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[1] The equilibrium hygroscopic behavior of an aqueous solution drop is investigated
using the Köhler model to relate the radius ratio x � r/rdry, where rdry is the
volume-equivalent dry radius, and the fractional relative humidity h. The Köhler equation
is derived and results obtained from it are presented for three situations: when the
effect of surface tension can be neglected, for h = 1, and for cloud-drop activation. The
exact solution to this equation is presented, as is an accurate approximate solution
for h < 1 that yields insight into the dependences of the equilibrium radius on relative
humidity, surface tension, and dry radius. The approximations made in the derivation of
the Köhler equation are examined, errors in quantities obtained from this equation are
quantified, and the so-called Debye approximation is introduced which allows accurate
parameterization of these errors as a function of rdry. Errors in the radius ratio at
activation obtained from the Köhler equation are up to 20% for ammonium sulfate
solution drops of the size that typically form cloud drops. Attempts to extend the Köhler
model to higher concentrations are examined, and it is seen that the primary cause of
inaccuracy in the model is the assumption that the practical osmotic coefficient is unity.
On the basis of this analysis, a simple two-parameter expression is presented for the
equilibrium radius ratio as a function of h and rdry that is accurate over a wide range
of rdry and for h up to and including unity.
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1. Introduction

[2] Many atmospheric aerosol components of interest are
hygroscopic, meaning that a solution drop composed of one
of these substances readily takes up water with increasing
fractional relative humidity h (�RH/100%). Consequently,
the equilibrium radius r of such a drop exhibits a strong
dependence on h. As r is an intrinsic property of an aerosol
particle, controlling its dynamics, light-scattering, dry de-
position, and the like, knowledge of this dependence is thus
necessary to understand and parameterize many aerosol
processes, both in the atmosphere and in the laboratory.
[3] The radius of an aqueous solution drop containing a

specified mass of given solute is an unambiguous measure
of the solute concentration, and at a given temperature
uniquely determines important properties such as water
activity, index of refraction, density, and surface tension.
This concentration can thus be parameterized by the equi-
librium radius ratio x � r/rdry, where the volume-equivalent
dry radius rdry is defined in terms of the mass of solute in

the drop mdry and the bulk dry density of the (anhydrous)
solute rdry by rdry = [3mdry/(4prdry)]

1/3. This volume-equiv-
alent dry radius is not necessarily equal to the physical
radius of a dried particle, or to a measured quantity such as
the mobility radius (because of nonsphericity of the particle,
the presence of residual water either within the particle or on
its surface, or the presence of voids which would result in
the density being different from that of the bulk solute);
nevertheless, rdry is a physically meaningful measure of the
size of such a particle, and together with specification of
rdry provides an unambiguous measure of the solute mass
[Lewis, 2006].
[4] When exposed to a given relative humidity, a hygro-

scopic aerosol particle will exchange water substance, thus
changing its radius (and radius ratio), until the vapor
pressure of water adjacent to the drop is in equilibrium
with this relative humidity. At a given temperature, this
equilibrium vapor pressure, and thus the equilibrium radius
ratio x, is controlled by two factors: vapor-pressure lowering
due to the presence of the solute, the Raoult effect [Raoult,
1887], and the increase in equilibrium vapor pressure from
that of the bulk solution caused by the curvature of the drop,
the Kelvin effect [Thomson, 1871].
[5] The Raoult effect reduces the water activity of the

solution aw from that of pure water (unity) by an amount
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that increases with increasing solute concentration. The
dependence of aw on solute concentration has been mea-
sured for many substances using bulk solutions that are
undersaturated with respect to the solute, and using solution
drops supersaturated with respect to the solute that are
suspended in an electrodynamic balance or are in a hygro-
scopic tandem differential mobility analyzer. For dilute
solutions the vapor-pressure lowering is nearly directly
proportional to the concentration (Raoult’s Law), although
for higher concentrations this relationship becomes increas-
ingly less accurate.
[6] The Kelvin effect results in an increase in the equi-

librium vapor pressure of water above an aqueous solution
drop by the factor exp{2vws/(RTr)}, where vw is the partial
molal volume of water in the solution, s the surface tension
of the solution-air interface, R the gas constant, and T the
absolute temperature [Tang, 1976]. A characteristic length
scale for the Kelvin effect can thus be defined [Lewis, 2006]
by rs � 2vws/(RT), allowing the Kelvin effect to be
parameterized in terms of the ratio of xs � rs/rdry and x.
The quantities vw and s, and thus rs, depend on the solute
and its concentration, and for most inorganic salts of atmo-
spheric interest rs is an increasing function of solute concen-
tration and thus a decreasing function of aw, or of h for a
given rdry (although for organic solutes this might not be so).
The quantity rs,0 is defined as the value of rs calculated
with vw and s taken as their values at infinite dilution (that
is, of pure water), and the quantity xs,0 is defined similarly as
xs,0 � rs,0/rdry. Both rs and rs,0 depend weakly on temper-
ature, but over a wide range of temperatures rs,0 is approx-
imately equal to 1.1 nm, typically varying by less than 10%
from this value between 0 and 25�C.
[7] The relation between the fractional relative humidity

h in equilibrium with an aqueous solution drop with radius
ratio x and corresponding water activity aw, which incorpo-
rates both the Raoult effect and the Kelvin effect, is given by

h ¼ aw xð Þ exp xs xð Þ
x

� �
; ð1Þ

where the dependences of both aw and xs on concentration
are explicitly written as dependences on x. This relation, for
a given rdry, is essentially a transformation between h and
aw. Contours of constant h as a function of aw and rdry, and
contours of constant aw as a function of h and rdry, are
shown in Figure 1 for solution drops of ammonium sulfate
and sodium chloride (as surface tension measurements have
not been reported for solutions that are supersaturated with
respect to the solute, corresponding to water activities below
0.80 for ammonium sulfate and 0.75 for sodium chloride,
values of rs in this range of aw are determined from
extrapolation of a linear fit of rs versus aw for solutions that
are undersaturated with respect to the solute, as described by
Lewis [2006]). For large drops h and aw are nearly equal,
but with decreasing rdry a given value of aw corresponds to
larger values of h because of the increasing importance of
the Kelvin effect, permitting drops to remain in equilibrium
at values of h greater than unity.
[8] As xs is determined solely by x and rdry for a given

solute and temperature, equation (1) can be formally
expressed as h = h(x, xs). However, it is often desirable
to determine x for a given value of h, as the relative

humidity is typically the controlling variable. Thus it is
necessary to invert the above relation for h to yield an
expression of the form x = x(h, xs), where the dependences
on surface tension and rdry (i.e., the Kelvin effect) are
contained only in xs. For situations in which the Kelvin
effect is negligible, such as sufficiently large drops at values
of h not extremely close to unity (referred to as bulk
solution drops throughout this paper), the exponential factor
in equation (1) is very nearly unity and to good approxi-
mation h = aw(x), which can be inverted (at least in
principle) to yield a relation of the form x = x(aw) = x(h).
Determination of such an expression for x for situations in
which the Kelvin effect is not negligible is not in general
possible, but if this effect is slight it can be treated as a small
perturbation, and an approximation that is accurate over a
wide range of fractional relative humidities and particle sizes
for several substances of atmospheric interest is given by

x h; rdry
� �

� x hð Þ � h= 1� hð Þ
3 rdry=nm
� � ð2Þ

[Lewis, 2006]. With increasing h, however, this approxima-
tion becomes increasingly inaccurate, and the perturbation
analysis ultimately fails.
[9] An alternative approach to determining x for given

h and rdry is discussed below, and a simple but accurate
expression is presented for x as a function of h and xs that is
valid up to and including h = 1. Such an expression has
several advantages: it allows insight into the dependences of
the radius, or radius ratio, on relative humidity and dry
solute mass, provides a formulation by which hygroscopic
growth data can be parameterized, and permits ready
evaluation of the radius of a drop with given mass of a
known solute without the need for more complicated
models in which it must be calculated iteratively and in
which the dependences on relative humidity and dry solute
mass are not clearly identified. Thus this expression may be
useful for global climate models, for instance, where large
spatial scales preclude the need for extreme accuracy and
where computational expense is a consideration.

2. Köhler Model

[10] A widely used model relating the fractional relative
humidity h and the equilibrium radius ratio x of an aqueous
solution drop containing a given mass of solute character-
ized by rdry is that proposed by Köhler [1921]. This model,
which accounts for both the Raoult effect and the Kelvin
effect, is standard textbook fare and has proven quite
successful in explaining many of the phenomena associated
with hygroscopic growth that occur at relative humidities
near or above 100%, such as cloud drop activation. Addi-
tionally, it is the basis for more complicated models often
purported to be valid over a wider range of relative
humidities, and for those that include effects of insoluble
inclusions and other substances [e.g., McKinnon, 1969;
Junge and McLaren, 1971; Hänel, 1976; Pruppacher and
Klett, 1978; Chen, 1994; Shulman et al., 1996; Laaksonen
et al., 1998; Li et al., 1998; Hori et al., 2003; Kulmala et al.,
2004; Tammet and Kulmala, 2005]. Because of its impor-
tance and widespread application, examination of this
model to determine the range of conditions under which it
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may be expected to yield accurate results is warranted.
Hence it is necessary to consider the approximations inher-
ent in the model and the assumptions required, their
satisfaction, and the consequences of the failure of them
to be satisfied, to determine which approximation limits
accurate extension of the model to higher concentrations,
and to quantify the errors resulting from its application.
[11] In the following sections the basic Köhler model is

examined and the Köhler equation, expressed in terms of
dimensionless quantities, is derived. Results obtained from
this model are briefly reviewed, and its accuracy in several
situations is quantified. A theoretical explanation for the
errors resulting from the model in the so-called Debye limit
is given in Appendix A. Although the analysis presented

below is applicable for any inorganic solute that dissociates in
solution, specific examples are provided for aqueous solution
drops of two common atmospheric constituents, ammonium
sulfate and sodium chloride, at 25�C. Not only are these two
substances important in their own right, but results for them
provide estimates for the magnitude of values for other
substances and some indication of the range of values that
might be expected. Althoughmeasurements of water activities
over the entire range considered here have not been reported
(for example, measurements have not been reported for water
activities of ammonium sulfate solutions with molality less
than 0.13 mol kg�1, corresponding to water activities greater
than 0.995), formulations of water activity that extend to lower
concentrations (i.e., higher water activities) based on theory
and on measurements of other physical and chemical proper-
ties have been developed which are expected to be accurate.
The values used here are calculated from the formulations
presented by Clegg et al. [1995] for ammonium sulfate
solutions and Clegg et al. [1997] for sodium chloride solutions.

2.1. Derivation of the Köhler Equation

[12] The water activity aw of an aqueous electrolytic
solution containing a single solute with molality m is given
by [Lewis and Randall, 1961]

aw ¼ exp �fnMwmð Þ; ð3Þ

where Mw is the molar mass of water, n the number of ions
into which it is assumed that each molecule of solute
dissociates upon dissolution, and f the practical osmotic
coefficient, which depends on the solute and its concentra-
tion; departures of f from unity result from nonideality and/
or incomplete dissociation. The molality can be expressed in
terms of x, the density of the solution r, and the apparent
molal volume of the solute Vf (which also depends on
solute type and concentration), the latter quantity being
defined as the difference, per mole of solute, between the
volume of the solution and the volume of the water
(calculated as the mass of water divided by the density of
pure water rw):

Vf ¼ 1

m

1þ mMs

r
� 1

rw

� �
; ð4aÞ

where Ms is the molar mass of the solute. This equation can
be rearranged to yield

1þ mMs

mMs

¼ rVf

Ms

þ 1

mMs

r
rw

; ð4bÞ

where the left-hand side of this equation, the ratio of the mass
of the solution drop to the solutemass, can be also expressed as

1þ mMs

mMs

¼ rr3

rdryr
3
dry

� r
rdry

x3: ð5Þ

Equating (4b) and (5) and solving for m yields

m ¼

1

Ms

rdry
rw

� �

x3 �
rdryVf

Ms

ð6Þ

Figure 1. (top) Contours of constant fractional relative
humidity h as a function of water activity aw and dry
radius rdry and (bottom) contours of constant aw as a
function of h and rdry, calculated from equation (1) for
solution drops of ammonium sulfate and sodium chloride.
Contours of aw = 0.99 end at values of h corresponding
to activation.
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(and demonstrates that solute concentration can be parameter-
ized by x).
[13] Substitution of equations (3) and (6) into equation (1)

and taking the logarithm of both sides yields

ln h ¼ xs
x
� c3f

x3 �
rdryVf

Ms

; ð7Þ

where the constant c � [n(Mw/Ms)(rdry/rw)]
1/3 is near unity

for most substances of interest, being equal to 0.90
for ammonium sulfate (n = 3) and 1.10 for sodium chloride
(n = 2), and intermediate to these two values for many
inorganic solutes: 0.94 for ammonium bisulfate (n = 3),
0.93 for letovicite [(NH4)3H(SO4)2] (n = 6), 0.92 for ammo-
nium nitrate (n = 2), 1.01 for ammonium chloride (n = 2),
1.01 for sodium sulfate (n = 3), 1.03 for sodium bisulfate
(n = 3), and 0.99 for sodium nitrate (n = 2). Equation (7)
is exact, so long as the dependences of xs, f, and Vf on
solute concentration are taken into account.
[14] To arrive at what is typically called the Köhler

equation several approximations are made, each based on
the assumption that the solute concentration is low and thus
that x is large and h is near unity. First, the quantity ln h is
approximated as �(1 � h). Next, the values of vw and s are
taken as their values for pure water, with the result that xs is
replaced by xs,0 (such an approximation is expected to be
accurate for inorganic solutes, although it might not be for
surface-active substances, which even in very low concen-
trations can drastically reduce the surface tension of the
solution-air interface). Next, the quantity rdryVf/Ms is omitted
as being negligible compared to x3, the ratio of these
quantities being the one minus the fraction of the volume of
the solution occupied by the water, calculated as the mass of
the water divided by the density of pure water (as the
volume of the solution is not necessarily equal to the sum of
the volumes of the water and of the solute, calculated as
their masses divided by their respective densities, the ratio
of rdryVf/Ms to x3 is not necessarily the same as the volume
fraction of the solution occupied by the solute). Finally, f is
taken as unity, its limiting value for infinitely dilute
solutions. This approximation, together with the assumption
that ln h can be accurately approximated by �(1 � h),
implies that the decrease in the water activity because of the
presence of the solute (i.e., the vapor-pressure lowering) is
equal to number of moles of ions per mole of water.
[15] With these approximations equation (7) can be

written as

� 1� hð Þ ¼
xs;0
x

� c3

x3
; ð8Þ

often termed the Köhler equation, solution of which yields
the equilibrium radius ratio x solely in terms of h and the
dimensionless constants xs,0 and c, of which only xs,0
depends on rdry and only c depends on the solute. The first
term on the right hand side of this equation, which contains
the dependence on surface tension, is denoted the Kelvin
term and the second term the Raoult term, their ratio
quantifying the importance of the Kelvin effect to the
equilibrium relative humidity.

[16] Although it is difficult to draw general conclusions on
the accuracy of the Köhler model over a wide range of drop
size, solute type, and fractional relative humidity, results are
presented below for three situations, each of different relative
importance of the Kelvin term to the Raoult term: when the
Kelvin effect is of negligible importance (i.e., bulk solution
drops); h = 1; and activation, which occurs when h attains the
maximum value for which equilibration can occur. For
situations in which the Kelvin effect can be neglected, x
can be determined from equation (8) as

x ¼ c

1� hð Þ1=3
: ð9Þ

As h approaches unity, the Kelvin term becomes increas-
ingly important, and for h equal to unity, when the Kelvin
term and Raoult term are equal in magnitude, the radius
ratio x1 can be obtained from equation (8) as

x1 ¼
c3

xs;0

 !1=2

; ð10Þ

and the radius r1 is given by

r1 ¼
c3r3dry

rs;0

 !1=2

: ð11Þ

As h increases above unity the drop becomes supersaturated
with respect to water vapor (with supersaturation s� h � 1),
and x increases until at a value of h, denoted hact, the drop is
said to activate; for larger values of h equilibrium is not
possible, and the drop continues to grow without bound. At
activation the magnitude of the Kelvin term is three times
that of the Raoult term, and according to equation (8) the
radius ratio xact is given by

xact ¼
3c3

xs;0

 !1=2

¼ 31=2x1; ð12Þ

and the radius ract by

ract ¼
3c3r3dry

rs;0

 !1=2

¼ 31=2r1: ð13aÞ

The supersaturation at activation, also known as the critical
supersaturation, is obtained from equation (8) as

sact ¼ 2
xs;0
3c

� �3=2

� 2
rs;0

3crdry

� �3=2

¼ 2

3

rs;0

ract
: ð14aÞ

Thus, on a log-log plot, graphs of r1 versus rdry and ract
versus rdry are straight lines with slope 3/2, and a graph of
sact versus rdry is a straight line with slope �3/2; these are
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shown for solution drops of ammonium sulfate and sodium
chloride in Figures 2, 3, and 4, respectively.
[17] Equations (13a) and (14a) can also be written in a

form that readily allows calculation as

ract ¼ rdry
rdry

r
^

� �1=2

; ð13bÞ

where r
^

= rs,0/(3c
3) is approximately equal to 0.51 nm for

ammonium sulfate and 0.27 nm for sodium chloride, and

sact ¼
r̂

rdry

� �3=2

; ð14bÞ

where r̂ = 22/3rs,0/(3c) is approximately equal to 0.65 nm for
ammonium sulfate and 0.53 nm for sodium chloride.
Additionally, equation (14a) can be inverted to yield rdry,c,
the value of the dry radius of the smallest particle that will
activate at given supersaturation:

rdry;c ¼
rs;0

3c

2

s

� �2=3

� 0:58 nm

c � s2=3
: ð15Þ

Thus, for example, at (0.1, 0.5, 1.0)% supersaturation, for
which s = (0.001, 0.005, 0.01), activation will occur for
ammonium sulfate drops with rdry > (65, 22, 14) nm and
sodium chloride drops with rdry > (53, 18, 11) nm.

2.2. Solution and Approximate Solutions to the Köhler
Equation for h < 1

[18] For h less than unity, equation (8) can be expressed
in an alternative form though introduction of the scaled
radius ratio z = (x/c)(1 � h)1/3 and the scaled Kelvin factor
e = (xs,0/c)/(1 � h)2/3 as

z3 þ ez2 � 1 ¼ 0; ð16Þ

where the second term in the equation is the Kelvin term
and the third term is the Raoult term (similar analysis could
also be applied to the situation h 	 1, thus including
situations pertinent to cloud drop activation). The quantity e,
which is an increasing function of h and increases without
bound as h approaches unity from below, characterizes the
importance of the Kelvin effect; for e 
 1 this effect is
unimportant, but as e approaches unity this effect becomes
increasingly important.
[19] Although not apparent in equation (8), for which x

depends upon the three quantities h, xs,0 and c, the solution
to equation (16) depends only upon e. As this equation is a
cubic, it can be solved analytically for z(e), from which x
can be obtained as an explicit function of h for given rdry.
For any positive e greater than its minimum value xs,0/c
(equivalently, for any h such that 0 < h < 1) there is one real
positive solution given by

z ¼ �e
3

þ 1

2
� e3

27

� �
þ 1

4
� e3

27

� �1=2
" #1=3

þ 1

2
� e3

27

� �
� 1

4
� e3

27

� �1=2
" #1=3

; ð17Þ

Figure 2. (top) Radius at h = 1, r1, as a function of dry
radius rdry for solution drops of ammonium sulfate and
sodium chloride, and values according to the Köhler model
given by equation (11). (bottom) Fractional error in r1 (or in
x1) calculated from the Köhler model given by equation (27)
and in the Debye limit given by equation (29).

Figure 3. (top) Radius at activation ract as a function of
dry radius rdry for solution drops of ammonium sulfate and
sodium chloride, and values according to the Köhler model
given by equation (13a). (bottom) Fractional error in ract (or
in xact) calculated from the Köhler model and that in the
Debye limit given by equation (30).
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5 of 17

D03205



shown in Figure 5. However, this expression, although
exact, provides little insight into the functional dependence
of z upon e (or of x upon h and rdry), and approximate
solutions prove easier to use and can be extended to
situations in which the basic assumption made in the
derivation of the Köhler equation (i.e., low solute
concentration) is not satisfied.
[20] Solutions to equation (16) can readily be obtained for

the limits e
 1 (when the Kelvin effect is unimportant) and
e � 1 (h very near unity). In the first limit z = 1, which is
equivalent to equation (9), x being a power law in (1 � h)
with exponent �1/3, and in the second limit z = e�1/2,
which yields the value given by equation (10) for x1;
solutions for both of these limits are also shown in
Figure 5. The lowest-order correction to the solution of
equation (16) in the limit e 
 1 can be obtained by
assuming z = z0 + ez1 + . . ., where z0 = 1 and each
successive term contains a higher power of e. This proce-
dure results in z1 = �1/3 and thus z � 1 � e/3, or
equivalently,

x � c

1� hð Þ1=3
�

rs;0=rdry
� �
3 1� hð Þ ; ð18Þ

consistent with the lowest-order Kelvin correction to the
radius ratio [Lewis, 2006] for a power law of the form given
by equation (9) for h near unity; compare equation (2). This
expression for z, shown in Figure 5, agrees with the exact
solution to within a few percent for e < �0.5, but the

agreement rapidly diminishes with further increase in e.
This procedure could be continued to yield higher-order
corrections, but such an attempt would be of little value
because of the approximations that were made to obtain the
Köhler equation.
[21] Approximate solutions can be found that apply over

the entire range of positive e (h < 1) and that have the
correct limit for large e and the correct limit and lowest-
order correction for small e, but good accuracy can be
obtained by simpler expressions, such as z = (1 + en/2)�1/n

for n > 0. This expression, which yields the correct limits
for both e 
 1 and e � 1, can be quite accurate: for n = 2.5
it agrees with the exact solution to within 1.5%, and for n = 3
(shown in Figure 5) to within 6%, for all positive e. The
approximate solution for n = 3, z = (1 + e3/2)�1/3, is used
here because of its accuracy and simplicity, and because it
can readily be extended to situations for which the basic
assumption used to derive the Köhler equation is not
satisfied, as is done below. Although this expression does
not provide the correct functional dependence on rdry of the
lowest-order correction given by equation (18), this is not of
great consequence, as this correction is relatively unimpor-
tant in situations for which it is sufficiently small that
higher-order corrections are not required. In terms of the
radius ratio this expression can be written as

x ¼ c

1� hþ xs;0
c


 �3=2� �1=3 � c

1� hþ xs;0
x1


 �1=3 ; ð19Þ

where x1 is the value of the radius ratio at h = 1 given by
equation (10) for the Köhler model.

Figure 5. (top) Solution z (scaled radius ratio) to
equation (16) for h < 1 as a function of scaled Kelvin
factor e. Also shown are the limiting solution and lowest-
order correction for small e, the limiting solution for large e,
and approximate solution (1 + e3/2)�1/3. (bottom) Fractional
error in the limiting and approximate solutions.

Figure 4. (top) Supersaturation at activation sact as a
function of dry radius rdry for solution drops of ammonium
sulfate and sodium chloride, and values according to the
Köhler model given by equation (14a). (bottom) Fractional
error in sact calculated from the Köhler model and in the
Debye limit given by equation (A18).
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[22] The expression for x given by equation (19) satisfies
the equation

� 1� hð Þ ¼
xs;0
x

x
x1

� �
� c3

x3
; ð20Þ

which differs from equation (8) only by the factor [x/x1] in
the Kelvin term. This factor, equal to ze1/2, is less than unity
for h < 1, but as the Kelvin term is important only when x is
nearly equal to x1 (when the factor is nearly equal to unity),
the consequences of the approximation that this factor is
unity are slight (Figure 5). In essence, equation (19) follows
from the assumption that the Kelvin term evaluated at x1
applies to all situations. As x < x1 for h < 1, evaluation of
the surface tension term at x1 results in an underestimation
of the Kelvin correction and thus an overestimation of the
radius (and radius ratio) in this range of relative humidity
(and an underestimation for h > 1). The result of this
assumption is that the expression for x in terms of h is the
same as that given by equation (9) for which the Kelvin
effect is neglected, but with h decreased by xs,0/x1, which is

equal to the Kelvin correction at h = 1; for c = 1, this
decrease is approximately equal to (0.04, 0.01, 0.003,
0.001) for rdry = (10, 25, 50, 100) nm. A graph of x versus h
according to equation (19) is obtained from that for which
the Kelvin correction is neglected by shifting the curve to
the right by a constant amount xs,0/x1; as the graph of x
versus h is fairly flat for h appreciably less than unity (when
the Kelvin effect can be neglected), such a horizontal shift,
even though much greater than that due to the Kelvin effect
at these values of h, results in very little error.

2.3. Critical Examination of the Köhler Equation

[23] Quantification of the approximations made in the
derivation of the Köhler equation, equation (8), from the
exact expression, equation (7), allows determination of
the range of conditions for which the Köhler equation can
be expected to yield accurate results and identification of
which approximation limits extension of the model to more
concentrated solutions and to values of h farther from unity.
This process is achieved by rewriting equation (7) as

� 1� hð Þ ln h

� 1� hð Þ

� �
¼

xs;0
x

xs
xs;0

" #
� c3

x3
f 1�

rdryVf

Msx3

� ��1
" #

;

ð21Þ

where the factor in brackets on the left-hand side of the
equation is denoted Fh, the factor in brackets in the Kelvin
term is denoted FK, and that in the Raoult term FR, which
can be written as the product of two factors, Ff � f and

Fx � 1�
rdryVf

Msx3

� ��1

: ð22Þ

Although Fh depends on h, the other factors depend only on
solute concentration (for given solute and temperature),
which can be parameterized in terms of the water activity
aw. Equation (21) is exact; the Köhler equation follows from
the assumption that each of the factors Fh, FK, and FR is
equal to unity. However, it is not the individual factors Fh,
FK, and FR that determine the accuracy of results obtained
using the Köhler model, but the differences of the ratios
FR/Fh and FK/Fh from unity, where in computing these
ratios for a given solute the value of aw corresponding to a
given h, which depends on the value of rdry according to
equation (1), must be used. Of course the relative
importance of the terms themselves must be considered;
for instance, in situations for which the Kelvin effect is
negligible the factor FK, and thus the ratio FK/Fh, has
virtually no effect on the equilibrium radius ratio.
[24] These factors are displayed in Figure 6 for solution

drops of ammonium sulfate and sodium chloride (values of
FK � rs/rs,0 in the range of aw corresponding to solutions
that are supersaturated with respect to the solute are deter-
mined as for Figure 1). Each of the several factors is equal
to unity for aw (or h, in the case of Fh) equal to unity, but
whereas with decreasing aw (or h) both FK and Fh initially
slowly increase (and continue to increase monotonically),
FR initially decreases extremely rapidly (this behavior
typically holds for most inorganic solutes, although for
organic solutes the surface tension, and thus FK, might
initially decrease rapidly with decreasing aw). As Fx

Figure 6. Factors Fh, FK, FR, Fx, and Ff quantifying the
approximations made in deriving equation (8) as a function
of fractional relative humidity h (for Fh) or water activity aw
(for other factors) for solution drops of ammonium sulfate
and sodium chloride. Each factor is equal to unity for
abscissa equal to unity.

D03205 LEWIS: AN EXAMINATION OF KÖHLER THEORY
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increases monotonically with decreasing aw, the initial
decrease in FR is due to Ff (i.e., f). This decrease results
from the electrolytic nature of the solution [Debye and
Hückel, 1923; Debye, 1924] and is quite rapid: as aw
decreases from unity to 0.995 (corresponding to molality
0.12 mol kg�1 for ammonium sulfate solutions and
0.15 mol kg�1 for sodium chloride solutions), f decreases
from unity to 0.77 and 0.93, respectively, for these
substances. With continued decrease in aw, f continues to
decrease for both substances until reaching a minimum near
0.62 at aw � 0.94 for ammonium sulfate solutions and near
0.92 at aw � 0.99 for sodium chloride solutions, although
with further decrease in aw the behavior of f differs
between these two substances: at aw = 0.80, f is near 0.70
for ammonium sulfate solutions and near 1.21 for sodium
chloride solutions. The dependence of f on solute
concentration thus depends strongly on the solute.
[25] Numerous formulations for this dependence have

been presented (that of Pitzer [1973] probably being the
best known), but although based in theory these are to large
extent empirical, typically containing several terms in
powers of molality or some other measure of concentration.
The extremely rapid initial decrease in f from unity and
further nonuniform behavior with increasing concentration
precludes realization of a simple parameterization for this
quantity, complicating attempts to find a parameterization
for x as a function of h and rdry that is accurate over a wide
range of h up to very near unity.
[26] The assumption that the practical osmotic coeffi-

cient f is equal to unity (i.e., Ff = 1) is clearly the limiting
one with regard to the accuracy of the Köhler model (Figure
6), and as this assumption is approximately satisfied only
for an extremely narrow range of water activities near
unity, it thus restricts the conditions for which this model
can be accurately applied to extremely dilute solutions.
For example, for ammonium sulfate solution drops with
aw > 0.95 the factors FK and Fx are greater than unity by
less than 4% and 10%, respectively, whereas Ff is less
than unity by up to nearly 40%. For sodium chloride
solution drops over this range of aw the corresponding
factors FK and Fx are greater than unity by less than 3%,

whereas Ff is less than unity by up to 8%. Thus in many
situations inaccuracies resulting from the Köhler model
can be estimated to good approximation as being due
only to the difference of f from unity, and the range of
situations for which the model can yield accurate results
could be extended through consideration of a modified
Köhler equation of the form

� 1� hð Þ ¼
xs;0
x

� c3f
x3

; ð23Þ

which differs from equation (8) only in the factor f in
the last term.
[27] Other investigators have noted that the primary quan-

tity determining the relationship between h and x for drops at
high relative humidity is c3f, which is often termed B and
referred to as the particle composition parameter [Fitzgerald
et al., 1982], the hygroscopicity parameter [Hudson and Da,
1996], or the hygroscopicity [Ghan et al., 2001]; the hygro-
scopicity parameter k of Petters and Kreidenweis [2007],
equal to [c3/(nmMw)]{exp[f(nmMw)]�1} for a single solute,
is also equal to c3f for low concentrations. However, none of
these quantities is a constant because of the dependence of f
on solute concentration (and hence on x), thus limiting their
use in characterizing the hygroscopicity of a given solute
(additionally, any such characterization is based on the
assumption that xs is nearly independent of composition
and can be accurately approximated by xs,0, but although this
may be true for inorganic solutes, for which small concen-
trations do not appreciably change the surface tension, even
small amounts of surface-active organic substances can
drastically reduce the surface tension and thus xs). Because
of the strong dependence of f upon x, equation (23) is of
limited value, as it is not easily amenable to analytic inves-
tigation and cannot be inverted to yield a simple expression of
the form x = x(h, xs). However, for extremely dilute sol-
utions, for which the rapid decrease in f from unity with
increasing concentration can be accurately parameterized in
terms of x (the Debye limit), it is possible to obtain estimates
for the errors in the Köhler model; these are derived in
Appendix A and are presented below.

2.4. Inaccuracies Resulting From the Köhler Model

[28] In this section the consequences of the approxima-
tion that the several F factors are equal to unity are
examined and errors resulting from this approximation are
quantified for the three situations considered throughout this
paper: bulk solution drops, h = 1, and activation. The
fractional error in the equilibrium radius ratio, Dx/x, where
Dx is the radius ratio calculated according to the Köhler
model minus the actual value, is presented, as are the
fractional errors in the critical value of the supersaturation
for given rdry, and in the critical value of the dry radius for
given s, for the Debye limit obtained in Appendix A.
[29] For bulk solution drops the equilibrium radius ratio

can be obtained from equation (21) as

x ¼ c

1� hð Þ1=3
FR

Fh

� �1=3

; ð24Þ

Figure 7. Practical osmotic coefficient at h = 1, f1, as a
function of dry radius rdry for solution drops of ammonium
sulfate and sodium chloride, and approximation given by
Debye limit, equation (A10).
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with corresponding fractional error given by

Dx
x

¼ Fh

FR

� �1=3

�1; ð25Þ

where FR is evaluated at aw = h. As the ratio Fh/FR varies
from 0.74 to 1.51 for ammonium sulfate and from 0.70 to
1.09 for sodium chloride over the respective ranges of h for
which solution drops exist, the fractional error in x varies
from �10% to +15% for ammonium sulfate and from
�11% to +3% for sodium chloride. Even over the range
0.90 < h < 0.99 the fractional error in x exceeds 10% for
ammonium sulfate solution drops, primarily because of the
decrease of f to near 0.7 within this range.
[30] For h = 1 the equilibrium radius ratio x1 can be

obtained from equation (21) as

x1 ¼
c3

xs;0

 !1=2
FR

FK

� �1=2

; ð26Þ

with fractional error given by

Dx1
x1

¼ FK

FR

� �1=2

�1 ð27Þ

(Figure 2), where both FR and FK are evaluated at the water
activity corresponding to h = 1 for the given rdry according
to equation (1). As when h = 1 the water activity is near
unity for rdry greater than �20 nm (Figure 1), FK is very
near unity and the difference of FR from unity is due mainly
to the practical osmotic coefficient at h = 1, f1, shown as a
function of rdry in Figure 7 for ammonium sulfate and
sodium chloride solution drops. Thus for drops in this size
range equation (27) can be accurately approximated as

Dx1
x1

� 1

f1=2
1

� 1; ð28Þ

with the approximation becoming more accurate with
increasing rdry. In the Debye limit this quantity (Appendix A)
is given by

Dx1
x1

¼ ~r1
rdry

� �3=4

ð29Þ

(also shown in Figure 2), where ~r1 � 5.0 nm for ammonium
sulfate solutions and 1.0 nm for sodium chloride solutions.
[31] As activation occurs when h takes its maximum

value for which equilibrium is possible, expressions for
xact, sact, and rdry,c, and for the fractional errors in these
quantities, canbedeterminedbydifferentiationofequation (21)
with respect to x (the fractional error in xact is shown in
Figure 3, and sact and its fractional error in Figure 4).
However, these expressions, which involve FR, FK, and
their derivatives with respect to x, are cumbersome and
must be evaluated at the water activity corresponding to
activation, which must be determined iteratively. Because
aw is very near unity at activation for a wide range of drop
sizes, most of the inaccuracies in xact, sact, and rdry,c are due
solely to the assumption that fact (shown in Figure 8 as a
function of rdry for solution drops of ammonium sulfate and
sodium chloride) is equal to unity. For example, activation
occurs at supersaturations less than 2% (i.e., hact < 1.02) for
solution drops of these substances with rdry > 10 nm, thus
Fh is greater than unity by less than 1%, and FK and Fx by
less than 1% and 2% for ammonium sulfate, and less than
0.5% and 0.3% for sodium chloride, whereas fact takes
values as low as 0.71 for ammonium sulfate and 0.93 for
sodium chloride (Figure 8). Hence in considering activation
the factors Fh, FK, and Fx can be taken as unity (as noted
above, this might not be true for drops containing surface-
active substances, for which FK could be considerably less
than unity even for low concentrations), and FR can be
taken as equal to Ff, with little loss in accuracy. Such a
procedure, equivalent to considering equation (23) as exact,
allows xact, sact, and rdry,c and their fractional errors to be
expressed in terms of only f and its derivative at activation
(Appendix A).
[32] In the Debye limit the fractional errors take an

especially simple form that clearly illustrates their depend-
ences on rdry (Appendix A). That in xact is given by

Dxact
xact

¼ ~ract
rdry

� �3=4

ð30Þ

(Figure 3), where ~ract � 2.8 nm for ammonium sulfate
solutions and 0.58 nm for sodium chloride solutions, and
that in sact (Figure 4) is opposite in sign and two thirds the
magnitude of that in xact. Similarly, the fractional error in
rdry,c for given supersaturation is given by

Drdry;c

rdry;c
¼ � s

~s


 �1=2
; ð31Þ

where ~s � 0.55 for ammonium sulfate and 4.4 for sodium
chloride; at 1% supersaturation (s = 0.01) this corresponds
to 14% for ammonium sulfate and 5% for sodium chloride.
Inaccuracies resulting from the Köhler model decrease with
increasing rdry for sufficiently large drops (Figures 2–4),

Figure 8. Practical osmotic coefficient at activation fact as
a function of dry radius rdry for solution drops of
ammonium sulfate and sodium chloride, and approximation
given by Debye limit, equation (A11).
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but they may still be appreciable, even for solutions as
dilute as those at activation. For instance, according to
equations (13) and (14), at typical maximum supersatura-
tions in clouds of 0.1–0.5%, ammonium sulfate particles
with dry radii of �20–65 nm activate to form drops with
radii �150–750 nm, but from Figure 3 it is seen that the
Köhler model overestimates these activation radii by 10–
20%.
[33] One implication of these results is that the Köhler

model can be used to accurately calculate ract from rdry using
equation (13a), sact from rdry using equation (14a), or rdry,c
from s using equation (15), if instead of n an ‘‘effective’’ value
neff is used (Appendix A). For calculation of ract from rdry
using equation (13a), neff � 3[1–(7.2 nm/rdry)

3/4] for ammo-
nium sulfate and 2[1–(1.5 nm/rdry)

3/4] for sodium chloride in
the Debye limit, corresponding to (1.61, 2.30, 2.58) and (1.71,
1.86, 1.91), respectively, for drops with dry radius (20, 50,
100) nm. Similarly, for calculation of sact from rdry using
equation (14a), neff � 3[1–(4.2 nm/rdry)

3/4] for ammonium
sulfate and 2[1–(0.85 nm/rdry)

3/4] for sodium chloride in the
Debye limit, corresponding to (2.07, 2.53, 2.72) and (1.81,
1.91, 1.94), respectively, for drops with dry radius (20, 50,
100) nm; these values are similar to those used by Gerber et al.
[1977], 2.47 and 1.93. Finally, for calculation of rdry,c from s
using equation (15), neff � 3[1–(s/0.061)1/2] for ammonium
sulfate and 2[1–(s/0.49)1/2] for sodium chloride in the Debye
limit, corresponding to (2.62, 2.46, 2.14) and (1.91, 1.87,
1.80), respectively, for supersaturations of (0.1, 0.2, 0.5)%.
From Figures 3 and 4 it is seen that the fractional errors in the
Debye limit at activation are quite accurate for rdry as low as
50 nm, although they are slightly overestimated at 20 nm,
resulting in values of neff that are slightly underestimated at
this size.

2.5. Extensions of the Köhler Model

[34] Attempts have been made to extend the range of
validity of the Köhler model to higher concentrations by
modification of one or more of the terms in equation (8), or
equivalently by different choices of F factors. To be useful,
such modifications should apply to different solutes and
should retain the simplicity of the basic Köhler equation,
amenable to analytic investigation, as otherwise there would
be no advantage over using equation (1) to determine x from
h for a given rdry. Retention of ln h instead of �(1 � h) in
equation (7), in effect resulting in higher-order terms on the
right-hand side of this equation from expansion of an
exponential, gains little, as it leads to a more complicated
equation and other inaccuracies typically dominate that
of Fh.
[35] Most prior approaches have focused on the Raoult

term (i.e., the factor FR). It is typically assumed that the
reduction in water activity due to the presence of the solute
is equal to the moles of ions per mole of water or to the
mole fraction of the ions, and that volume additivity of
water and solute holds (that is, that the volume of the
solution is equal to the sum of the volumes of the water
and solute, calculated by their masses divided by their
respective densities). While these assumptions seem rea-
sonable and lead to equation (8) for low concentrations,
different results are obtained when such assumptions are
used to extend the treatment to higher concentrations.

[36] The assumption that the reduction in water activity is
equal to the ratio of the number of moles of ions to moles of
water (a quantity that is directly proportional to the molal-
ity), and the assumption that it is equal to the mole fraction
of the ions, both yield f = 1 to lowest order in m, but to next
order the first assumption implies f = 1 + nmMw/2 and the
second one f = 1 � nmMw/2. As f decreases from unity
with increasing concentration initially as m1/2 (Appendix A),
neither of these assumptions yields the correct dependence
of the vapor-pressure lowering on concentration or captures
the rapid decrease in f from unity, which is the main source
of inaccuracy in results obtained from the Köhler model.
Thus extensions of this model to more concentrated sol-
utions based on either of these assumptions cannot be
expected to yield accurate results.
[37] The assumption of volume additivity implies that the

apparent molal volume of the solute Vf is equal to Ms/rdry,
and thus that rdryVf/Ms is equal to unity, independent of
solute concentration (and temperature). Although this
assumption may result in small error in calculation of the
density, it is typically not satisfied, especially for dilute
solutions. For instance, as aw decreases from very nearly
unity to 0.99 to 0.97 at 25�C, Vf increases from
approximately 52 to 56 to 60 cm3 mol�1 for ammonium
sulfate solutions (calculated using the fit given by Albright
et al. [1994]), corresponding to an increase in rdryVf/Ms of
0.70 to 0.75 to 0.80, and from approximately 16.6 to 17.6 to
18.4 cm3 mol�1 for sodium chloride solutions (calculated
using the fit given by Chen et al. [1980]), corresponding to
an increase in rdryVf/Ms of 0.61 to 0.65 to 0.68. Results
vary for different substances, and Vf may even be less than
zero (as for Na2CO3, MgSO4, and CaCO3 at extremely low
concentrations at 25�C), although for most solutes of
interest Vf increases with increasing concentration. The
assumption of volume additivity implies Fx = x3/(x3 � 1)
and results in replacement of the expression x3 � rdryVf/Ms,
which was taken as x3 in the derivation of the Köhler
equation, by x3 � 1, leading to a quartic equation for x.
Such an approximation would be more accurate for
situations in which the quantity rdryVf/Ms were near unity,
but overall there is little to be gained by this approach, and
whether x3 or x3 � 1 is used is of little consequence when
the dominant error in the Köhler model is the assumption
that f is equal to unity.

3. Parameterization of the Radius Ratio in Terms
of Relative Humidity and Dry Radius

[38] Obtaining a simple expression for the equilibrium
radius ratio x = x(h, xs) that is accurate up to and including
h = 1 for a wide range of rdry (i.e., xs) is complicated by two
primary factors: the rapid increase in the practical osmotic
coefficient toward unity as aw approaches unity (Figure 6),
and the increase in the importance of the Kelvin effect as
h approaches unity. The values of h at which these effects
occur depends strongly on the dry radius; for example, as
rdry for ammonium sulfate solution drops increases from 20
to 50 to 100 nm, the value of h at which the Kelvin term is
25% of the Raoult term increases from 0.88 to 0.97 to 0.99.
For sufficiently small rdry, the range of water activity
corresponding to h < 1 is sufficiently far from unity
(Figure 1) that f varies smoothly, allowing accurate (but
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empirical) parameterization; however, for larger drops pa-
rameterization becomes difficult because of the interplay of
the above factors.
[39] In situations for which the Kelvin effect can be

neglected the expression for the radius ratio x = x(h, xs) should
reduce to a function only of h. One such expression which is
accurate for h less than �0.9 is a power law in (1 � h)
with exponent in the range �0.2 to �0.3 (the exact value
depending on solute), a form first used by Keith and Arons
[1954] for sea salt aerosol particles and later by Kasten
[1969] for other aerosol particles. This empirical expression
in effect assumes that FR/Fh can be accurately approximated
by a power law in (1 � h) with an exponent in the range
0.1–0.4. In some situations the Kelvin effect can be
included as an additional perturbation term [Lewis, 2006],
but for larger values of h and for situations in which the
Kelvin effect is too large to treat as a small perturbation
another approach must be used.
[40] Any parameterization for the radius ratio containing

a dependence on rdry must implicitly include the Kelvin
effect [Lewis, 2006]. One such parameterization, similar to
that proposed by Fitzgerald [1975], is

x ¼ a hð Þrdryb hð Þ: ð32Þ

Although this expression does not explicitly illustrate the
dependence on surface tension, it appears to separate the
dependences of x on h and rdry, with the dependence of x on
h for situations in which the Kelvin effect is unimportant
described by a (which must have dimension length to the
power �b), and with the Kelvin effect being parameterized
by b, which must be very near zero except for h very near
unity, when it rapidly approaches 1/2 to match the result
given by equation (10). However, as the value of h for
which the Kelvin effect makes a given fractional difference
in x, and thus at which b begins to rapidly approach 1/2,
depends on rdry [Lewis, 2006], b must depend on rdry in
addition to h. Additionally, a becomes infinite for h = 1
unless it includes a dependence on rdry. As both a and b
must depend on both h and rdry, the separation of the
dependencies of x on h and rdry is not realized and this
formulation does not retain the simplicity of the original
model. Furthermore, there appears to be no indication of
how the functions a and b could be chosen, nor any
physical basis for such a choice.

3.1. New Formulation for Radius Ratio Valid up
to h = 1

[41] In this section the above analysis of the Köhler
model is used to obtain an expression for x as a function
of h and xs valid up to h = 1. Such an expression provides a
simple and direct method of calculating the radius of a
solution drop with a given mass of known solute without
recourse to iterative or recursive methods, and it clearly
illustrates the dependences of this radius on fractional
relative humidity and dry radius (as well as on surface
tension), which is not possible with more complicated
models. This expression would also be useful in global
models where computational expense is a concern.

[42] For bulk solution drops of many inorganic solutes
the equilibrium radius ratio is accurately approximated over
a wide range of h by a two-parameter expression of the form

x ¼ a bþ 1

1� h

� �1=3

; ð33Þ

where a and b are chosen empirically to yield a good fit. For
h very near unity this expression approaches a power law in
(1 � h) with exponent �1/3, similar to that given by
equation (9), although a is not necessarily equal to c. The
accuracy of equation (33) is shown in Figure 9 for
bulk solution drops of ammonium sulfate with parameters
a = 0.78 and b = 1.90, and of sodium chloride with a = 1.08
and b = 1.10; as noted above, these values were chosen
empirically to provide a good fit over a wide range of h.
This expression is accurate to within 3% for bulk
ammonium sulfate solution drops over the entire range of
h from the efflorescence value (�0.40) up to 0.99, and to
within 8% for h up to 0.999, but at higher values of h it
yields values of x that are too low by up to 13%. This error
is due almost entirely to the rapid increase in f from 0.72 to
0.86 to unity as h increases from 0.99 to 0.999 to unity
(although typically at these values of h the Kelvin effect will
be important and must be taken into account). The
expression is accurate to within 2% for bulk sodium
chloride solution drops for h from the efflorescence value
(�0.45) up to unity. In essence, this formulation assumes
constant values for the practical osmotic coefficient, f,
equal to (a/c)3, and for the apparent molal volume of solute,
such that rdryVf/Ms is equal to a3b. The above choices for a
and b yield 0.65 and 0.95 for f, and 0.90 and 1.4 for
rdryVf/Ms, for ammonium sulfate and sodium chloride,
respectively. The value of f for ammonium sulfate is
considerably less than unity, but over a wide range of aw
it is near the actual value of f, resulting in a good fit
over a wide range of h.
[43] Many previous expressions [e.g., Fitzgerald, 1978;

Gerber, 1985] appear similar to equation (33) but contain
only one free parameter, as they assume volume additivity
which requires b = 1/a3. Although these expressions provide
fairly good fits over a limited range of h, they were
formulated for solutions that are undersaturated with respect
to the solute and their accuracy is typically not as good for
more concentrated solutions (i.e., lower values of h). Addi-
tionally, several investigators [Hänel, 1968; Winkler, 1973;
Zhang et al., 1993; Stein et al., 1994; Fitzgerald et al.,
1998; Dick et al., 2000; Brooks et al., 2004; Kreidenweis et
al., 2005] have proposed expressions similar to equation (33)
but with the term b replaced by a more complicated
function, typically a polynomial in h. However, such
expressions, with several adjustable parameters, do not
seem necessary to fit the data and their associated uncer-
tainties, and they do not capture the rapid variation in f (and
thus the behavior of x) at values of h near unity. Often an
equally good fit to the radius ratio over a wide range of h can
be provided by equation (33), as shown in Figure 10; for
h 	 0.5 results from the two expressions differ by less
than 1%. This is but one example of seven data sets that
were compared; in all cases equation (33) provided fits
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11 of 17

D03205



which were well within the uncertainties of the data, and in
some cases better than those presented with the data.
[44] The parameterization given by equation (33) can be

extended to situations for which the Kelvin effect is
important by an approach similar to that used above to
obtain equation (19), resulting in the expression

x ¼ a bþ 1

1� hþ xs;0
a


 �3=2
2
64

3
75
1=3

; ð34Þ

which explicitly illustrates the dependences of x on h and rdry
(contained in xs,0). This expression implicitly assumes that
the Kelvin term evaluated at the radius ratio x = (a3/xs,0)

1/2

(which is very nearly equal to radius ratio at h = 1 given by
this expression) applies for all situations. Thus, similar to the
approximate solution to the Köhler equation given by
equation (19), the radius ratio at a given value of h is that
given by equation (33) for which the Kelvin effect is
neglected, but with h decreased by (xs,0/a)

3/2.
[45] Comparison of the radius ratio obtained from

equation (34) and that calculated from equation (1) is shown
in Figure 9 for solution drops of ammonium sulfate and
sodium chloride with rdry = 100, 50, 20, 10, and 5 nm.
Overall, the agreement over such a wide range of rdry and
h for a quantity which varies by so much is remarkable for
an approximation containing only two adjustable parame-

ters, especially considering that much of the inaccuracy
results from the approximation for bulk solution drops. For
rdry > 5 nm equation (34) yields estimates of x (or r) that are
accurate to within �8% for ammonium sulfate solution
drops for h < 0.999, and to within 7% for sodium chloride
solution drops for h up to and including unity. For ammo-
nium sulfate solution drops at h = 1 it yields values of x that
are accurate to within a few percent for rdry near 5 nm
(because for drops of this size f1 is near the value chosen
for f; Figure 7), although with increasing rdry the expres-
sion becomes less accurate and yields values that are too
low by f1/2, or nearly 20%, for large drops because of the
increase in f as aw approaches unity. As f1 for ammonium
sulfate solution drops varies from �0.62 to unity (Figure 7),
the fractional error in x1 according to equation (27) varies
over a range of �25% for any constant choice of f. For
sodium chloride solution drops at h = 1 this parameteriza-
tion is accurate to within �3% for rdry > 5 nm.
[46] The largest disagreements occur at relatively high

values of h, but at such values uncertainty or variability in
h will typically provide larger errors; for instance, for a drop
with rdry = 50 nm at h = 0.97 an uncertainty of 0.01 in
h (which would result from an uncertainty in temperature of
�0.15�C for fixed water vapor pressure) yields an uncer-
tainty in the radius ratio of more than 10%. Additionally,
practical considerations often mitigate this inaccuracy in
atmospheric situations because of the extremely long time
for large drops to equilibrate at values of h near unity. For
example, according to Lewis and Schwartz [2004, p. 22], a
sea salt aerosol particle with rdry = 250 nm (for which the
critical supersaturation is �0.01%), initially at equilibrium
at 80% RH and instantaneously exposed to an environment
with supersaturation 0.1% at 0�C, requires approximately
400 s to attain its activation radius of �8 mm, and the time
required for a sea salt aerosol particle with rdry = 500 nm
(for which the critical supersaturation is �0.003%) to attain

Figure 9. Fractional error in radius ratio Dx/x, calculated
from equation (34), as a function of fractional relative
humidity h for bulk solution drops and for solution drops
with rdry/nm = 100, 50, 20, 10, and 5 of (top) ammonium
sulfate and (bottom) sodium chloride.

Figure 10. Comparison of fits to measurements of the
ratio of the radius of 100 nm ammonium sulfate drops at
given h to that to that at very low h reported by Kreidenweis
et al. [2005, Figure 2], which they termed the hygroscopic
growth factor GF. Fit from their graph aw = RH (coefficients
listed by Kreidenweis et al. [2005, Table 1]) is given by
GF = [1 + (1.71845 � 2.04960h + 0.69443h2)( h

1�h
)]1/3; fit

according to equation (33) is GF = 0.717(3.23 + 1
1�h

)1/3.
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its activation radius of �20 mm under these same conditions
is roughly an order of magnitude greater.

3.2. Previous Parameterizations

[47] The only previous parameterization for the radius
ratio as a function of relative humidity valid up to h = 1 is
an empirical one proposed by Gerber [1985] for four
aerosol components: sea salt, ‘‘urban,’’ ‘‘rural,’’ and ammo-
nium sulfate. This expression can be written in the form

x ¼ 1þ C1rdry
C2

� ln hþ C3rdryC4

� �1=3

; ð35Þ

where the first term in the parentheses (unity) follows from
the assumption that the volumes of water and solute are
additive; rdry must be given in centimeters for the values of
Ci given by Gerber, as some of these constants contain
dimensions (the values of Ci here differ slightly from those
of Gerber). The dependence of x on surface tension (i.e., the
Kelvin effect) is not explicitly shown, but is contained in the
constants Ci. The quantity C2 is much less than unity for
each of the components considered (taking values 0.079,
0.101, 0.115, 0.082, respectively) and the quantity C4 is
very nearly �1.5 (taking values �1.424, �1.404, �1.399,
and �1.428, respectively). If C2 is taken as zero and C4 is
taken as �1.5, and if the logarithm is expanded about h = 1
and only the first term is kept (i.e., if the approximation Fh = 1
is made), then equation (35) becomes

x ¼ C
1=3
1

1

C1

þ 1

1� hþ C3 r
�3=2
dry

 !1=3

; ð36Þ

which has the same functional form as equation (34) and is
equal to it if a = C1

1/3, b = 1/C1, and C3 = (rs,0/a)
3/2.

[48] The stated range of validity for this formulation was
10 nm < rdry < 10 mm and the entire range of h up to unity,
and the accuracy for h > 0.75 was stated as several percent,
with a maximum error of more than 13%. However, for h = 1
this formulation overestimates the radius ratio of ammonium
sulfate solution drops with rdry = 10 nm by more than 15%,
and underestimates that for drops with rdry > 1000 nm by
approximately 5%. Additionally, the Kelvin effect is over-
estimated for a wide range of conditions, including drops
sufficiently large that it should be negligible. For instance, for
ammonium sulfate solution drops at h = 0.9, equation (35)
yields radius ratios of 1.72, 1.81, and 1.91 for rdry = 100, 103,
and 104 nm, respectively, whereas for drops of these sizes
the Kelvin effect should reduce the bulk value of x = 1.75
by �3 nm/rdry, or 0.03, 0.003, and 0.0003, respectively,
according to equation (2). The data used by Gerber for
ammonium sulfate [Low, 1969] extended only up to
aw = 0.996, at which f = 0.78, thus to obtain his fit Gerber
evidently extrapolated these data in some manner that did
not account for the rapid increase in f toward unity at
greater aw. As the two-parameter expression given by
equation (34) yields more accurate results for bulk solutions
and is presented in dimensionless form, with the Kelvin
effect explicitly characterized through the dependence of

x on rdry, it is preferred to the four-parameter expression
given by equation (35).

4. Summary

[49] The Köhler model relating the radius ratio x of an
aqueous solution drop with dry radius rdry to the fractional
relative humidity h has been investigated, and the so-called
Köhler equation derived in which x depends on h and on
two dimensionless constants, c and xs,0, with only c
depending on solute and only xs,0 depending on particle
size. Exact and approximate solutions to this equation are
presented for h < 1. The assumptions of this model are
formulated as approximations that are made in the deriva-
tion of the Köhler equation, and these approximations and
the resultant inaccuracies are examined and quantified for
several situations of interest: when the Kelvin effect can be
neglected, at h = 1, and at activation. Specific examples are
presented for solution drops of ammonium sulfate and
sodium chloride. The dominant source of inaccuracy derives
from the assumption that the practical osmotic coefficient f
is unity, the rapid decrease in this quantity from unity with
increasing solute concentration limiting accuracy of the
radius or radius ratio determined from this model to up to
several tens of percent, depending on the substance. For
large drops the errors resulting from this approximation can
be accurately estimated using the so-called Debye approx-
imation, which accounts for the initial decrease in f from
unity with increasing concentration. Attempts to extend the
Köhler model to lower values of h and more concentrated
solutions typically do not consider this decrease, and as it
provides the dominant contribution to the inaccuracy of this
model, these extensions cannot be expected to yield accu-
rate results. Expressions are presented for ‘‘effective’’
values neff that can be used to calculate quantities at
activation using simple equations from the Köhler model.
Also, on the basis of analogy with an approximate solution
of the Köhler equation, a two-parameter expression for the
radius ratio of an aqueous solution drop as a function of
h and rdry is presented which yields accurate results for a
wide range of rdry (at least down to 5 nm) over the entire
range of h up to and including unity.

Appendix A: Approximations in the Debye Limit

[50] The practical osmotic coefficient f of an aqueous
electrolytic solution depends strongly on the solute and its
concentration, precluding simple expressions of general
validity. However, for extremely dilute solutions a simple
parameterization can be obtained which can be used to yield
estimates of the inaccuracy of results of the basic Köhler
model. In this so-called Debye limit f decreases from unity
with increasing concentration as

f � 1� Af zþz�j jI1=2 ðA1Þ

[Debye and Hückel, 1923; Debye, 1924], where Af is a
constant approximately equal to 0.392 mol1/2 kg�1/2 at
25�C, z+ and z� are the magnitudes of charges of the
positive and negative ions, respectively, into which the
electrolyte dissociates in solution, and I is the ionic strength,
related to the molality m by I = m(n+z+

2 + n�z�
2 )/2, where n+
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and n� are the number of the positive and negative ions,
respectively, into which a molecule of solute dissociates
[Lewis and Randall, 1961]. In terms of the molality
equation (A1) can be written

f � 1� Af zþz�j j I

m

� �1=2
" #

m1=2 � 1� Afdm
1=2; ðA2Þ

where the factor in brackets, d, depends only on the type of
electrolyte; d = 1 for 1–1 electrolytes (for which z+ = z� = 1
and I = m), and d = 2

p
3 � 3.5 for 1–2 and 2–1 electrolytes

(for which I = 3m). The range of concentrations for which
this approximation holds to given accuracy differs for
different solutes, but in general it is restricted to quite low
concentrations, for which aw is extremely near unity.
For instance, equation (A2) yields f = 0.81 instead of the
actual 0.87 for ammonium sulfate solutions at molality
0.02 mol kg�1 (corresponding to aw = 0.999), and f = 0.92
instead of the actual 0.95 for sodium chloride solutions at
molality near 0.05 mol kg�1 (corresponding to aw = 0.998).
[51] For very dilute solutions the molality m, given by

equation (6), can be approximated by

m � 1

Ms

rdry
rw

� �
1

x3

� �
; ðA3Þ

which differs from the exact value by the factor Fx given by
equation (22); for aw > 0.99 this factor differs from unity by
less than 1% for both ammonium sulfate and sodium
chloride solutions (as it is the quantity m1/2 that is of interest
and that determines the difference of f from unity, the
inaccuracy resulting from this approximation over this range
of aw is negligible). Substitution of equation (A3) into
equation (A2) yields

f � 1� K

x

� �3=2

; ðA4Þ

with

K ¼ Af
2

Mw

� �1=3

c
d2

n

� �1=3
" #

; ðA5Þ

where c � [n(Mw/Ms)(rdry/rw)]
1/3 as above, and only the

quantity in brackets depends on the solute. At 25�C, K is
equal to 1.6c for 1–1 electrolytes, and twice this for 1–2
and 2–1 electrolytes; thus K is equal to 2.9 for ammonium
sulfate and 1.8 for sodium chloride (for ammonium nitrate
and sodium nitrate, both 1–1 electrolytes, K is equal to 1.5
and 1.6, respectively, and for ammonium bisulfate and
sodium sulfate, both 2–1 electrolytes, it is equal to 3.0 and
3.3, respectively). The approximation given by equation (A4)
can be used along with the value of x evaluated for the
situation under consideration (here either h = 1 or
activation) to determine the fractional error in the radius
ratio obtained from the Köhler model as a function of the
dry radius.

[52] For h = 1, substitution into equation (A4) of the
value x1 given by equation (10), which was calculated under
the assumption that f is unity, yields the approximation

f1 � 1�
K2xs;0
c3

� �3=4

� 1� K2rs;0

c3rdry

� �3=4

; ðA6Þ

shown in Figure 7 along with the exact value of f1 for
ammonium sulfate and sodium chloride solutions as a
function of rdry. Substitution of this expression into
equation (28) yields equation (29):

Dx1
x1

� 1

f1=2
1

� 1

 !
� 1

2

K2xs;0
c3

� �3=4

¼ ~r1
rdry

� �3=4

; ðA7Þ

where

~r1 ¼
K2rs;0

24=3c3

� �
¼ K

c

� �2
1

c

� �
rs;0

24=3


 �
ðA8Þ

is equal to 1.1 nm/c for 1–1 electrolytes (and hence 1.0 nm
for sodium chloride solutions) and 4.5 nm/c for 1–2 and 2–1
electrolytes (and hence 5.0 nm for ammonium sulfate
solutions). The approximation given by equation (A7),
together with the fractional error in the radius ratio for the
Köhler model, is shown in Figure 2.
[53] This analysis can be applied also to activation,

although that situation is more complicated. Under the
assumption that the only contribution to inaccuracy in the
Köhler model derives from f, the radius ratio at activation
can be obtained from equation (23) as

xact �
3c3

xs;0

 !1=2

fact
1=2 1� 1

3

d lnf
d ln x

����
act

� �� �1=2
; ðA9Þ

with fractional error

Dxact
xact

� 1

fact
1=2 1� 1

3
d lnf
d ln x

���
act


 �h i1=2 � 1: ðA10Þ

Substitution into equation (A4) of the value of xact from
equation (12), which was likewise calculated under the
assumption that f is equal to unity, yields

fact � 1�
K2xs;0
3c3

� �3=4

� 1� K2rs;0

3c3rdry

� �3=4

; ðA11Þ

shown in Figure 8, and

1� 1

3

d lnf
d ln x

����
act

� �
� 1� 1

3

x
f
df
dx

����
act

� 1� 1

2

K

xact

� �3=2

: ðA12Þ
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Substitution into equation (A10) of these results yields

Dxact
xact

� 1

1� K
xact


 �3=2� �1=2
1� 1

2
K
xact


 �3=2� �1=2 � 1 � 3

4

K

xact

� �3=2

;

ðA13Þ

which can be simplified to yield equation (30):

Dxact
xact

� 3

4

K

xact

� �3=2

� 3

4

K2xs;0
3c3

� �3=4

¼ ~ract
rdry

� �3=4

; ðA14Þ

where

~ract ¼
31=3K2rs;0

28=3c3

� �
¼ K

c

� �2
1

c

� �
31=3rs;0

28=3

� �
¼ 3

16

� �1=3

~r1 �
~r1
1:7

ðA15Þ

is equal to 0.64 nm/c for 1–1 electrolytes (and hence
0.58 nm for sodium chloride solutions) and 2.6 nm/c for 1–2
and 2–1 electrolytes (and hence 2.8 nm for ammonium
sulfate solutions). The approximation given by
equation (A14), together with the fractional error in the
radius ratio for the Köhler model, is shown in Figure 3. Two
thirds of the fractional error in xact derives from fact

1/2 and
one third from the term containing the derivative of fact.
[54] The supersaturation at activation sact can likewise be

calculated as

sact ¼ 2
xs;0
3c

� �3=2
1

fact
1=2

� � 1� 1

2

d lnf
d ln x

����
act

� �� �

1� 1

3

d lnf
d ln x

����
act

� �� �3=2 ; ðA16Þ

with the fractional error in this quantity given by

Dsact

sact
� fact

1=2

1� 1

3

d lnf
d ln x

����
act

� �� �3=2

1� 1

2

d lnf
d ln x

����
act

� �� � � 1; ðA17Þ

which in the Debye limit can be approximated using the
same techniques as above by

Dsact

sact
� �1

2

K

xact

� �3=2

¼ �2

3

~ract
rdry

� �3=4

; ðA18Þ

opposite in sign and two thirds the magnitude of the
fractional error in the radius ratio at activation. Both the
fractional error in supersaturation resulting from the Köhler
model and the approximate value given by equation (A18)
are shown in Figure 4.
[55] Similarly, the critical value of rdry for given super-

saturation can be obtained from equation (A16) as

rdry;c ¼
2

s

� �2=3
rs;0

3c


 � 1

fact
1=3

� � 1� 1

2

d lnf
d ln x

����
act

� �� �2=3

1� 1

3

d lnf
d ln x

����
act

� �� � ; ðA19Þ

with fractional error given by

Drdry;c

rdry;c
¼ fact

1=3

1� 1

3

d lnf
d ln x

����
act

� �� �

1� 1

2

d lnf
d ln x

����
act

� �� �2=3 � 1: ðA20Þ

In the Debye limit this fractional error can be approximated
as

Drdry;c

rdry;c
� �1

3

K2rs;0

3c3rdry

� �3=4

¼ �4

9

~ract
rdry

� �3=4

; ðA21Þ

or in terms of the supersaturation s as equation (31):

Drdry;c

rdry;c
� �1

3 � 21=2
K

c

� �3=2

s1=2 ¼ � s

~s


 �1=2
; ðA22Þ

where ~s � 18(c/K)3 is approximately equal to 0.55 for
ammonium sulfate and 4.4 for sodium chloride.
[56] The fractional errors in the Debye limit can be used

to define an ‘‘effective’’ value of n, neff, which allows
calculation of various quantities of interest at activation
using equations (13), (14), and (15) of the basic Köhler
model. As according to equation (13a) ract is directly
proportional to c3/2 and thus to n1/2, it follows that the
value of neff to be used for calculation of ract from rdry
according to this equation is given by

neff ¼
n

1þ Dract
ract


 �2 � n 1� 31=3K2rs;0

24=3c3rdry

� �3=4
" #

; ðA23Þ

where the second equality,which follows fromequation (A14),
is for the Debye limit. For ammonium sulfate this
expression yields neff � 3[1–(7.2 nm/rdry)

3/4] and for
sodium chloride 2[1–(1.5 nm/rdry)

3/4].
[57] Similarly, as according to equation (14a) sact is

inversely proportional to c3/2 and thus to n1/2, the value of
neff to be used for calculation of sact from rdry according to
this equation is given by

neff ¼ n 1þDsact

sact

� �2

� n 1� K2rs;0

3c3rdry

� �3=4
" #

; ðA24Þ

where again the second equality, which follows from
equation (A18), is for the Debye limit. For ammonium
sulfate this expression yields neff � 3[1–(4.2 nm/rdry)

3/4]
and for sodium chloride 2[1–(0.85 nm/rdry)

3/4]. Note that
for the same rdry, this value of neff is greater than the one
previously derived for calculation of ract.
[58] Finally, as according to equation (15) rdry,c, for given

s, is inversely proportional to c, and thus to n1/3, the value of
neff to be used for calculation of rdry,c from s according to
this equation is given by

neff ¼ n 1þDrdry;c

rdry;c

� �3
� n 1� 1

21=2
K

c

� �3=2

s1=2

" #
; ðA25Þ
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where the second equality (the Debye limit) follows from
equation (A22). For ammonium sulfate this expression
yields neff � 3[1–(s/0.061)1/2] and for sodium chloride
2[1–(s/0.49)1/2].

Notation

a parameter in expression for radius ratio.
aw water activity.
Af constant, �0.392 mol1/2 kg�1/2 at 25�C.
b parameter in expression for radius ratio.
B parameter characterizing hygroscopicity.
c parameter that depends on solute,

�[n(Mw/Ms)(rdry/rw)]
1/3.

c1 constant.
C1, C2, C3, C4 constants in expression of Gerber [1985].

d parameter that depends upon solute,
�jz+z�j(I/m)1/2.

Fh factor for fractional relative
humidity term, ��lnh/(1 � h).

FK factor for Kelvin term,
�xs/xs,0.

FR factor for Raoult term,
�f/[1 � (rdryVf/Ms)/x

3].
Fx factor comprising FR,

�1/[1 � (rdryVf/Ms)/x
3].

Ff factor comprising FR, �f.
h fractional relative humidity, �RH/100%.

hact fractional relative humidity at activation.
I ionic strength of solution, mol kg�1.
K parameter that depends upon solute.
m molality, mol kg�1.

mdry dry mass of (anhydrous) solute.
Ms molar mass of solute.
Mw molar mass of water, �0.018 kg mol�1.
n constant.
r drop radius.
r
^

characteristic length for radius at
activation, �rs,0/(3c

3).
r̂ characteristic length for supersaturation

at activation, �22/3rs,0/(3c).
r1 radius at h = 1.
~r1 characteristic length for fractional error

in r1 obtained from Köhler model.
ract radius at activation.
~ract characteristic length for fractional error

in ract obtained from Köhler model.
rdry volume-equivalent dry radius,

�[3mdry/(4prdry)]
1/3.

rdry,c critical value of rdry for activation.
rs characteristic length scale for Kelvin

effect, �2vws/(RT).
rs,0 value of rs evaluated for pure water,

�1.1 nm.
R gas constant, �8.3 J K�1 mol�1.

RH relative humidity, %.
s supersaturation, �h � 1.
~s characteristic supersaturation for

fractional error in rdry,c.
sact supersaturation at activation
T absolute temperature, K.

vw partial molal volume of water in
solution (=Mw/rw for pure water).

Vf apparent molal volume of solute
in solution.

z scaled radius ratio in Köhler equation for
h < 1, �[(r/rdry)/c](1 � h)1/3.

z0, z1 terms in expression for z in
Köhler equation for h < 1.

z+, z� magnitudes of charges of the
positive and negative ions, respectively,
into which electrolyte dissociates
in solution.

a function of h in parameterization of
radius ratio.

b function of h in parameterization of
radius ratio.

Ds fractional error in supersaturation
calculated by Köhler model.

Dsact value of Ds at activation.
Dx fractional error in radius ratio calculated

by Köhler model.
Dx1 value of Dx at h = 1.
Dxact value of Dx at activation.

e scaled Kelvin factor in Köhler equation
for h < 1, �[(rs,0/rdry)/c]/(1 � h)2/3.

k hygroscopicity parameter of Petters and
Kreidenweis [2007].

n number of ions into which a molecule of
solute dissociates.

neff effective value of n for calculation of
quantities at activation.

n+, n� number of positive and negative ions,
respectively, into which a molecule of
solute dissociates.

x radius ratio relative to volume-equivalent
dry radius, �r/rdry.

x1 radius ratio at h = 1.
xact radius ratio at activation.
xs ratio of characteristic length scale for

Kelvin effect to rdry, �rs/rdry.
xs,0 value of xs for pure water.
s surface tension of solution-air interface.
r density of solution.

rdry density of (anhydrous) solute.
rw density of pure water, �1.0�103 kg m�3.
f practical osmotic coefficient.
f constant value of f assumed in

expression for radius ratio.
f1 value of f at h = 1.
fact value of f at activation.
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