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[1] A function defined as the size truncation function is
introduced to quantify the effect of truncating the cloud
droplet size distribution on the autoconversion rate. It is
shown that the size truncation function can be used as a
threshold function to represent the threshold behavior
associated with the autoconversion process, providing a
physical basis for the threshold function. Comparisons of
the new threshold function with those ad hoc threshold
functions associated with existing Kessler-type and
Sundqvist-type parameterizations reveals the degree of
approximations of the two empirical parameterizations.
Application of the new threshold function leads to a new
type of autoconversion parameterization that is fully
analytical, physics-based, and removes the ad hoc nature
of threshold representation in existing autoconversion
parameterizations. Citation: Liu, Y., P. H. Daum, and R. L.

McGraw (2005), Size truncation effect, threshold behavior, and a

new type of autoconversion parameterization, Geophys. Res. Lett.,

32, L11811, doi:10.1029/2005GL022636.

1. Introduction

[2] Accurate representation of microphysical processes is
crucial for improving cloud-resolving models and global
climate models [Cotton and Anthes, 1989; Stokes and
Schwartz, 1994]. A key microphysical process that needs
to be parameterized is autoconversion whereby cloud drop-
lets collect each other and become embryonic raindrops
[Kessler, 1969; Manton and Cotton, 1977; Liou and Ou,
1989; Baker, 1993; Liu and Daum, 2004]. As the first step
from cloud to rain, accurate parameterization of the auto-
conversion process is especially important for estimating
the second indirect aerosol effect [Boucher et al., 1995;
Lohmann and Fleichter, 1997; Rotstayn, 2000; Rotstayn
and Liu, 2005].
[3] All the autoconversion parameterizations that have

been developed so far can be generically written as

P ¼ P0T ; ð1Þ

where P is the autoconversion rate; P0 represents the
conversion rate after the onset of the autoconversion
process (rate function hereafter), and T represents the
threshold function describing the threshold behavior of
the autoconversion process. The rate function P0 has been
the primary focus of previous studies, and great progress
has been made over the last few decades [Kessler, 1969;
Manton and Cotton, 1977; Liou and Ou, 1989; Baker,

1993; Liu and Daum, 2004]. See Liu and Daum [2004]
also for discussions and comparisons of different rate
functions.
[4] The threshold function T, however, has received little

attention. The only two available expressions are ad hoc in
nature [Kessler, 1969; Sundqvist, 1978; Del Genio et al.,
1996] (see Section 2 for more discussions). Some simulation-
based parameterizations obtained by fitting simulations of
detailed microphysical models implicitly assume T = 1
[Beheng, 1994; Khairoutdinov and Kogan, 2000], which
can be considered as a special case. Lack of physics behind
these ad hoc threshold functions is a deficiency of existing
autoconversion parameterizations, precluding a sound choice
between these ad hoc threshold functions. Another deficiency
is that many autoconversion parameterizations implicitly
include cloud droplets of all sizes in calculation of the
autoconversion rate. This assumption is incorrect because
the autoconversion process as defined occurs only over a
certain range of droplet sizes. The effect on the autoconver-
sion rate due to the neglect of the truncation of the cloud
droplet size distribution (size truncation effect) has not been
well addressed.
[5] As an extension of our two recent studies that derive

theoretical expressions for the rate function [Liu and Daum,
2004] and the critical radius associated with the Kessler-
type parameterizations [Liu et al., 2004], the objective of
this work is to theoretically derive a threshold function, and
to show that threshold behavior and the size truncation
effect can be equivalently treated. We further show that the
new threshold function is an analytical function of the liquid
water content (L) and the droplet concentration (N). Com-
bining the new threshold function with the Liu-Daum rate
function leads to a new type of parameterization that
removes many deficiencies of existing autoconversion
parameterizations.

2. Existing Threshold Functions

[6] Existing autoconversion parameterizations can be
classified as Kessler-type or Sundqvist-type according to
the way of specifying threshold function T. Briefly, Kessler
[1969] assumed that the autoconversion process exhibits a
threshold behavior as described by a Heaviside step
function,

TK ¼ H L� Lcð Þ; ð2aÞ

where H(L � Lc) is the Heaviside step function indicating
no autoconversion when L is less than the threshold value
Lc. Later Kesser-type parameterizations [Manton and
Cotton, 1977; Liou and Ou, 1989; Baker, 1993; Liu and
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Daum, 2004] replace L with a measure of droplet size such
that

TK ¼ H rm � rcð Þ; ð2bÞ

where rm and rc denotes the driving and critical radii,
respectively. Although it has been agreed that the threshold
process in Kessler-type parameterizations is driven by
some kind of mean radius, the definition of rm differs for
different Kessler-type parameterizations. For example, rm
respectively represents the mean radius of the third
moment (r3) in the parameterization of Manton and Cotton
[1977], mean radius of the fourth moment (r4) in the
parameterizations of Liou and Ou [1989], Baker [1993]
and Boucher et al. [1995], and mean radius of the sixth
moment (r6) in Liu and Daum [2004]. Furthermore, rc had
been tuned in modeling studies until recently when Liu et
al. [2004] related rc to L and N based on the kinetic
potential theory formulated by McGraw and Liu [2003,
2004]. The kinetic potential theory also provides a physical
basis for considering the autoconversion process as a
threshold process.
[7] Sundqvist [1978] proposed another ad hoc threshold

function,

TS ¼ 1� exp � L

Lc

� �2
" #

: ð2cÞ

Del Genio et al. [1996] introduced a slightly different
threshold function

TS ¼ 1� exp � L

Lc

� �4
" #

: ð2dÞ

Equation (2d) exhibits a cloud-to-rain transition sharper
than equation (2c), but still smoother than the Heaviside
function. Sundqvist-type parameterizations have been
recently generalized to explicitly consider N and relative
dispersion (Y. Liu, et al., Parameterization of the auto-
conversion process. part II: Generalization of Sundqvist-
type parameterizations, submitted to Journal of the
Atmospheric Sciences, 2005). The generalized Sundqvist
threshold function is given by

TS ¼ 1� exp � m

mc

� �m� �
¼ 1� exp � r3

rc

� �3m
" #

; ð2eÞ

where m = L/N is the mean mass, and mc = Lc/N is the
critical mass. The exponent m � 0 is introduced to unify
Kessler and Sundqvist-type parameterizations. The latter
approaches the former when m approaches /. However,
there is no physical basis for any of these threshold
functions.

3. New Type of Autoconversion Parameterization

3.1. Liu-Daum Rate Function

[8] Here we recapitulate the derivation of the rate
function presented in Liu and Daum [2004] for later use.
The mass growth rate of a collector drop of radius r falling

through a population of droplets having a cloud droplet
size distribution n(R) is given by [Pruppacher and Klett,
1997]

dm rð Þ
dt

¼ 4prw
3

Z
K r;Rð ÞR3n Rð ÞdR; ð3Þ

where K(r, R) is the collection kernel and rw is the water
density. The autoconversion rate is obtained by further
integrating equation (3) over all collector drops:

PLH ¼
Z

dm

dt
n rð Þdr ¼ 4prw

3

Z Z
n rð Þ � K r;Rð ÞR3n Rð ÞdrdR

ð4Þ

Application of the Long kernel [Long, 1974] for r < 50 mm
[K(r, R) = k2r

6, where k2 � 1.9 	 1011 is in cm�3 s�1, r is in
cm, and K is in cm3 s�1] yields

PLH ¼ kb6N�1L3; ð5Þ

where k = 3
4prw

� 	2

k2 = 1.1 	 1010 (g�2cm3 s�1), and b

depends on the relative dispersion.

3.2. Size Truncation Effect and a New
Threshold Function

[9] All the above equations hold when truncating the
cloud droplet size distribution between rc and rd (rd is the
upper truncation radius), except that equation (5) becomes

P ¼ kb6eN
�1
e L3e ; ð6aÞ

Ne ¼
Zmd

mc

n mð Þdm; ð6bÞ

Le ¼
Zmd

mc

mn mð Þdm; ð6cÞ

be ¼

Zmd

mc

m2n mð Þdm

2
4

3
5

Zmd

mc

n mð Þdm

2
4

3
5

1=6 Zmd

mc

mn mð Þdm

2
4

3
5

Zmd

mc

n mð Þdm

2
4

3
5

�1=3

; ð6dÞ

where md is the upper truncation mass. Introducing the size
truncation function a defined as

a ¼ a6
ba

�1
N a3

L; ð7aÞ

where ay = y/ye (y 
 b, N, and L), we can conveniently
rewrite equation (6a) as

P ¼ akb6N�1L3 ¼ aPLH : ð7bÞ
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To evaluate a, we employ a typical exponential mass
distribution (see Liu et al. [1995], Liu and Hallett [1997],
and Costa et al. [2000] for justification of using this
distribution),

n mð Þ ¼ N

m
exp �m

m

� 	
: ð8Þ

Substitution of equation (8) into equations (6b, 6c, 6d)
yields the following expressions:

aN ¼ e�xc � e�xd ; ð9aÞ

aL ¼ xc þ 1ð Þe�xc � xd þ 1ð Þe�xd½ 
; ð9bÞ

a6
b ¼

1

2

x2c þ 2xc þ 2
� �

e�xc � x2d þ 2xd þ 2
� �

e�xd
� �

e�xc � e�xdð Þ
1þ xcð Þe�xc � 1þ xdð Þe�xd½ 
2

;

ð9cÞ

a ¼ 1

2
x2c þ 2xc þ 2
� �

e�xc � x2d þ 2xd þ 2
� �

e�xd
� �

� 1þ xcð Þe�xc � 1þ xdð Þe�xd½ 
 ð9dÞ

where the normalized upper truncation mass xd =
md

m

� �
, and

the normalized critical mass xc = mc

m

� �
. According to

equation (9d), for a given xd, a is a unique function of xc.
When xd = /, equation (9d) becomes

a1 ¼ 1

2
x2c þ 2xc þ 2
� �

1þ xcð Þe�2xc ð9eÞ

[10] Figure 1 shows a as a function of xc for xd = 1
(dotted), 2 (dashed), 10 (dot-dashed), and / (solid), respec-
tively. It is clear from Figure 1 that a quickly approaches
a/ after xd approaches 10 (Note that the dot-dashed curve
for xd = 10 overlaps the solid curve for a/). Because the
condition that xd = 10, or rd = 101/3r3, is usually satisfied
(e.g., xd = 37 if rd = 50 mm and r3 = 15 mm), it is reasonable
to assume that a = a/. Furthermore, a/ exhibits the
threshold behavior expected for the threshold function.

The equivalence of the size truncation function and the
threshold function is evident from that rc signals the
onset of the autoconversion process. For consistency with
equation (1), a/ is hereafter referred to as the new
threshold function and denoted as TNew.
[11] The new threshold function TNew provides a unified

explanation for, and sheds light on the approximations of
the commonly used ad hoc Kessler and Sundqvist threshold
functions. Figure 2 compares TNew (black) with the Kessler
(green) and Sundqvist (red) threshold functions. The solid
and dashed red curves denote the curves calculated from
equation (2e) with two commonly used values of m = 2, 4,
respectively. It is clear from Figure 2 that the two typical
Sundqvist-type threshold functions approximate Tnew better
than the step function.

3.3. Analytical Expression for xc and the
New Parameterization

[12] Based on the kinetic potential theory on drizzle
formation, Liu et al. [2004] derived an analytical expression
that relates rc to L and N,

rc ¼
3

4p

� �1=3 n1=3b1=6con

k1=6
N1=6L�1=3; ð10Þ

where n = 3.0 	 10�23 (g), and bcon = 1.15 	 1023 (s�1).
See also McGraw and Liu [2004] for an alternative
derivation of equation (10). The critical mass and xc are
then given by equations (11) and (12), respectively:

mc ¼
4prw
3

� �
r3c ¼

rwn
k1=2

b1=2conN
1=2L�1; ð11Þ

xc ¼
mc

m
¼ rwn

k1=2
b1=2conN

3=2L�2 ¼ 9:7	 10�17N3=2L�2: ð12Þ

Figure 1. Size truncation effect as a function of the
normalized critical mass xc.

Figure 2. Comparison of the new threshold function (black
solid) with the Kessler-type threshold function (green solid)
and the Sundqvist-type threshold function with m =
2 (red dotted), and m = 4 (red solid). In general, let
the driving radius rm = br3, then the identity rm = rc leads to
rc/r3 = b, or xc = b3. Therefore, changing from rm = r3 to r4, r6
means shifting xc to the right (b > 1), and the amount of shift
depends on the relative dispersion.
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Substitution of equations (12) and (9e) into equation (7b)
yields a new type of autoconversion parameterization that is
an analytical function of L and N.

4. Further Examination

[13] This section provides further comparisons of the new
type of autoconversion parameterization against the two ad
hoc types that have been widely used. Figure 3 shows the
autoconversion rate as a function of L for N = 50 cm�3

(dashed) and N = 500 cm�3 (solid), respectively. The black
line represent results from the new parameterization, red
line the Kessler-type parameterization with r3 as the driving
radius, and green and purple lines the Sundqvist-type
parameterizations with m = 2, 4, respectively. The blue line
represents the Liu-Daum rate function. It is evident from
Figure 3 that all the parameterizations give almost the same
autoconversion rates as the rate function beyond the auto-
conversion threshold. The autoconversion threshold mani-
fests itself as steep fall when L is less than some threshold
Lc. This is similar to that originally conceived by Kessler
[1969]. However, Lc increases with increasing N instead of
being a constant as assumed by Kessler. Furthermore,
examination of the different curves reveals that Sundqvist-
type parameterizations with smooth transitions approximate
the new theoretical autoconversion rate better than the
corresponding Kessler-type parameterizations.

5. Concluding Remarks

[14] It is shown that the threshold behavior associated
with the autoconversion process can be represented by the
size truncation function, providing a physical explanation
for the threshold function. A new type of parameterization is
obtained by coupling the new threshold function with our
recently derived expressions for the rate function and

critical radius. The new autoconversion parameterization
further reveals the approximations and eliminates many
deficiencies of existing Kessler-type and Sundqvist-type
parameterizations. For example, in contrast to Kessler-type
parameterizations, new parameterization does not require
specification of the driving radius and critical radius.
Furthermore, it is shown that Sundqvist-type paramete-
rizations with smooth cloud-to-rain transitions describe the
autoconversion rate better than Kessler-type parameteriza-
tions with discontinuously sharp transition. The fact that the
autoconversion rate is a product of the rate function and the
threshold function also raises questions as to those parame-
terizations based on fitting numerical results from detailed
microphysical simulations with a simple function.
[15] Three unique features of the new autoconversion

parameterization are worth emphasizing. First, this parame-
terization appears to be the first that theoretically integrates
the threshold behavior of the autoconversion process (or size
truncation effect) into the expression for the autoconversion
rate. Second, its application in atmospheric models should
require no more effort than existing parameterizations.
Finally, unlike existing parameterizations, the new parame-
terization does not have tunable parameters, but is instead
fully determined by physics.
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