.  For H T , the transpose of H , 

H T = −( D1/2 KD
−1/2 ) T = −D

− 1/2 K T D 1/2

     = −D − 1/2 DKD −1 D 1/2 = −D 1/2 KD − 1/2 = H
 

showing that H  is Hermitian.  The third equality uses the detailed balance condition in 

the form: 

K
T = DKD −1      (4.13) 

which follows Eqs. 4.10 and 4.11.   

 In the frame of the transformed matrix H , Eq. 4.9 becomes 

dψ Τ

dt
= −H ψ T

     (4.14) 

where  

ψ T = D 1/2 g T .     (4.15) 

The formal solution to Eq. 4.14 is: 

 

ψ T ( t) = V exp( −D λt )V
−1ψ T (0)    (4.16) 

where V  diagonalizes H  (specifically, the columns of V  are comprised of the 

eigenvectors of H ): 
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     V −1 HV = D λ .     (4.17) 

D λ  is the diagonal matrix having the corresponding eigenvalues of H  as elements  

     (D λ )ii = λi .    

With these definitions, Eq. 4.16 can be put into more explicit form.  In Dirac notation: 

ψ
T
(t ) = Vi ψ

T
(0) exp( −λit)

i

∑ Vi     (4.18) 

showing the dependence of the transient  solution on the eigenvalues and eigenvectors of 

H .  The transient droplet distribution is recovered form ψ T
(t)  using Eqs. 4.5 and 4.15: 

  
r 
f ( t) =

r 
g ss + D

−1 / 2 ψ T ( t)     (4.19) 

Finally, because there is no contribution to the net flux from evaporation of drops of size 

d=G+1, the transient drizzle rate, defined here as the flux to the Szilard boundary is: 

J (t) = β
vstep

f
G

(t ) = J
SS

+ β
vstep

D
− 1 / 2 (G , G ) ψ (0) V

j
j

∑ exp( −λ
j
t)(V

j
)

G
 (4.20) 

where D − 1 / 2 (G,G ) = nG  and (V
j
)

G
 is the last component of eigenvector V

j .   

4.2 Calculations 

 To most efficiently implement Eq. 4.20 it is useful to employ the scaled z-

coordinate in terms of which the barrier again depends on only a single parameter, ε  or 

barrier height (Φ* = 2 ε / 3 ).  This enables the transient drizzle rates to be mapped to a 

one-parameter family of curves characterized by ε . 

 

For the calculations that follow we set vstep such the number of sampled droplets 

G (equal to the dimensionality H ) is 100:  vstep = 3 v
c

/ 100 .  Results are presented in 

terms of the transient rate divided by the steady-state rate: 
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J (t )

J
SS

=
f
G

(t)

f
G

(∞)
= 1 +

β
vstep

D −1 / 2 (G ,G ) ψ (0) V
j

j

∑ exp( −λ
j
t )(V

j
)

G

J
SS

  (4.21) 

Further scaling is accomplished by defining the dimensionless time ˜ t = βvstep t  and 

dividing concentrations by the concentration of smallest droplets: n0 ≈ n0

0 .  In these units, 

the elements K, for example, depend only on ε , which determines the population ratios 

appearing in Eqs. 4.4 or 4.10.  The same holds for the reduced nucleation rate (left hand 

side of Eq. 4.21).  Original units are easily restored at the end of a calculation by 

multiplying scaled rates by β
vstep

n0 .  For the initial conditions we set the population of 

clusters to follow Eq. 4.1, which is the cloud droplet distribution in the absence of 

collection and there is no current.  At t =0 collection is turned on and the population 

evolves according to Eq. 4.18, and current according to Eq. 4.21. 

Figure 7 shows the reduced transient rate, J (t) / Jss
, in reduced time units for 

different values of ε .  The calculations are described in Appendix B.  Results from the 

full matrix calculations of Eq. 4.21 (solid curves in Fig. 7) are compared with those 

obtained using a simple lognormal parameterization provided in Appendix B (dashed 

curves).  The parameterization gives excellent results for higher values of the barrier 

height and continues to work reasonably well throughout the activated regime.  

Unfortunately it is the important short time behavior for which the parameterization first 

has difficulty - beginning at about Φ* ≈ 5  as the barrier height is reduced - forcing one to  

return to Eq. 4.21 if very accurate prediction of the early onset of drizzle formation is 

desired in this regime.  Similar difficulties arise when the lognormal parameterization is 

used to approximate transient rates in nucleation theory (8).   
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From the results of Fig. 7 it is seen that the onset of drizzle formation will 

typically occur on time scales that are fractionally much shorter than those required to 

reach steady state.  Thus, when drizzle occurs, it will likely be initiated under transient 

conditions.  This is illustrated further in Fig. 8 which shows the conditions required to 

reach transient drizzle onset rates, J (t) , of 10 −5  to 10 −6
cm −3

s −1, or 1-10 drops per cubic 

meter of cloud per second.   These are estimated rates required for significant drizzle 

formation assuming a radius of 100µm for the collected droplets (5).  The figure shows 

the conditions required to obtain these rates within time periods of 10 min, 20 min, and 1 

hr following the turning on of collection in the model at t =0.  The steady-state contours 

for J (∞) = 10 −5
cm −3

s −1 and  10
−6 cm

−3s
−1  from Fig. 6 are also reproduced (solid curves in 

Fig. 8).  It is seen that as the allowed onset time for observable drizzle formation is 

reduced, the contours shift towards larger values of ε ; conditions that also favor a higher 

steady-state drizzle rate.  In the limit of an infinite onset period, the transient contours 

coincide with those for the same rate at steady state.  Figure 9 shows the collection time, 

defined here as the time required for a newly-formed drizzle droplet to reach a radius of 

50µm, which is the largest size for which Eq. 2.4 applies (Long, 1974).  The calculation 

is described in Appendix A.  The collection time added to the drizzle formation time (Fig. 

8) gives the total time required to form the corresponding flux of 50µm drizzle drops. 

 

5. Summary and discussion 

A new description of the onset of drizzle formation has been developed using kinetic 

potential theory.   Drizzle is described quantitatively as an activated barrier crossing 

phenomenon using methods borrowed from homogeneous nucleation theory.  Two types of 
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calculations were presented:  (1) matrix-eigenvalue calculations of the kinetics of steady-state 

and transient drizzle formation, and (2) comparisons of these with results from simple analytic 

expressions and parameterizations valid in the all-important activated cloud regime.  This ability 

to yield analytic expressions for the steady-state drizzle rate, activation barrier height, and 

critical droplet size is an especially attractive feature of the kinetic potential theory.  More work 

remains to be done, especially in the post-drizzle-initiation regime, but the new methods should 

lead to improved parameterizations for aerosol-cloud interactions and subsequent improvements 

to weather forecast and climate models.    

Modeling of the later stages of drizzle formation will require relaxing both of the 

nucleation boundary conditions employed in Secs. 3 and 4.  Candidate approaches include 

method-of-moments (MOM) type calculations in which lower-order moments of the combined 

cloud and drizzle droplet distributions are tracked in time; similar to the description of vapor 

depletion effects through the integrated treatment of nucleation and growth processes during gas 

to particle conversion (15).  Closure of the moment evolution equations can be obtained using 

quadrature methods developed for aerosol dynamics simulation (22).  Another approach, which 

would yield a sampled representation of the drizzle droplet spectrum, instead of moments, is to 

simply extend the range of the matrix calculations of Sec. 4 using a sampling grid that extends 

beyond the Szilard boundary so as to include much larger droplet sizes.  Both approaches are 

good candidates for future extensions of the present threshold model. 

Of all of the cloud processes successfully integrated into the kinetic potential 

theory of drizzle formation, the role of turbulence remains the least understood.  At its 

present stage of development, the model requires that the turbulence parameter, β cond , the 

underlying cloud droplet distribution, and the collection rate constant, κ , each be 
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prescribed.  Accordingly the present model is incapable of addressing likely correlations 

between β cond  and the cloud droplet distribution, and between β cond  and κ . Once such 

correlations are understood and incorporated, the model should provide a much clearer 

understanding of how cloud turbulence fluctuations couple with drizzle formation. 

 The analysis of Sec. 3 has shown the possibility for two distinct regimes of drizzle 

formation: a kinetically-controlled regime and an activated regime.  It is the activated 

regime of drizzle formation that is best supported by observations.  These include: (1) the 

negative correlation seen between cloud droplet concentration and drizzle rate, and (2) 

the general observation, built into current state-ot-the-art empirical parameterizations, 

that drizzle formation is a threshold phenomenon (4, 18).  Because cloud droplets form 

on aerosol particles, the negative correlation between droplet concentration and drizzle 

rate is manifested through the well-known effect that aerosols have on drizzle 

suppression (7, 2).  The present calculations are fully consistent with both observations in 

the activated regime while predicting very different behavior in the kinetic regime.  This 

raises an interesting paradox for the model: how can the existence of a barrier to drizzle 

actually serve to promote drizzle formation?   While a complete answer requires 

including effects from cloud droplet depletion during collection, considerable insight is 

available from results already obtained:  The barrier regulates the rate at which cloud 

droplets can enter the  

collection regime.  Out of the millions of cloud droplets present in a cubic meter of cloud, 

only 1-10 (per second) are needed to provide an observable drizzle rate.  The barrier 

simply serves to limit the rate at which collection-size droplets can form so that such 

small frequencies of crossing events can be realized.  Droplets that do manage through 
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chance fluctuations to cross the barrier will experience rapid growth to fallout size before 

the effects of depletion set in.  If instead the process was activationless, so that many 

drops of collection size could be initiated at the same time, the subsequent competition 

for cloud water would likely prevent any of them from reaching large size.   

 There is another property of depletion that will tend to favor drizzle formation in 

the activated regime:  To first order the collection process depends on the size of the 

collecting drop but is independent of the smaller cloud droplet size (Eq. 2.4). Thus we 

might expect that during depletion, both N D  and L will be  reduced at a proportional rate 

along the direction of the dashed contour lines of constant averge droplet volume shown 

in Fig. 6.  A comparison of the slopes of the solid and dashed contours in Fig. 6 implies a 

threshold reduction in the drizzle rate with proportional depletion of N D  and L.  Under 

these conditions, the depletion of cloud droplets through collection will exert an 

inhibitory feedback control that quenches drizzle formation in much the same way that 

vapor depletion quenches nucleation, often resulting in oscillatory rates of nucleation and 

growth (15).   While the full dynamics of the later stages of drizzle remain to be 

incorporated in the model, the preceding arguments suggest that depletion will act as a 

nonlinear feedback mechanism for keeping cloud conditions within the activated regime 

and close to or below the threshold for drizzle formation. 

 

This paper has developed the kinetic potential theory and extended its range of 

application beyond its origins in nucleation theory to a system, drizzle formation, for 

which neither temperature nor thermodynamic potential are well defined.  These 

advances will open the door to applications of the kinetic potential theory to other areas 
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of statistical physics, applied mathematics, and perhaps economics, where phenomena 

that can be modeled as sequences of transition rates or transition probabilities arise. 
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Appendix A:  Fluctuations and growth in the collection regime 
 

From Eq. 2.10b: 

 

Φ( v) =
Φ*

2
3

v

vc

−
v

v c

 

 
  

 

 
  

3 

 
 
 

 

 
 
 =

1

3

vc

v 
3

v

vc

−
v

vc

 

 
  

 

 
  

3 

 
 
 

 

 
 
   (A.1) 

and 

dΦ
dv

=
1

v 
1 −

v

v c

 

 
  

 

 
  

2 

 
 
 

 

 
 
      (A.2) 

This last result gives the gradient of the kinetic potential along the droplet volume 

coordinate.  The gradient is proportional to force (but in the opposite direction) and 

should therefore be proportional to the velocity along the volume coordinate in a 

Brownian fluctuation model:   

dv

dt
= ηF       (A.3) 

where η  is mobility.  Long's collection kernel requires that in the collection limit the 

growth velocity be given by Eq. 2.4: 

dv

dt
= κLv 2      (A.4)  

It is interesting to explore the equivalence of Eqs. A.3 and A.4 and determine the 

mobility.  

In the collection limit (v >> vc ) Eq. A.2 is approximated as: 

dΦ
dv

≈ −
1

v 

v

vc

 

 
  

 

 
  

2

= −
κL

β cond v1

2 v 2    (A.5) 
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where the last equality follows substitution from Eq. 2.11b for v
c

2 .   Together Eqs. A.4 

and A. 5 give a linear response relation between the potential gradient and the rate of 

growth: 

dv

dt
= −β cond v1

2 dΦ
dv

= − Dv

dΦ
dv

= κLv 2     (A.6) 

This analysis shows consistency between the collection growth law, the shape of the 

kinetic potential in the collection regime, and the turbulence fluctuations in evaporation 

and growth embodied in the diffusion parameter D
v
. 

It is interesting to notice that Eq. A.6 has the form one would expect by analogy 

with thermodynamic fluctuation theory applied to systems which, unlike the drizzle 

model, have well defined temperature (T) and thermodynamic potential (W).  To 

illustrate, let x denote a general coordinate and set Φ( x ) = W (x ) / kT .  The analogous 

relation to Eq. A.6 is: 

dx

dt
= ηF = −η

dW ( x )

dx
= −ηkT

dΦ (x )

dx
= − D

dΦ( x )

dx
.  (A.7) 

In the first equality F  is force and η  is mobility.  The fourth equality is the well-known 

Einstein relation between diffusion and mobility (23): 

     D = kTη .     (A.8) 

The preceding analysis shows that Eq.A.6 is consistent with the thermodynamic result 

despite the fact that in its derivation neither temperature nor thermodynamic potential 

have been defined.  The preceding argument also demonstrates the validy of equating 

β cond
v1

2  with the diffusion coefficient D
v
.  Nevertheless an important difference remains: 

in the drizzle model fluctuations occur on the energy scale of turbulence - not kT. 
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 The deterministic growth of freshly nucleated particles, once they cross the 

Szilard boundary at v = 3 v c , is described by Eq. A. 2 

dv

dt
= −D

v

dΦ
dv

= − D
v

1

v 
1 −

v

v
c

 

 
  

 

 
  

2 

 
 
 

 

 
 
 = κLv

2 −
D

v

v 
.  (A.9) 

The last equality follows Eq. A.5.  This is a first-order nonlinear differential equation of a 

fairly standard form whose solution is: 

v ( t) =
vc

tanh( d −κLv
c
t )

 .                         (A.10a) 

The constant of integration is obtained from the initial condition, and is for particles 

beginning their growth at the Szilard boundary, v (0) = 3 vc
: 

d = tanh −1
(1 / 3 ) ≈ 0.658 .             (A.10b) 

The time required for droplets to grow from the Szilard boundary to 50µm radius (the 

limit of the collection kernel of Eq. 2.4) is accordingly: 

t50 =
d − tanh −1 (v c / v50 )

κLv c

    (A.11) 

where v50  is the volume of a 50µm radius drop.  This added to the drizzle formation time 

gives the total time required to form a flux of 50µm radius drops. 

 

Appendix B:  A parameterization for the transient barrier crossing rate 
 

As found in nucleation theory, the approach to steady state is described with good 

accuracy in terms of the temporal moments (8): 

  M k = t
k

1 − J (t) / Jss[ ]dt
0

∞

∫ = 1

k + 1
t

k + 1
p(t )dt

0

∞

∫ ≡
µk + 1

k +1
  (B.1) 
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where and J (t)  and J
ss

 are, respectively, the transient and steady-state drizzle rates and 

µ
k
 is the kth moment of p(t) : 

p(t) =
1

J
ss

d

dt
J ( t) .    (B.2) 

M 0 = µ1  is the lag time for drizzle formation.  The second equality of Eq. B.1 follows an 

integration by parts. 

In the case of the nucleation time lag it has been found that a log-normal 

distribution can give a good approximation to P( t)  yielding a parameterization for J (t)  in  

terms of lowest -order moments (8).  A similar result is found for the drizzle 

rate provided the barrier height Φ *  is not too small.  From Eqs. B. 2, 4.8 and 4.21 we 

obtain: 

P(t ) = −
nG

(g ss )G

ψ ( 0) Vj
j

∑ λ j exp( −λ jt)(Vj )G   (B.3) 

which on integration over t yields the moments 

µk = −
nG

(gss ) G

k! ψ ( 0) Vj
j

∑ 1

λj

k (Vj )G    (B.4) 

Approximating P( t)  by the normalized log-normal distribution: 

f
LN

(t) = (ts 2π )−1 exp[ −(ln t − m ) 2 / 2 s 2 ] ,   (B.5) 

which has the moments 

t k f
LN0

∞

∫ (t) = exp[ km + (ks) 2 / 2] ,   (B.6) 

enables the log-normal parameters m and s 2  to be expressed in terms of moments: 

s 2 = ln
µ

2

µ
1

2

 

 
  

 

 
  = ln

2M
1

M
0

2

 

 
  

 

 
      (B.7a) 
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m = −
1
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µ
2

µ
1

4

 

 
  

 

 
  = −

1

2
ln

2 M
1

M
0

4

 

 
  

 

 
     (B.7b) 

 In reduced time units ˜ t = β vstep  t  the transient profile depends only on the non-

dimensional parameter ε  of Sec. 3.  This property enables a parameterization of the log-

normal parameters solely in terms of ε .  Calculations were carried out for the moments 

over the range of barrier height from 5-20 (56 ≤ ε ≤ 900 ) using the matrix method (Eq. 

B.4).  From the moments we obtained s 2  and m from Eqs. B.7 and the fits: 

m (ε ) = 5.80882 − 0.0583523 ε + 0.000451818 ε + 0.296341  ln
2 ε

3

 

 
  

 

 
   (B.8a) 

 s 2 (ε ) = 0.968544 + 0.0281779 ε − 0.000219704 ε − 0.504727  ln
2 ε

3

 

 
  

 

 
  . (B.8b) 

The transient rate behavior is given by Eq. B.2, with the log-normal approximation to 

P(t), as the cumulative distribution: 

J ( ˜ t )

J
SS

≈ 1 −
1

2
erfc

ln( ˜ t ) − m

2s 2

 

 
 
 

 

 
 
 
    (B.9) 

where erfc  is the complementary error function.  Values for m and s 2  are obtained for a 

specified, in-range value of ε  from Eqs. B.8.  Equation B.9 was used to obtain the 

normalized transient rate curves of Fig. 7, which are in very good agreement with the 

results of the full matrix eigenvalue calculation. 
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Figure captions: 
 
1.   Schematic depiction of droplet evaporation and growth process in a turbulent cloud. 

Droplet growth (represented by the downward arrows) occurs at times when the local 

saturation ratio, S, exceeds unity.  When S is less than unity evaporation of the droplet 

occurs.  Such fluctuations in S can result in Brownian-like fluctuations in droplet size. 

2. Top.  Kinetic potential barrier profiles from Eq. 2.10b for several different barrier 

heights.  Droplet size is given in reduced units where v
c
 is the critical droplet volume. 

Bottom.  Schematic depiction of fluxes for condensation (middle row of arrows), 

evaporation (lower row of arrows) and collection (upper row of arrows).  The forward 

and reverse fluxes are balanced at the critical droplet size.  Drizzle formation requires 

barrier crossing, which can only occur due to fluctuations in droplet size. 

3. Monte-Carlo simulation of Brownian fluctuations in the radius of a specified droplet 

for t 1% =0.1s, L=0.5cm3m-3, ND=100.  (a) pre-collection regime, initial droplet radius 

= 10µm; (b) collection regime, initial droplet radius = 40µm.  The deterministic 

(fluctuations averaged out) growth curve in the collection regime is from Eq. A.10. 

4. Steady state barrier transmission rate (cm-3s-1).  Results are for cloud liquid water 

contents of L=0.5 cm3m-3 (three lower pairs of curves) and L=1.0 cm3m-3 (three upper 

pairs of curves).  In each set of curves for fixed L, the values of t1% , increasing from 

left to right, are 0.1, 1.0, and 10s.  The dashed curves are from Eq. 3.9.  The 

corresponding solid curves give the exact results from numerical integration of Eq. 

3.6. 
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5. (a) Universal curves for the steady-state barrier crossing rate in dimensionless 

coordinates (ε, ω ) defined in terms of cloud properties by Eq. 3.11.  Dashed curve is 

the analytic result from Eq. 3.12, solid curve is the exact result from numerical 

integration of Eq. 3.6.  (b) Barrier height vs ε .   

6. Contours of constant steady state barrier crossing rate, J SS  cm
−3s

−1.  Solid curves 

bottom to top: }5.1 ,2 ,5.2 ,3 ,4 ,5 ,6{log 10 −−−−−−−=SSJ .  Results are from 

numerical integration of Eq. 3.6.  Dashed lines, contours of constant mean droplet 

radius in micrometers, values bottom to top: { r = 5, 10, 15, 20, 30µm}. Thick line, 

separation boundary between the kinetic and activated cloud regimes {ε = (3/2)4}.  

Results are for t1%
= 0.1s .  The close contour spacing in the activated regime is 

indicative of threshold behavior. 

7. Transient drizzle rate.  Barrier crossing rate divided by the steady-state rate versus the 

logarithm of the reduced time. Solid curves: full matrix-eigenvalue calculation from 

Eq. 4.21.  Dashed curves: lognormal parameterization of Eqs. B.8 and B.9.  

8. Contours of constant transient drizzle formation rate, J (t) cm −3
s −1 for several drizzle 

waiting times (t) defined as the time since collection is turned on (t =0) .  Solid 

curves: 6)(log 10 −=tJ ; top to bottom: t = 600s, 1200s, 3600s, infinity = steady state.  

Dashed curves: 5)(log 10 −=tJ ; top to bottom: t = 600s, 1200s, 3600s, infinity = 

steady state.   Contours calculated using the parameterization Eqs B.8 and B.9 with 

Eq. 3.12 for the steady-state drizzle rate.  Thick line, separation boundary between the 

kinetic and activated cloud regimes {ε = (3/2)4}.  Results are for t1%
= 0.1s . 
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9. Collection time.  Time required in seconds for a post-critical drizzle embryo (of 

volume v = 3 v c  where vc  is the critical droplet volume) to reach 50µm radius in 

size.  Contours right to left { t 50 = 500 ,  1000 ,  1500 ,  2000 }  from Eq. A. 11.  Results 

are for t
1%

= 0.1s .  This added to the drizzle formation (waiting) times from Fig. 8 

gives the total time required to form a corresponding flux of 50µm radius drops. 

Thick line, separation boundary between the kinetic and activate cloud regimes {ε = 

(3/2)4}.  Results are for t1% = 0.1s . 
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