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RELATIONSHIP OF REFRACTIVE INDEX TO MASS DENSITY AND SELF-CONSISTENCY OF MIXING RULES FOR MULTICOMPONENT MIXTURES LIKE AMBIENT AEROSOLS




Abstract 

 This paper focuses on two important yet poorly addressed aspects of ambient aerosols: 

relationship of refractive index to mass density (index-density relationship), and consistency of the 

mixing rules used to calculate these two quantities of a multicomponent mixture like ambient aerosols 

with the index-density relationship. Combined empirical and theoretical analyses show that a denser 

material generally tends to have a larger refraction index because the applied electric field induces a 

greater number of electric dipoles, and that the index-density relationship can be described reasonably 

well by the Lorentz-Lorenz relation. It is shown that the commonly used volume-mean mixing rule for 

calculating the effective mass density, the Lorentz-Lorenz mixing rule and the molar refraction mixing 

rule for calculating effective refractive index form a set of mixing rules that are consistent with the 

Lorentz-Lorenz relation.  The molar fraction mixing rule and the Lorentz-Lorenz mixing rule are shown 

to be equivalent for the Lorentz-Lorenz mixture while the linear volume-mixing rule is an 

approximation of the Lorentz-Lorenz mixing rule for quasi-homogeneous mixtures wherein the 

refractive indices of the constituents do not differ much. The results highlight the need for consistency 

of the mixing rules for calculating the effective refractive index and mass density with the index-density 

relationship, which not only provides a theoretical guide for judiciously choosing the mixing rules to 

calculate effective properties of ambient aerosols but also poses new challenges to develop an effective 

medium theory that applies to more than one quantity. An empirical power-law expression is obtained 

from the published data that relates the effective specific refractive index to the effective mass density of 

aerosol particles.  
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1. Introduction 

 Refractive index and mass density are two fundamental properties of aerosol particles that are 

often required together in many areas of aerosol research (Van de Hulst 1957; Seinfeld and Pandix 

1997). For example, both refractive index and mass density of aerosol particles are needed in 

quantification of aerosol effects on climate, which calls for coupling aerosol dynamical models with 

aerosol optical models (Ghan and Schwartz 2007). Knowledge of the two quantities is also useful for 

interpretation of aerosol measurements taken with instruments that are built on different physical 

principles (see McMurry 2000 for a recent review). Some instruments such as impactors are based on 

aerosol dynamics and measure the "aerodynamic size" that depends on particle mass density, in addition 

to the geometrical size and geometrical shape. Other instruments such as DMA measure the electric 

mobility size that depends on particle shape and size, but not on particle mass density. Still others such 

as optical counters measure "optical sizes" that depend on refractive index. Measurements with different 

instruments can be very different, and converting one set of measurements to another requires 

information on particle refractive index and mass density, among other things.  

Ambient aerosol particles are mixtures of multiple chemical species, and mixing rules are 

generally needed to calculate the effective mass density and effective refractive indices as functions of 

chemical composition. Distinct mixing rules have been developed, and often used without a clear 

physical basis to favor one approach over another. This situation is especially true for the calculation of 

effective refractive index.  Therefore, understanding the applicability of various mixing rules and their 

mutual relationship is vitally important to further advancing representation of aerosol-related processes 

in climate models (Ghan and Schwartz 2007).  

Despite the need for accurate estimates of both the effective refractive index and the effective 

mass density, simultaneous measurements of these two aerosol quantities are very limited, and few 
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studies has been made to examine their relationship. Furthermore, the mixing rules use to estimate 

effective refractive index and mass density, for the most part, have been developed separately, and the 

consistency of the mixing rules with respect to the index-density relationship has not been examined. 

The connections between the different mixing rules that have been commonly used to calculate effective 

refractive indices of aerosol particles, if any, have not been rigorously clarified. The objectives of this 

paper are to fill these gaps by (1) exploring the relationship between the effective refractive index and 

the effective mass density of aerosol particles, (2) examining the consistency of the mixing rules with 

the index-density relationship, and discerning the connections between the different mixing rules that 

have been commonly used to calculate effective refractive indices of aerosol particles, (3) establishing a 

self-consistent set of mixing rules for calculating effective refractive index and effective mass density, 

and (4) summarizing the fundamental physical principles that constrain the mixture characterized by 

these self-consistent mixing rules.   

2. Relationship between Refractive Index and Mass Density of Pure Materials 

a. Empirical investigation 

As two fundamental material properties, refractive index (or dielectric constant) and mass 

density have been extensively investigated by researchers in diverse disciplines for various purposes 

since the early 20th century [e.g., Phillips (1920) for carbon dioxide, Anderson and Schreiber (1965) for 

minerals related to the Earth’s mantle]. A large amount of data on pure materials, including organics, 

inorganics and minerals, has been accumulated. To illustrate the general relationship between the 

refractive index and mass density, a comprehensive set of data for over 4000 pure materials published in 

literature, including those organics, inorganics and minerals are collected and shown in Fig. 1. The 

overall increase of refractive index with increasing mass density is evident from the figure. The 

refractive index increases linearly with mass density when the mass density is much less than 1 g cm-3, 
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but the linearity disappears for dense materials such as liquids and solids. Dense materials tend to 

exhibit relatively large scatter, suggesting that although the mass density is a primary determinant of the 

refractive index, other factors affect the index-density relationship as well (see the theoretical discussion 

below for details).  

b. Theoretical expression 

The theoretical basis of the relationship between reflective index and mass density is embedded 

in the so called state equation of polarization, which relates macroscopic optical/electrical properties 

(dielectric constant and refractive index) to the corresponding microscopic molecular properties (e.g., 

molecular polarizability). Most of the theory was established in the late 19th and early 20th century, and 

constitutes a textbook content in electrostatics and molecular optics (e.g., Debye 1929; Lorentz 1960; 

Aspnes 1982). However, the derivation of the theory is not easy to find in the literature on atmospheric 

aerosols. Also, the theory has been largely developed for pure materials of the same chemical species, 

and its extension to multicomponent mixtures such as ambient aerosols has not been well investigated. 

More importantly, as will be shown in Section 4, the theory for pure materials is critical for developing 

self-consistent mixing rules used to calculate effective quantities of multicomponent mixtures like 

ambient aerosols. For these reasons, the major steps of this theory are recapped below.   

Briefly, consider a piece of pure material as a system of molecules that react to an incident 

electric field like electric dipoles. From the microscopic perspective, when a piece of dielectric is placed 

in an applied electric field, the electric polarization P (average electric dipole moment per unit volume) 

is given by  

0 locP Eραε= ,                                                         (1) 
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where ρ is the number density of the material molecules, α is the mean molecular polarizability, ε0  is 

the vacuum permittivity, and Eloc is the local electric field experienced by an individual molecule. From 

the macroscopic perspective, the electric polarization is related to the applied electric field E by 

( ) 01P Eε ε= − ,                                                        (2) 

where ε is the dielectric constant (also called relative permittivity) of the material. The equality of Eq. 

(1) and Eq. (2) yields 

         1 locE
E

ε αρ= + .                                                           (3) 

Elimination of Eloc and E using the Lorentz expression for the local electric field  

( )
0

1 2
3 3loc
PE E ε
ε

= + = + E                                               (4) 

yields the so-called Clausius-Mossotti relation  

( )
( )

1
2 3

ε ρα
ε

−
=

+
,                                                            (5) 

Application of the Maxwell relation 2nε = to Eq. (5) yields the well-known Lorentz-Lorenz relation for 

the refractive index (n)                                                          

( )
( )

2

2

1
32

n

n
αρ−

=
+

        (6) 

In terms of the mass density ρm,  which is related to the number density by m
A

M
N

ρ ρ= , the Lorentz-

Lorenz relation becomes 

                                    
( )
( )

2

2

1
32

A
m

n N
Mn
α ρ

−
=

+
.                                                      (7a) 
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where NA is the universal Avagadro's number and M is the molecular weight of the chemical element of 

the material.  Note that Lorentz (see Lorentz 1960) actually derived Eq. (6) first and then reduced it to 

the Clausius-Mossotti relation using the Maxwell relation. Lorentz’s work further related the molecular 

polarizability to the properties of the electrons, which is beyond the scope of this paper. Also noted is 

that the original Clausius-Mossotti equation was developed for the static or infinitely low frequency 

while the Lorentz-Lorenz relation was for electromagnetic waves of any frequency.  Nevertheless, 

Oughstun and Cartwright (2003) generalized the original Clausius-Mossotti relation for any frequency. 

Therefore, the Lorentz-Lorenz relation is equivalent to the Clausius-Mossotti relation in essence; the 

former name is used in this work because refractive index is used more often than dielectric constant in 

aerosol research.  

Equation (7a) indicates that the functional relationship between refractive index and mass density 

is better represented with the reduced refractive index on the left hand side as the dependent variable, 

instead of the refractive index itself. This reduced refractive index is often referred to as the specific 

refraction. This point is illustrated by Fig. 2, which redisplays the same data shown in Fig. 1, but in the 

form of the specific refraction against the mass density.  Compared to Fig.1, Fig. 2 clearly exhibits a 

better linearity.  

Equation (7a) also reveals that in addition to the mass density, refractive index depends on the 

molecular polarizability and the molecular weight as well. This additional dependency is likely 

responsible for the scatter of the data points shown in the previous two figures because different 

chemical species tend to have different values of molecular polarizability and molecular weight. As a 

result, the Lorentz-Lorenz relation has been used in other forms. One form of the Lorentz-Lorenz 

relation is rewriting Eq. (7a) as 
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( )

2

2

1
32

A

m

n N
Mn
α

ρ

−
=

+
.       (7b) 

It is obvious that this form of the Lorentz-Lorenz relation is useful when the right hand side does not 

change. For example, according to the notion that the molecular weight and molecular polarizability of a 

given material do not change much with temperature and pressure, this form of the Lorentz-Lorenz 

relation has been used to infer the refractive index of the sulfuric acid in the stratosphere from the mass 

density measured at the same stratospheric environment, together with the refractive index and mass 

density obtained in room conditions under the assumption that the left hand side is a constant (Yue and 

Deepak 1981; Yue et al. 1994; Massie 1994).  

The other form of the Lorentz-Lorenz relation is given by 

( )
( )

2

2

1
32
A

m

n M N
n

α
ρ

−
=

+
,       (7c) 

where the reduced quantity on the left hand side is often referred to as the molar refraction (note the 

subtle difference with the specific refraction). The quantity on the right hand side also has a name for 

itself, molar polarization (Debye 1929). The Lorentz-Lorenz relation therefore means the equality of the 

molar refraction and molar polarization. As will be shown in Section 2b, Eq. (7b) is closely related to 

the so-called molar refraction mixing rule that has been widely used to calculate the effective refractive 

index of aerosol particles (Stelson 1990).  

A linear equation has also been used to describe the index-density relationship. As shown in Fig. 

1, this linear relationship between refractive index and mass density approximately holds when the mass 

density << 1. Below we derive the linear equation from both a mathematical approximation of the 

Lorentz-Lorenz relation and a direct physical argument. For materials with small mass densities, the 
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molecules are far apart from one another, the molecular interactions are weak, and the refractive index is 

close to 1. Under this condition, a Taylor expansion of the specific refraction at n =1 gives  

( )
( ) (

2

2

1 2 1
32

n
n

n

−
≈ −

+
) .                                                    (8) 

By use of this approximation, Eq. (7a) can then be approximated by 

     1
2

ANn
M
α ρ= +                                                               (9) 

Equation (9) proves the linear dependence of the refractive index on the mass density when the mass 

density << 1. From a physical perspective, Eq. (9) stems from the fact that the dipoles in dilute systems 

with the mass density << 1 are too far apart from one another to exert notable effects on the local 

electric field, i.e., the local electric field Eloc is equal to the applied field E [see Eq. (3)]. 

Obviously, the three different forms of the Lorentz-Lorenz relation are theoretically equivalent in 

describing the relationship refractive index, mass density, molecular polarizability and molecular 

weight, and should be equally capable in inferring one unknown quantity (e.g., refractive index) from 

the other three quantities (e.g., mass density, molecular polarizability and molecular weight).  Their 

difference lies primarily in practicality when not all the three necessary quantities are at disposal. The 

Lorentz-Lorenz relation in its various equivalent forms is more general than the linear relation, 

encompassing gases, liquids, and solids. The linear relation approximately holds for dilute systems 

where molecules are far apart from one another. 

3. Self-Consistent Set of Mixing Rules for Aerosol Particles 

a. Common mixing rules 

Ambient aerosol particles are generally mixtures of different chemical constituents. A common 

approach to treating such inhomogeneous mixtures is the so-called effective medium theory whereby a 

mixture is considered a homogeneous material with the effective quantities that are calculated from 
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some mixing rules (Heller 1965; Ossenkopf 1991). The commonly used mixing rule for calculating the 

effective mass density is the so-called volume-mixing rule whereby the effective mass density ρme is 

given by 

me i mi
i

fρ ρ= ∑ ,                                                                       (10) 

where the summation is over all the constitutes of the mixture, and fi  and ρmi are the volume fraction 

and the partial mass density of the ith component of the mixture, respectively. The effective molecular 

weight Me is just the apparent molecular weight of a mixture given by (Wallace and Hobbs 1977) 

           
1

1 i
i mi

i i ie i

ff i mi

iM M M
φ ρρ

−
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ,                                          (11) 

where φi and Mi  are the mass fraction and the partial molecular weight of the i-th constitutes, 

respectively.  

Unlike the calculation of effective molecular weight and effective mass density, several mixing 

rules have been proposed to calculate the effective refractive index, and there is little agreement on 

which one should be used. One of the mixing rules that has been commonly used in aerosol studies is the 

so-called linear volume average (or volume mixing rule hereafter for brevity) whereby the effective 

refractive index is simply the volume-mean refractive index given by  

e
i

n f= ∑ i in ,                                               (12)  

where ne and ni are the effective refractive index and the partial refractive index of the ith component, 

respectively. This simple mixing rule has been widely used in studies of atmospheric aerosols by many 

researchers (e.g., Hanel 1968, Ouimette and Flagan 1982; Hasan and Dzubay 1983; Lowenthal et al. 

2000; Hand and Kreidenweis 2002).  The other common mixing rule is the so-called molar refraction-
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mixing rule whereby the molar refraction of a mixture is given by the linear average of the partial molar 

refraction of the individual components in the mixture weighted by their molar fraction 

e i
i

iR x R= ∑ ,        (13) 

where xi is molar fraction (the fraction of the number of moles) of the ith component of the mixture. The 

molar fraction mixing rule was popularized in the aerosol community thanks to Stelson and Seinfeld 

(1986), Stelson (1990), Tang (1996), and Tang and Munkelwitz (1994).  Note that unlike the volume-

mixing rules and the Lorentz-Lorenz mixing rule introduced below, which only require the partial 

refractive indices to calculate the effective refractive index, estimation of the effective refractive index 

from the molar fraction mixing rule requires knowing mass density of each component and the effective 

mass density in addition to the partial refractive index.  

The third mixing rule is the so-called Lorentz-Lorenz mixing rule given by (Heller 1945, 1965) 

e
i

r f= ∑ i ir ,                                                                                       (14) 

where re and ri are the effective specific refraction and the partial specific refraction for the ith 

component of the mixture, respectively.  The Lorentz-Lorenz mixing rule does not appears to be used as 

often as the other two in the aerosol community, although the Lorenz-Lorenz mixing is equally popular 

in other disciplines, and as will be shown next, it is equivalent to the molar refraction mixing rule and 

requires the same input as that required by the volume-mixing rule.  

b. Self-consistency, additivity principles, and Lorentz-Lorenz mixture 

The traditional effective medium theory, or the corresponding mixing rules, has dealt largely 

with a single quantity such as refractive index or mass density. However, according to the discussion in 

Section 2, mass density and refractive index, along with molecular weight and molecular polarizability, 

are closely connected to each other through the Lorentz-Lorenz relation. Therefore, all these quantities 
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should be considered together in an effective medium theory, and the mixing rules for calculating the 

various effective quantities should be consistent with the Lorentz-Lorenz relation.  

Despite the need for studying self-consistency, to the best of our knowledge, no mixing rules 

have been developed specifically for calculating the effective polarizability. Careful inspection of Eq. 

(1) reveals a major assumption underlying the Lorentz-Lorenz relation for pure materials discussed in 

Section 2b: All the molecules of the material share the same molecular polarizability, which is equal to 

the average of all the molecules, i.e., the total polarizability divided by the total number of molecules. 

Extending this assumption to a multicomponent mixture, we obtain the mixing rule for calculating the 

effective polarizability from the partial polarizabilities of all the components, 

   
1i i i A i

i i i mi i
e i i

i i iA i

N y N
f fx

N yN M M

α α
ρ ρmi

i
i

α α α
−

⎛ ⎞
= = = = ⎜ ⎟

⎝ ⎠

∑ ∑
∑ ∑ ∑  ,                (15) 

where αe and αi are the polarizabilities for the effective medium and the ith component of the mixture, 

respectively; y and yi are the number of moles of the mixture and the ith component, respectively; xi is 

mole fraction of the ith component of the mixture.  

Equation (15) deserves special emphasis because it presents another way to express the molar 

fraction mixing rule for calculating effective refractive index. According to Eq. (7c), which states that 

the molar refraction is equal to the molar polarization, Eq. (15) is equivalent to the molar fraction 

mixing rule given by Eq. (14). In other words, the commonly used molar fraction mixing rule for 

calculating refractive index in fact can be derived from the mixing rule for calculating the effective 

molecular polarizability.  

With the mixing rules for all the quantities we are in a position to examine the issue of self-

consistency. It is easily shown (see Appendix) that if the effective refractive index, effective density, 

effective polarizability, and effective molecular weight are calculated from the corresponding mixing 
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rules given by Eqs. (13), (10), (15), and (11), respectively, these effective quantities of the mixture 

satisfy the same Lorentz-Lorentz relation, i.e.,  

1
2 3

e A e
e

e e

n Nr
n M me

α ρ−
= =

+
                                                               (16) 

The above analysis can also be understood in a different but equivalent way: if the effective density, 

effective polarizability, and effective molecular weight are calculated from the corresponding mixing 

rules given by Eqs. (10), (15), and (11) and the Lorentz-Lorenz relation holds for the effective medium, 

the effective refractive index is determined by the Lorentz-Lorenz mixing rule. To summarize, the set of 

the four mixing rules as given by Eqs. (13), (10), (15), and (11), along with the Lorentz-Lorenz relation,   

provides a self-consistent way to quantify the effective properties of the mixture. For convenience, the 

multicompoent mixture that satisfies these equations is defined as the Lorentz-Lorenz mixture. 

The mathematical equations that describe the Lorentz-Lorenz mixture can be further distilled 

into some fundamental physical principles. Briefly, the volume mixing rule for calculating effective 

mass density derives from the additivity and conservation of the masses and volumes of the mixture 

(mass and volume additivity hereafter); the mixing rule for calculating effective molecular weight 

derives from the additivity and conservation of the number of moles or molecules (mole additivity 

hereafter); the molar-refraction mixing rule for calculating the effective refractive index derives from the 

additivity and conservation of the molecular polarizabilities of the different molecules in the mixture 

(polarizability additivity hereafter) and the Lorentz-Lorenz relation; the Lorentz-Lorenz mixing rule for 

calculating effective refractive index derives from the four principles of additivities of mass, volume, 

mole, and molecular polarizability, along with those underlying the Lorentz-Lorenz relation. These 

results suggest that from the physical point of view, for a Lorentz-Lorenz mixture, not only the masses, 

volumes, moles and molecular polarizabilities of the molecules composed of the mixture are additive or 

conserved during the process of formation of the mixture, but also they satisfy the Lorentz-Lorenz 
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relation (see Appendix for derivation). Because the additive properties are often associated with ideal 

mixtures and the Lorentz-Lorenz relation requires the Lorentz local electric field, the Lorentz-Lorenz 

mixture can be consider as the ideal mixture with the Lorentz local field. 

c. Implications for the linear volume mixing rule for effective refractive index 

As shown in Section 2, the nonlinear Lorentz-Lorenz relation becomes linear for dilute mixtures 

with mass density << 1.  For such dilute mixtures, it is easy to show that the linear volume mixing rule 

for calculating the effective refractive index and the mixing rules for calculating effective mass density, 

molecular weight and molecular polarizability forms a self-consistent set of the mixing rules. In fact, it 

can be shown as follows that the linear volume mixing rule for calculating effective refractive index is 

applicable to a more general class that only requires that the refractive indices of all the components 

have values close to each other (such materials is hereafter named as quasi-homogeneous mixture). 

 Without loss of generality, assume that the refractive indices of all the components of a quasi-

homogeneous material -- hence the effective refractive index as well -- are close to a common value n0. 

A Taylor expansion of the specific refraction around n0 yields 

( )
( )

( )( )
( ) ( )

2 2 2 2
0 0 0 0

22 2 2
0 0

1 1 2 6 6
2 2 2

n n n n nr n
n n n

− − + −
≡ ≈ +

+ + +
2 .                        (17) 

Applying Eq. (17) to the effective specific refractive index and the corresponding partial specific 

refractive indices of all the components of the mixture and then substituting the results into the Lorentz-

Lorenz mixing rule described by Eq. (13), we obtain the linear mixing rule given by Eq. (12).  

The above derivation implies that the commonly used volume-mean mixing rule for calculating 

refractive index works only for quasi-homogeneous mixture where refractive indices of each component 

are similar. A mixture of dilute gases such as the air is a special quasi-homogeneous mixture with n0 = 1. 
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It is noteworthy that in aerosol research, probably the two most commonly used mixing rules are 

the volume-mixing rule and the molar refraction mixing rule. According to the preceding analyses, the 

latter is evidently better than the former. However, the molar refraction mixing rule requires information 

on the mass density in addition to the partial refractive indices of the chemical components required by 

the volume-mixing rule, and the additional information is not always available. Lack of information on 

the mass density has been a reason for using the volume-mixing rule to calculate effective refractive 

index (Review 2 comment). According to this work, when the information on mass density is not 

available, the Lorentz-Lorenz mixing rule should be used in general instead of the volume-mixing rule, 

which only approximates the Lorentz-Lorenz mixing rule for quasi-homogenous mixtures.  

d. Empirical expression for ambient aerosols 

The above theoretical analysis reveals that the effective refractive index of a mixture is related to 

the effective mass density by the Lorentz-Lorenz relation given by Eq. (16), and its precise 

quantification requires information on the effective molecular weight and effective polarizability in 

addition to the effective mass density. However, such complete data are not often available for aerosol 

particles. It is thus desirable to empirically examine the relationship of the effective refractive index to 

the effective mass density of aerosol particles to see if a practical approximation is possible. For this 

purpose, Fig. 3 displays the data that we have collected on aerosol particles or their major components, 

along with the data for pure materials within the mass density ranging from 0.8 to 5 g cm-3 as a 

reference. Evidently, similar to pure materials (black dots), aerosol particles (red triangles) have a 

positively correlated relationship between the effective refractive index and effective mass density that 

can be well described by (the red line) 

0.391 0.23
2

e
e

e

nr
n meρ−

= =
+

.       (18) 
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It is interesting to note that the aerosol data appear less “noisy” than those for pure materials. 

One on hand, the less scatter may be real because not all the pure chemicals belong to ambient aerosols. 

On the other hand, simultaneous measurements of effective refractive index and mass density have been 

very limited and rarely reported in aerosol literature (Hanel 1968; Tang 1996; Tang and Munkelwitz 

1994; Hand and Kreidenweis 2002; Guyon et al. 2003). The less scatter may arise from the insufficient 

statistics as well. 

The other noteworthy point is that the power exponent of 0.39 is less than 1, indicating from the 

Lorentz-Lorenz relation that the ratio of effective polarizability to effective molecular weight is a 

decreasing function of the mass density. The Lorentz-Lorenz equation as described by Eq. (7b) further 

indicates that the ratio of molecular polarizability to molecular weight is proportional to the ratio of 

specific refractive index to mass density. Therefore, the dependence of the ratio of molecular 

polarizability to molecular weight on mass density can be examined by plotting the ratio of specific 

index to mass density against the mass density (Fig. 4). It is evident from Fig. 4 that the ratio of the 

effective polarizability to the effective molecular weight decreases with increasing mass density for both 

aerosol particles and pure materials with the properties of similar ranges.   

4. Concluding Remarks 

About 4000 pairs of published data on refractive index and mass density for pure materials (e.g., 

organics, inorganics and minerals) and a few measurements for inhomogeneous mixtures including 

aerosols are compiled and first used to empirically examine the relationship between refractive index 

and mass density, which substantiates the general trend of refractive index and mass density increasing 

together. The Lorentz-Lorenz relation, which was originally developed to relate dielectric constant and 

refractive index to the molecular polarizability of a pure material, is then introduced to provide 

theoretical understanding and quantification of the relationship between refractive index and mass 
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density for pure materials. The Lorentz-Lorenz relation reveals that refractive index in general depends 

on molecular weight and molecular polarizability as well as mass density.  Nonetheless, the 

observational fact of refractive index and mass density generally increasing together suggests that the 

effect of the mass density on refractive index is dominant. This is physically understandable according 

to molecular optics because the refractive index results from the collective response of electric dipoles 

excided by the external applied field and the number of dipoles in a given volume is closely related to 

the mass density (Lagendijk et al. 1997). The intimate relationship between the refractive index and 

mass density is also well reflected by the nickname of refractive index, optical density.  

To seek application of the Lorentz-Lorenz relation to multicomponent mixtures like ambient 

aerosols, commonly used mixing rules for calculating effective refractive index, effective mass density, 

effective molecular weight and effective molecular polarizability are reviewed, and rigorously examined 

in the context of their consistency with the corresponding relationship between refractive index and 

mass density. It is shown that not only the Lorentz-Lorenz relation describes the relationship among 

these effective properties for the Lorentz-Lorenz mixture, but also the commonly used volume-mean 

mixing rule for calculating the effective mass density, the Lorentz-Lorenz mixing rule and the molar 

refraction mixing rule for calculating effective refractive index form a set of mixing rules that are 

consistent with the Lorentz-Lorenz relation. The theoretical analysis also reveals the connections among 

the linear volume mixing rule, Lorentz-Lorenz mixing rule, and molar fraction mixing rule for 

calculating effective refractive index. In calculation of the effective refractive index, the Lorentz-Lorenz 

mixing rule and the molar refraction mixing rule are physically equivalent and more general than the 

linear volume-mixing rule while the linear volume mixing rule is only an approximation of the Lorentz-

Lorenz mixing rule when the refractive indices of individual components of the mixture are close to one 

another (or for quasi-homogeneous mixture).  
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An empirical power-law expression is obtained from the published data that relates the effective 

specific refractive index to the effective mass density of aerosol particles. The relationship is further 

examined in the context of the dependence of the ratio of molecular polarizability to molecular weight 

on the mass density. It is shown that this ratio generally decreases with increasing mass density, leading 

to a sublinear (the power-exponent < 1) dependence of the specific refractive index on the mass density. 

However, the data are very limited and more research is needed to substantiate this finding.  

The results also point to several directions for future research. First, the result indicates that not 

only are refractive index and mass density related to each other, but also their relationship is pivotal for 

choosing the appropriate mixing rule for calculating effective refractive index of aerosol particles.  For 

example, the self-consistent set of mixing rules discussed in this paper applies to the Lorentz-Lorenz 

mixture that satisfies the Lorentz-Lorenz relation and the four additivity principles of mass, volume, 

mole, and polarizability. If any of these conditions is violated, corresponding changes in mixing rules 

are necessary. For example, it is well known that the Lorentz-Lorenz relation holds when the host 

medium has refractive index of one. For a different host medium, the Lorentz-Lorenz relation changes, 

and the rule for calculating effective refractive index should change accordingly (Aspnes 1982). Similar 

changes are necessary when the local electric field deviates from the Lorentz field due to, for example, 

the overlap field (Anderson and Schebier 1965). To answer the question as to whether or not ambient 

aerosols belong to the Lorentz-Lorenz mixture, concurrent measurements of the effective refractive 

index, mass density of ambient aerosol particles, and chemical compositions, along with information on 

molecular polarizability and molecular weight, are needed to validate the Lorentz-Lorenz relation and 

the set of mixing rules. The same data are also needed to examine how well the linear volume-mixing 

rule approximates the Lorentz-Lorenz mixing rule in calculation of effective refractive index. 

Unfortunately, such data are extremely limited to date. The single particle technique like that discussed 
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by Moffet and Prather (2005) holds promise in this aspect. Second, a single value of refractive index is 

often assigned to aerosol particles regardless of their size. However, many studies have shown that some 

aerosol particles such as combustion aggregates often assume open, fractal-like structures with effective 

mass density depending on particle sizes (Sorensen 2001; Zenleyuk et al. 2005; Olfert et al. 2007). Mass 

densities of solid hydrometeors (e.g., snowflake, graupels and hailstone) are also found to depend on 

particle sizes (Pruppacher and Klett 1997). The inherent dependence of refractive index on mass density 

discussed in this paper suggests that the effective refractive index of these particles should be size-

dependent as well. Third, refractive index and mass density are the major concerns of this paper because 

of their importance in determining the direct aerosol effect on climate. According to the discussion, 

molecular weight and polarizability are also needed to get deeper understanding of aerosol particles. The 

intensive research that has been performed to investigate the molecular polarizability in other fields may 

be useful for aerosol research in the future.   Fourth, although this study is concerned mainly with the 

real part of the complex refractive index, the Lorentz-Lorenz relation, and various mixing rules are 

expected to hold for the complex refractive index. However, it is not clear to us how strong the 

dependence of the imaginary part (absorbing property) on the mass density is. This issue deserves 

special attention in view of the importance of the mixing state of absorbing aerosols in evaluating 

aerosol effects on climate (Ramanathan and Carmichael 2008). Finally, aerosol properties other than 

mass density and refractive index are also important. For example, aerosol hygroscopicity is crucial for 

evaluating the ability of aerosol particles being activated into cloud droplets. The same guiding principle 

of self-consistency should be applied to develop the mixing rule for estimating the effective 

hygroscopicity.  
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Appendix A: Relationship of Mixing Rules to Additivity Principles 

Mass additivity states that the total mass of a mixture equals to the sum of all the components: 

i i
i i

m m V miρ= =∑ ∑        (A1) 

Volume additivity states that the total mass of the mixture equals to the sum of all the components: 

i
i

V = ∑V         (A2) 

Dividing (A1) by (A2) yields the volume mixing rule to calculate the effective mass density  

i mi
i

me i mi
i

V
m f
V V

ρ
ρ ρ= = =

∑
∑      (A3) 

Mole Additivity states that the total number of moles (y) equals to the sum of moles of each component 

(yi): 

 i
i

y y= ∑         (A4) 

The total mass of the mixture can also be given 

i i
i i

m m y M= =∑ ∑ i        (A5) 

The effective molecular weight of the mixture is given by 

i
e i

i i

ym
i iM M x

y y
= = =∑ ∑ M       (A6) 

Using the relationship between the mole fraction, mass fraction and volume fraction given by 

e e i
i i

i i e

M
if x

M
ρ ρφ
ρ ρ

= = ,                                                               (A7) 

we can show that Eq. (A6) is equivalent to Eq. (11). 

Polarizability additivity states that the total of polarizability (polarization) of a mixture equals to the sum 

of the molecular polarizability of each component: 
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e
i

P N Ni iα α= = ∑         (A8) 

Therefore, 

i i A
e i i

i i iA

N y N
i ix

N yN
α α α= = =∑ ∑ ∑ α .     (A9) 

Combination of Eq. (A9) with Eq. (7b) leads to the molar refraction mixing rule for calculating effective 

refractive index, 

3 3
A e A

e i i
N N

i iR x x Rα α= = =∑ ∑       (A10) 

Assuming that the effective refractive index is ne and it is related to the other effective quantities 

calculated from the above equations by the Lorentz-Lorenz equation, we obtain the Lorentz-Lorenz 

mixing rule such that 

1
2 3 2

e A e i
me i

ie e

n N nf
n M n

1

i

α ρ−
= =

+ +∑ − .      (A11) 

In other words, because the middle term in Eq. (11) equals to that on the right hand side, the effective 

refractive index calculated from the Lorentz-Lorenz mixing rule satisfies the Lorentz-Lorenz relation. 

In aerosol research, the volume, mass and molar concentrations are measured in different studies. 

It is therefore desirable to formulate the effective medium equations in terms of the mass fraction φi and 

the mole fraction xi in addition to the volume fraction fi. For convenience, the set of self-consistent 

mixing rules expressed in all the three fractions are summarized in Table A.  
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Figure Captions 

Figure 1. Dependence of refractive index on mass density for pure materials compiled from various 

sources, including organic compounds, inorganic compounds and minerals.  

Figure 2. Same as Fig. 1, except that it shows the dependence of the specific refractive index, instead of 

refractive index itself, on mass density.  

Figure 3. Dependence of the effective refractive index on the effective mass density for aerosol particles 

(red triangles). The aerosol data are from Hanel (1968), Tang and Munkelwitz (1994), Tang (1996), 

Hand and Kreidenweis (2002), and Guyon et al. (2003). Also shown as comparison are the data for pure 

materials for the mass density ranging from 0. 8 to 5 gcm-3 (black dots). 

Figure 4. Same as Fig. 3., except that it shows the dependence of the ratio of specific refractive index to 

mass density on mass density. 
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Table A. Self-Consistent Mixing Rules in terms of Volume, Mass and Mole Fractions 

Effective 

variables 

Volume fraction fi Mass fraction φi 

 

Mole fraction xi 

Molecular 

weight 

1 1 i i

ie e i
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ρ
ρ

= ∑  1 i

ie iM M
φ

= ∑  e i
i

iM x M= ∑  

Density 
me i mi

i
fρ ρ= ∑  

1 i

ime mi

φ
ρ ρ

= ∑  1 1 i i

ime e mi

M x
Mρ ρ

= ∑  

Polarizability 1

i mi i i mi i
e

ii i

f f
M M
ρ α ρ αα

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∑
1

i i
e

i ii i

i

M M
φ φ αα

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
∑ ∑  e i

i
ixα α= ∑  

Specific 

refraction 1
e i

i
r f

=

= ∑ ir  
1

1 1

i i
e i

i imi mi

r rφ φ
ρ ρ

−

= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑  

1

i i i i
e i

i imi mi

x M x Mr r
ρ ρ

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
∑ ∑  

Molar 

refraction 

e i mi
e i

ie i

M fR R
M
ρ

ρ
= ∑  i

e e
i i

iR M R
M
φ

= ∑  
1

N

e i
i

iR x R
=

= ∑  

 

 27



8

9
1

2

3

4

5

6

7

8

9
10

R
ea

l R
ef

ra
ct

iv
e 

In
de

x 
n

0.01 0.1 1 10

Mass Density (g cm
-3

)
 

Figure1  

 28



0.01

2

4

6

8
0.1

2

4

6

8
1

2
S

pe
ci

fic
 R

ef
ra

ct
iv

e 
In

de
x

0.01 0.1 1 10
Mass Density (gcm

-3
)

 

Figure 2 

 29



 

0.1

2

3

4

5

6

7

8

9
1

S
pe

ci
fic

 R
ef

ra
ct

iv
e 

In
de

x

8 9
1

2 3 4 5

Mass Density (gcm
-3

)

re = 0.23�0.39

 

Figure 3 

 30



 

6

7

8

9
0.1

2

3

4

5

6

R
at

io
 o

f S
pe

ci
fic

 In
de

x 
to

 D
en

si
ty

 (
cm

3 g)

8 9
1

2 3 4 5

Mass Density (gcm
-3

)

 

Figure 4 

 31




