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Abstract

The United States Department of Energy Atmospheric Radiation Measurement (ARM) 

program operates 35-GHz millimeter-wavelength cloud radars (MMCRs) in several 

climatologically distinct regions. The MMCRs, centerpiece instruments for the 

observation of clouds and precipitation, provide continuous, vertically-resolved 

information on all hydrometeors above the ARM Climate Research Facilities (ACRF). 

However, their ability to observe clouds in the lowest 2-3 km of the atmosphere is often 

obscured by the presence of strong echoes from insects, especially during the warm 

months at the continental mid-latitude Southern Great Plains (SGP) ACRF. Here, a new, 

automated technique for the detection and elimination of insect echoes from the MMCR 

observations is presented. The technique is based on recorded MMCR Doppler spectra, a 

feature extractor that conditions insect spectral signatures and the use of a neural network 

algorithm for the generation of an insect (clutter) mask. The technique exhibits 

significant skill in the identification of insect radar returns (more than 92% of insect-

induced returns are identified) when the sole input to the classifier is the MMCR Doppler 

spectrum. The addition of circular polarization observations by the MMCR and 

ceilometer cloud base measurements further improve the performance of the technique 

and form an even more reliable method for the removal of insect radar echoes at the 

ARM site.  Recently, a 94-GHz Doppler, polarimetric radar was installed next to the 

MMCR at the ACRF SGP site. Observations by both radars are used to evaluate the 

potential of the 94-GHz as an insect-free radar and show that dual wavelength radar 

reflectivity measurements can be used to identify insect radar returns.
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1. INTRODUCTION

During the past 20 years, there has been substantial progress in the development and 

application of millimeter-wavelength radars in atmospheric research (Kollias et al., 

2006a). Their short wavelengths (3 mm and 8.6 mm, corresponding to frequencies of 94-

and 35-GHz, respectively) allow these radars to detect clouds with small droplets or ice 

crystals at high spatial and temporal resolution and infer important information on their 

microphysical and dynamical structure (e.g., Lhermitte, 1987; Frisch et al., 1995; Kollias 

and Albrecht, 2000; Sassen et al., 2000; Hogan et al., 2005). Although cloud radars are 

insensitive to Bragg scattering in the lower troposphere, hydrometeors are not their only 

source of atmospheric backscatter. Small insects produce strong radar echoes in the 

lowest 2-3 km of the atmosphere (e.g., Clothiaux et al., 2000; Geerts and Miao, 2005), 

especially over land and during the warm season. These insect radar echoes in the 

boundary layer have reflectivities comparable to those of clouds and precipitation, and 

contaminate and mask the true cloud returns, making detection of cloud base difficult 

without the use of a laser instrument. Insect radar echoes (“atmospheric plankton”, 

Lhermitte, 1966) are not new to radar meteorologists and in some cases can be used as a 

tracer of the wind field at low levels in scanning weather radar applications (e.g., 

Vaughn, 1985; Achtemeier, 1990; Wilson et al., 1994). 

The United States (US) Department of Energy (DOE) ARM program operates a network 

of millimeter-wavelength cloud radars (MMCRs; Moran et al., 1998) in several 

climatological regimes (Clothiaux et al., 2000). These cloud radars are one of the primary 

observing tools for quantifying the properties of nearly all radiatively important clouds 

over the ARM Climate Research Facilities (ACRF; e.g., Ackerman and Stokes, 2003). 
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Clothiaux et al. (2000) show that about 90% of the radar range gates in the boundary 

layer are contaminated by insect clutter during June through August at the ARM site in 

Oklahoma. This limits our ability to sample properly boundary layer clouds and to assess 

accurately the role of these clouds in Earth’s radiation budget. Thus, the accurate 

detection and removal of insect clutter from millimeter-wavelength cloud radar (MMCR) 

returns is of high importance to ARM program boundary layer cloud research. 

In this study we look beyond traditional Doppler radar moments to ask whether analysis 

of recorded Doppler spectra can serve as the basis for reliable, automatic insect clutter 

screening. We focus on the MMCR operated at the Southern Great Plains (SGP) ACRF 

in Oklahoma. Here, archiving of full Doppler spectra began in September 2003, and the 

pronounced insect presence regularly introduces clutter into boundary layer returns. The 

Doppler spectrum signatures of insects have characteristics that differ from those of cloud 

and precipitation particles. We are able to enhance these differences by applying an 

appropriate feature extractor to the recorded Doppler spectra and input the features to a 

neural network to classify each range gate as insect contaminated or not.  

Recently (fall of 2005), a 94-GHz Doppler, polarimetric radar was installed next to the 

MMCR at the SGP ACRF.  Insect observations from both radars are used to evaluate the 

potential of the 94-GHz radar as an insect-free one. When these two radars are collocated, 

dual wavelength radar reflectivity measurements can be used to identify insect radar 

returns.
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2. BACKGROUND

Since the beginning of MMCR observations at the SGP ACRF (November 1996) it was 

evident that insect radar returns pose a serious obstacle in our effort to detect boundary 

layer clouds.  Insect clutter is a common year-round occurrence at the SGP ACRF, even 

during the winter months.  For example, insect returns were observed on 85% of the days 

from January 1st through March 21st, 2006.  Similar insect-induced radar echoes have 

been frequently observed at other ARM sites, especially in the tropics (e.g., Darwin, 

Australia), and the European CloudNet sites (e.g., Chilbolton, United Kingdom).  Insects 

have radar reflectivities comparable to those from typical boundary layer clouds and 

Doppler velocities that are a combination of the vertical air motion and their own motion 

(Geerts and Miao, 2005). If only MMCR Doppler moments (reflectivity, mean Doppler 

velocity and Doppler spectrum width) are provided, it is difficult to achieve a reliable 

screening of insect clutter from cloud returns since their Doppler moment distributions 

overlap.  Screening of profiling cloud radar insect clutter has historically involved a 

laborious manual process of cross-referencing radar moments against measurements from 

other collocated instruments, such as the ceilometer (Clothiaux et al., 2000).

During the Single Column Modeling/Cloud Intensive Observing Period (IOP, 27 April to 

17 May 1998) at the SGP ACRF, in situ samples of airborne insects were collected. 

Using a remotely operated capture device (Ben Balsley, personal communication) flown 

from a tethered balloon and parafoil kite, insects were collected between the surface and 

700 m above ground level during several days of the IOP.  For a typical flight 

approximately 70 insects were collected during one hour at several hundred meters 

altitude.  This equates to roughly one insect per MMCR range gate most of the time. The 
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physical characteristics of the average insect were a wing length of 4-5 mm, a wing width 

of 1-2 mm and a body length of 2 mm, suggesting the presence of non-Rayleigh 

scattering at millimeter wavelengths.

A typical example of MMCR insect radar returns on a cloud-free day is shown in Fig. 1. 

The atmospheric plankton (insect layer, Lhermitte, 1966) covers the lower 1-2 km of the 

atmosphere. At 35-GHz, the insect radar reflectivity distribution covers a wide range (-35 

dBZ to 0 dBZ) and the texture of the insect layer exhibits great variability. Radar returns 

from non-precipitating and precipitating stratus and broken cumuli cover a similar range. 

The depth of the insect layer follows the diurnal variation of the convective boundary 

layer with a minimum during nighttime, sharply increasing during the morning and 

reaching a maximum in the afternoon.  Figure 2. shows hourly average temperature for 

the month of May 2005 at 60 m altitude, along with hourly average insect column height 

for the same period.  The hourly average temperatures are highly correlated with the 

height of the insect column. 

To demonstrate further that temperature is a strong controlling factor in insect layer 

presence and depth consider Fig. 3a.  This figure shows insect layer top height and the 10 

°C isotherm height from soundings. Their Pearson product-moment correlation 

coefficient is 0.67. The Pearson product-moment correlation coefficient of two variables 

X and Y is defined as their covariance divided by the product of their standard 

deviations: 

Cov(X,Y) / ( σ(X) σ(Y) )

We find that the 10 °C isotherm height can be used as an approximation for the ceiling of 
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the insect layer in most cases. A similar finding on the relationship between insect 

presence in the boundary layer and temperature was found by Khandwalla et al. (2002). 

We do find exceptions to this rule, one of which appears to be a willingness of insects to 

tolerate lower temperatures after prolonged periods of lower than average and, especially, 

sub-freezing temperatures. 

To gain a better sense of this relationship we identified a set of twenty one days from 

November 2005 through April 2006 with hourly averaged temperatures between 20:00 

UTC and 21:00 UTC (14:00 to 15:00 local standard time) falling into bins ranging from 0

°C to 20 ºC in 1 ºC increments (Table 1).  Our choice of the period 20:00 UTC to 21:00 

UTC was guided by the observation that both the hourly average temperature and insect 

coverage reach their peaks near this time of day (Fig. 2.). For consistency, when multiple 

days were available for a given temperature bin, we always chose the day with the least 

cloud cover. For each chosen day, we computed the fractional insect coverage averaged 

over the 2nd and 3rd range gates (150 m and 195 m) from the ground. Figure 3b shows that 

the fractional coverage near the surface can be predicted on the basis of temperature (T) 

in degrees centigrade by a sigmoid logistic function as follows:

2
10

1

1
T

e
f −

+
=

This model predicts a 50% probability of insect occurrence per range gate at a 

temperature of 10 °C, with a sharp fall-off at decreasing temperatures. Thus, near the 

ground, 10 °C seems to be an approximate threshold temperature as to whether insects 

decide to take flight on a given day. Geerts et al., (2005) show that insects may seek 

updrafts opportunistically to augment their own mobility. We see possible evidence of 
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this as well. Figure 3c shows the distribution of insect (vertical) mean Doppler velocities 

for May 5, 2005, at the SGP ACRF. The bimodality suggests two organized sets of 

behaviour with a preference for ascent at roughly 0.1 m s-1.

During the ARM multi-frequency radar IOP in 2001, a 94-GHz vertically-pointing 

Doppler radar was deployed next to the MMCR to evaluate whether the 94-GHz radar 

cloud measurements are less affected by insect clutter (Khandwalla et al., 2001; 2002). 

The analysis revealed that the MMCR (35-GHz) insect reflectivities are consistently 

higher by about 20 dB than the 94-GHz insect reflectivities.  The use of polarimetric 

filtering of insect returns was also explored at the ARM site. The findings suggest that 

both linear and circular polarization millimeter-wavelength radar measurements could 

offer a means of distinguishing between cloud droplets and insects (Sekelsky et al., 1998; 

Martner and Moran, 2000). However, this requires the extensive use of a polarization 

mode at the expense of valuable cloud information. 

In 2003, ARM initiated an upgrade of the MMCR digital signal processors to allow for 

enhancements to their operational parameters (Clothiaux et al., 2000; Kollias et al., 

2005). The new sampling strategy for the ARM profiling clouds radars (Kollias et al., 

2006b) includes significant improvement in temporal resolution (i.e., less than 1 s for 

dwell and 2 s for dwell and processing), wider Nyquist velocities, operational de-aliasing 

of the recorded spectra, removal of pulse compression while sampling the boundary 

layer, and continuous recording of 128 and 256-point FFT Doppler spectra. The MMCR 

Doppler spectrum reports the distribution of the return echo over a range of Doppler 

velocities. Although the main objective of Doppler spectra recording is the extraction of 
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information relevant to the microphysical and dynamical content of the observed cloud 

and precipitation conditions at the ARM sites, we investigate here the potential for 

accurate identification of insect clutter returns from the recorded Doppler spectra.  In the 

following sections we will present our automated algorithm for the detection of insect 

returns (section 3), examples of insect masks that illustrate its potential (section 4) and 

discuss the potential of a 94-GHz cloud radar as an insect-free radar. 

3. INSECT DETECTION ALGORITHM USING DOPPLER SPECTRA

Our primary objective was to develop an automatic spectrum analysis tool for generating 

masks of insect clutter that is solely based on recorded Doppler spectra. Such an 

algorithm is described here and it will be applied to all the ACRF (35- and 94-GHz) 

cloud radars that suffer from strong returns from insects.  The algorithm is applicable to 

all profiling radars that record Doppler spectra with adequate spectral velocity resolution 

(better than 10 cm s-1).

The body and wing motions of airborne insects produce Doppler radar spectra with 

morphologies that are often distinguishable by eye from those of clouds. This led us to 

develop a signal processing methodology that makes this distinction as well. Doppler 

spectra from range gates that have a contribution from insects have distinct features (e.g., 

Fig. 4) that are used by our algorithm for the classification of cloud, insect and mixed 

returns.

The fundamental morphology of insect-generated Doppler spectra is a sharp narrow peak, 
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as shown in Fig. 4a.  Figures 4a--h are also examples of insect-generated spectra.  It is not 

difficult to visualize these as composed of scaled super-positions of Fig. 4a.  Despite their 

great diversity, we have found insect clutter returns in the SGP ACRF MMCR to contain 

consistently spiked sub-peaks with sharp roll-offs.  The number of sub-peaks appears to 

be related to the density of the insect layer. More specifically, our analysis indicates that 

multi-peaked spectra are significantly more probable in higher insect density 

neighborhoods, leading us to speculate that, at least to some extent, peaks can be mapped 

to individual insects occupying a range gate.  To demonstrate this we computed for each 

range gate from 01:00 UTC to 02:00 UTC (19:00 to 20:00 local standard time) on 

February 1, 2006 the insect return density, which we defined as the fraction of insect-

containing range gates in a surrounding 5 by 5 time-height neighborhood of range gates. 

We then separated range gates into single- and multi-peaked groups and for each group 

computed the cumulative distributions of  insect return density (Fig. 5). The distribution 

of multi-peaked range gates is concentrated toward the higher insect return densities.

In addition to the goal of identifying insects near the ground in fair weather, we are 

interested in finding insects embedded within clouds, above clouds, and immersed in 

precipitation. Considering the spectral complexity associated with a dense cloud of 

insects, particularly ones embedded within cloud, we anticipated that effective 

characterization of the typically busy spectral fluctuations involved would be one key to 

success. Since many cases exist where morphological differences between insect and 

hydrometeor spectra are less than obvious, we sought a technique that operates on the 

basis of statistical best estimates and adopted a neural network approach.  Neural 

networks are well suited to 256-FFT point Doppler spectra (e.g., Kosko, 1992), which is 
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the size of spectra from the boundary layer mode of the MMCR at the SGP ACRF.

In this study we used a feed-forward neural network architecture and the back-

propagation of error training algorithm.  At the top level, our system is comprised of 

three main functional blocks (Fig. 6a). The first of these is a feature extractor that 

receives the raw Doppler spectra (64-, 128- or 256-FFT points for the MMCR operational 

settings) and transforms their information content into a form that is more expressive of 

the problem domain.  To remove unwanted noise, spectra with 256 elements are initially 

smoothed by a 5-element box-car window filter and spectra with 128 or 64 elements by a 

3-element window filter.  Since the spectra of radar echoes containing insects typically 

change quickly with Doppler velocity (i.e., FFT bin), we need as input to the neural 

network a measure of spectrum morphology that is sensitive to sharp roll-offs.   Doppler 

velocity itself is not well-correlated with the presence of insects so features should be 

insensitive to it (Morse et al., 2002).   We define positive velocity as downward 

throughout this paper.

The feature extractor generates outputs which are fed to the second main functional 

block, a feed-forward neural network (Fig. 6a). The output from the neural network is a 

continuous-valued vector with a component for each possible classification. The outputs 

range from 0.0 to 1.0, expressing in parallel the confidence of spectrum membership in 

each class. The third main functional block, the decision criterion, is simply a method of 

interpreting the neural network output vector and converting it into a discrete decision 

state. In our case it is the “winner-take-all” function, choosing the output with the highest 

value as the spectrum classification. The four neural network outputs are clear air, cloud, 
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precipitation, and insects.  In the results presented here we merged the cloud and 

precipitation classes into a single hydrometeor class.

The feature extractor (Fig. 6b) can itself be broken down into a set of smaller functional 

units. Of central importance amongst the feature extractor's outputs are frequency of 

occurrence distributions of the first and second derivatives of the Doppler spectra primary 

peaks. Figure 7 illustrates the processing steps to arrive at these distributions using insect 

and cloud Doppler spectra.  To begin each Doppler power spectrum (Fig. 7a) is stripped 

of content not belonging to its primary peak (Fig. 7b) based on a noise floor computed 

with the Hildebrand-Sekhon method (Hildebrand and Sekhon, 1974; Kollias, et al., 

2007), and applied to the input of the feature extractor. The primary peak's first and 

second derivatives (Figs. 7c and d) are computed at each point, and each is accumulated 

into a fifty-bin histogram, labeled  H2 and H1 (in Fig 6b), covering a range of -5.0 to 5.0 

dB/bin and dB/bin2, respectively (Figs. 7e and f).  The examples shown in Fig. 7 illustrate 

the differences in the frequency of occurrence distributions of spectral derivatives from 

cloud and insect Doppler spectra.  Collectively, the outputs of the two histograms provide 

100 of the feature extractor's 112 outputs, and thus convey the bulk of the spectral 

morphology information to the neural network. 

The feature extractor also contains two low-pass filters (LPF) that successively smooth 

the input power spectrum of the primary peak. The differences between the smoothed and 

original spectra are integrated and applied as two inputs to the neural network, as a 

measure of overall spectrum high frequency content.  The average power within the 

primary peak is also applied as a neural network input.  Spectral width (σ), mean Doppler 
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velocity (<V>), skewness (S(V)), and kurtosis (K(V)) of the primary peak, as well as 

target range (r), are applied to the neural network to take advantage of any secondary 

information they might convey. Three inputs labeled “64”, “128”, and “256” inform the 

neural network as to the number of bins in the original spectrum. Thus far, we have only 

used 256 element spectra, which is the number of FFT points used in the MMCR 

boundary layer mode. Finally, day of the year (JD) is input to enable seasonal variations 

to be incorporated into the neural network's training. For this study we kept the seasonal 

inputs constant, but may explore their utility in the future.  A modest-sized data set 

comprising 2000 Doppler spectra samples from each of the four classes (clear, cloud, 

precipitation, and insects) was used to train the classifier (Table 2). 

4. RESULTS

The insect/hydrometeor classifier output is evaluated against MMCR polarimetric 

measurements and ceilometer cloud base. A polarization mode was installed on the SGP 

ACRF MMCR (August 2004) that provides co- and cross-channel Doppler spectra and 

moments (Kollias et al., 2006).  During the polarization mode, returns from (right hand) 

circularly polarized transmitted signals are received by both left hand (co-channel) and 

right hand (cross-channel) circular receivers on a pulse-to-pulse basis. Utilizing the less 

negative circular depolarization ratios (CDRs), defined as the ratio of power received in 

the cross-channel to that received in the co-channel, of non-spherical scatterers (e.g., 

insects), the polarization mode can be useful for identifying insects in the boundary layer.  

For the SGP ACRF MMCR several problems limit the use of CDR for identification of 
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insects.  First, the poor antenna cancellation ratio (13-15 dB) of the MMCR imposes 

limitations on the use of CDR for identifying insects in radar returns. Second, the coarse 

temporal sampling interval (30 s) and spatial resolution (90 m) of the MMCR 

polarization mode further limits its use for insect detection.

Figure 8a shows the frequency of occurrence histogram of MMCR CDR observations in 

the boundary layer for the entire month of May 2005. The left peak corresponds to 

spherical scatterers, which we take to be hydrometeors, and the right to non-spherical, 

which we assume are insects.  We find this pattern of bimodality to occur ubiquitously 

throughout the MMCR data archive regardless of timeframe, as long as insect and 

hydrometeor returns are captured in the same sample set. It is beyond the scope of this 

study to determine whether insects avoid clouds, possibly enhancing the separation of 

these peaks. However, CDR values attributable to spherical hydrometeors dictate that 

very little power be received in the radar's cross-polarized channel. Even a small 

contribution of power to the cross-polarized channel from an insect embedded in a cloud 

will strongly swing the net CDR in a positive direction, in most cases well past the valley 

located around -10dB and into the right-hand peak.

The CDR measurements of spherical hydrometeors (i.e., cloud and drizzle droplets) are 

concentrated around -15 dB in accordance with the MMCR’s  antenna cancellation ratio. 

We run the insect/hydrometeor classifier for the same period (May 2005) and subset the 

CDR values into two groups according to our classifier's insect/hydrometeor output (Fig. 

8b). The resulting CDR frequency of occurrence distributions for insects and 

hydrometeors have good separation.  Using a CDR threshold of -10.5 dB, the classifier 
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successfully classifies an insect radar return as insect 92.7% of the time and a 

hydrometeor radar return as hydrometeor 86.9% of the time.

The misclassification of hydrometeor radar returns as insects by the Doppler spectra-

based classifier is further explored.  Figure 9 shows classification accuracies of insects 

and hydrometeors as a function of the spectral width of the primary peak.  For spectral 

widths less than 0.2 m s-1 the overwhelming probability is for the return to be from 

insects.  This, plus the similar morphologies of narrow insect and hydrometeor spectra 

makes identification of hydrometeor returns with narrow spectral widths difficult.  

Additional analyses indicated that the misclassifications are not random range gates in 

cloudy areas.  They are coherent structures that coincide with the presence of very low 

turbulence (quiet-air) conditions in clouds (e.g., Gossard et al., 1997). Such conditions 

are not frequently observed in boundary layer clouds.  When they do occur, the result is 

minimum turbulence spectral broadening and very low Doppler spectral widths (e.g., 

Kollias et al., 2001). Thus, we attribute a large portion of the misclassifications to 

confusion between narrow single-insect clutter and narrow hydrometeor Doppler spectra 

peaks in quiet air conditions.

Since most of the hydrometeor radar returns misclassified as insects have narrow Doppler 

spectra width (less than 0.2 m s-1) and very low radar reflectivity, we added a post-

classifier criterion to minimize these misclassifications.  If the Doppler spectrum width is 

less than 0.2 m s-1 and the classifier output is insect, the nearest (in time and height) CDR 

value is considered. If the CDR value is greater than -10.5 dB (non-spherical particle 

return) the decision state remains, otherwise the decision state is reversed. The addition 
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of this post-classifier criterion improved the accuracy of hydrometeor classification to 

approximately 95%. 

Figure 10a shows a time-height mapping of MMCR radar reflectivity for several days in 

May 2005, with a gap in the MMCR observations between May 10 and 11, 2005.  The 

temporal resolution is 4 s and the spatial resolution is 45 m.  During this period, 

substantial presence of insects with embedded boundary layer clouds and precipitation is 

observed.  The top of the insect layer fluctuates between 1 km and 2 km and there is poor 

separability of insects from hydrometeors in the radar reflectivity image.  In the absence  

of insects the MMCR (Moran et al., 1998) is capable of detecting clouds in the boundary 

layer with reflectivities as low as -50 dBZ. The presence of insects in the boundary layer 

generates a MMCR minimum detectable signal of -10 dBZ to -5 dBZ for hydrometeors. 

That is, the presence of insects impedes the detection of hydrometeors that do not 

produce radar reflectivities substantially higher than those from insects, with maximum 

values around -10 dBZ to -5 dBZ.

The hydrometeor/insect classification mask produced by the Doppler spectra-based insect 

detection algorithm for the same period in May 2005 is shown in Fig. 10b. The 

classification mask has three different classes: insects, hydrometeors (i.e., combined 

cloud and rain classes) and the CDR reclassified class, which contains samples initially 

classified as insect that were relabelled as hydrometeor using the CDR observations.  The 

classifier produces structures of hydrometeors which are cohesive in time and space and 

consistent with ceilometer cloud base detections.  
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Ceilometers can be used to identify the presence of insects and clouds in the boundary 

layer. The concentration of insects is several orders of magnitude lower than the 

concentration of cloud droplets and, as such, a ceilometer will only detect a hydrometeor 

layer.  If a ceilometer detects no cloud base height in the boundary layer, all the radar 

echoes are generated by insects. Accordingly, if the ceilometer detects a cloud base, the 

radar echoes below the ceilometer cloud base height can be attributed to insects and the 

radar echoes above the cloud base height can be attributed to hydrometeors. This 

radar/lidar approach is used to remove non-hydrometeor radar returns in the Active 

Remote Sensing of CLouds (ARSCL) product (Clothiaux et al., 2000).  ARSCL 

processes data from multiple instrument types to derive a best estimate of cloud location 

and boundaries.  This approach, which requires laser-derived cloud base heights, assumes 

that radar echoes below ceilometer cloud base are from hydrometeors only if the below 

cloud reflectivities are greater than temporally surrounding values from any known 

insects and no insects are above the ceilometer cloud base height, which is often not the 

case for shallow broken clouds.  As a result, the screening of radar insect clutter has 

historically involved a laborious semi-automated process of cross-referencing radar 

moments against measurements from other collocated instruments, such as ceilometer 

and lidar (Clothiaux et al., 2000).

Significant improvements in automatic cloud mask generation in insect-contaminated 

boundary layers are possible with the new automated Doppler spectra-based algorithm. 

Figure 11a shows two examples of boundary layer MMCR radar reflectivities: a four 

hour period (18:00--22:00 UTC or 12:00--16:00 local standard time) on May 5, 2005, and 

a twelve hour period (12:00--24:00 UTC or 6:00—18:00 local standard time) on May 12, 
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2005. In both cases, clouds and insects are present in the boundary layer. The cloud mask 

produced by ARSCL and the ceilometer cloud base are shown in Fig. 11b. The current 

ARSCL mask heavily depends on the detection of a cloud base height from the 

ceilometer or micropulse lidar.  For the May 5 case all MMCR radar reflectivities above 

the ceilometer cloud base are flagged by ARSCL as hydrometeor candidate echoes. 

Before 14:00 UTC on May 12, all MMCR radar reflectivities above the ceilometer cloud 

base are also flagged by ARSCL as hydrometeor candidate returns.  On May 12 radar 

reflectivities below the ceilometer base are also included in the ARSCL hydrometeor 

mask, as precipitating size particle radar returns between 22:00-24:00 UTC produce radar 

reflectivities greater than those from nearby (in time and space) insects.

The hydrometeor/insect classification masks produced by the Doppler spectra-based 

insect detection algorithm for the same time periods are shown in Fig. 11c.  For May 5 

the classifier is able to detect the shallow liquid layer embedded in the insect layer and 

the range of heights of the liquid layer is consistent with the ceilometer cloud base 

heights. Relative to the Doppler spectra-based classifier, the ARSCL mask overestimates 

the vertical thickness and cloud fraction of the hydrometeor layer, exemplifying one 

limitation of the current ARSCL scheme in cases where insects are present at the tops of 

hydrometeor layers.  For the May 12 case the classifier maps accurately the cloud amount 

and boundaries, preserving the precipitation returns from 22:00-24:00 UTC that are 

below ceilometer cloud base.  Taken together, these two results indicate that the current 

approach is a viable one for replacing the ARSCL algorithm and thereby removing the 

necessity of the two assumptions embedded in the ARSCL algorithm that we described 

above.
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5. 94-GHz RADAR OBSERVATIONS OF INSECTS

During previous field experiments at the SGP ACRF (e.g., fall 1997 Cloud IOP, 2001 

Multi-Frequency Radar IOP), 94-GHz radars were collocated with the ARM 35-GHz 

MMCR (e.g., Sekelsky et al., 1998; Khandwalla et al., 2001). Measurements from these 

IOPs indicated that insect radar returns at 94-GHz are almost 20 dB lower than 

corresponding measurements at 35-GHz. Non-Rayleigh scattering by insects (i.e., 

scattering by particles not small compared to the wavelength) at millimeter-wavelengths 

can explain the observed Dual-Wavelength Ratio (DWR) values from insects at the two 

radar frequencies. Scattering of liquid cloud droplets at millimeter wavelength falls in the 

Rayleigh scattering regime  (i.e., scattering by particles small compared to the 

wavelength), leading to identical radar reflectivities at the two wavelengths and DWR 

values of zero.  Khandwalla et al. (2003) developed insect filters based on the linear 

depolarization ratio (LDR) at 94-GHz and applied to data for which DWR values were 

also available.  LDR is defined to be the ratio of cross-polarized received power to co-

polarized received power for a radar with dual-channel linear polarization.  The findings 

of these studies indicated that 94-GHz radars are less sensitive to insects and that DWR 

measurements at 35- and 94-GHz and LDR measurements at 94-GHz can be used for 

distinguishing clouds from insects in the boundary layer. 

In 2005, a highly sensitive ground-based polarimetric 94-GHz Doppler radar was 

deployed to the SGP ACRF (Mead and Widener, 2005).  This 94-GHz radar incorporates 

the latest technological developments in millimeter-wavelength radar design, records 
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Doppler spectra, and measures LDR.  It was placed at the SGP ACRF to help resolve the 

insect problem in the boundary layer.  Examples of insect returns from both radars are 

shown in Fig. 12. On May 19, 2006, the ceilometer detected no cloud base, the 

microwave radiometer detected no liquid water, and the total sky imager (Long et al., 

2001) hemispherical pictures of the sky show no evidence of clouds.  Insects are clearly 

the only scatterers at radar wavelengths in the boundary layer on this day.  The 

morphology of the insect layer from the two radars is similar, with the top of the insect 

layer higher at 35-GHz by an average of 100--300 m relative to that at 94-GHz.  

Nonetheless, the 94-GHz radar detects many insects in the boundary layer, making it 

difficult to discriminate clouds from insects using 94-GHz radar reflectivities.

This last finding is not consistent with previous 94-GHz radar observations of insects at 

the SGP ACRF.  It is due to the greater sensitivity of the 94-GHz recently deployed at the 

SGP ACRF as compared to the 94-GHz radars used in the previous field experiments 

(e.g., fall 1997 Cloud IOP, 2001 Multi-Frequency Radar IOP).  Due to non-Rayleigh 

scattering, the insect returns at 94-GHz are suppressed by 20 dB on average compared to 

the same insect returns at 35-GHz (Fig. 13a).  The 94-GHz radars deployed at the SGP 

ACRF in the past had an average sensitivity of -30 dBZ to -33 dBZ at 1 km height. As a 

result, only a small portion of the observed insect reflectivities in Fig. 13a would have 

been observed by them.  The 94-GHz radar now at the SGP ACRF has an average 

sensitivity of -50 dBZ at 1 km height and a much larger number of (previously 

undetected) insect radar returns are observed.  As a result,  though the contrast between 

cloud and insect radar reflectivities at 94-GHz is enhanced (i.e., improved hydrometeor to 

clutter return ratio), it is not sufficient to separate hydrometeors from insects. 
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We also examined the use of 94-GHz LDR as a basis for filtering the insect returns in the 

boundary layer (Khandwalla et al., 2003). Fig. 13b shows the LDR frequency of 

occurrence distribution for May 21, 2006, a day that included both cloud and insect radar 

returns.  The polarization isolation of the 94-GHz antenna is around -26 dB, allowing the 

measurement of very low LDR values. Two different cloud masks are used, one based on 

co-polar channel signal-to-noise ratios (SNRs) and the other based on cross-polar channel 

signal-to-noise ratios.  As Fig. 13b illustrates, the insect LDR distribution covers values 

from -35 dB to +10 dB with a primay peak at -10 dB, depending on insect size and shape. 

The secondary peak at -26 dB is the hydrometeor LDR distribution and its position 

depends on the antenna polarization isolation. Ideally, we would like to have a better 

antenna polarization ratio (e.g., -35 dB) to create better separation between the insect and 

hydrometeor LDR distributions.  

As it is, the overlap of the LDR distributions suggests that it is not feasible to create an 

insect filter that is solely LDR-based. Also, LDR is not measurable at low signal-to-noise 

ratio conditions.  Nonetheless, LDR measurements could be part of a conditional insect 

filtering algorithm that includes other inputs, such as DWR or the Doppler spectra-based 

classifier output. 

6. SUMMARY

Uncertainty about the possible presence of insect clutter in cloud profiling Doppler radar 

returns is a hindrance to boundary layer cloud research in climates and seasons where 

insects are prevalent. This is particularly true in radiative transfer and cloud 
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parameterization studies for which liquid cloud layer thicknesses and fractions are of high 

importance. We have developed a new technique that extracts an indication of insect 

clutter primarily from Doppler spectrum morphologies, mitigating a deficiency in the 

ability of current profiling methods to locate accurately cloud boundaries in many 

situations where insects are present. The algorithm is applicable to all profiling radars 

that record Doppler spectra with adequate spectral velocity resolution (better than 10 cm 

s-1) to preserve the narrow spectral signatures of insects.

The technique is based on recorded Doppler spectra, a feature extractor that conditions 

insect spectral signatures and the use of a neural network algorithm for the generation of 

an insect (clutter) mask.  Perhaps the most important features in the current approach are 

frequency of occurrence histograms of spectral first and second derivatives, since insect 

and cloud spectra possess different slopes and concavities.  These features form the basis 

for about 90% of our input to the neural network.  Other features extracted from the 

spectra are the average received power, spectral width, mean Doppler velocity, skewness, 

kurtosis, and a measure of overall high frequency content.  Finally, we include range gate 

altitude and day of the year in order to capture possible altitude- and time-dependent 

insect effects.

The classifier successfully classifies an insect radar return as insect 92.7% of the time and 

a hydrometeor radar return as hydrometeor 86.9% of the time. The addition of a CDR-

based post-classifier filter further improves the accuracy of hydrometeor classification to 

approximately 95%.  The classifier exhibits operational stability and does not require any 



21

assumptions on the vertical extent of the insect layer, its presence, or not, above a low-

level cloud layer and does not depend on ceilometer data. Thus, it improves upon the 

current cloud masking technique in the boundary layer, which depends heavily on the 

detection of cloud base height by a ceilometer and assumptions on the vertical extent and 

location of insects. 

Observations from a 94-GHz radar recently installed at the SGP ACRF demonstrate that 

94-GHz radars detect significant amounts of insect return.  Previous assessments, which 

indicated that 94-Ghz radars detect fewer insects, were based on observations collected 

with radars with limited sensitivity that missed insect radar returns (due to non-Rayleigh 

scattering) below the radar noise.  We found that 94-GHz LDR measurements, by 

themselves, are not sufficient to filter insect radar returns.  The use of a polarization 

mode in millimeter-wavelength radar research for the filtering of insect returns is not a 

good practice because these measurements occur at the expense of other valuable cloud 

observations.   DWR measurements have the potential to discriminate hydrometeor and 

insect returns but require the presence of two radars.  In contrast, the Doppler spectra-

based algorithm for the discrimination of hydrometeor from insect returns requires only 

the recording of Doppler spectra and neither polarization nor DWR measurements.  The 

algorithm is applicable to all profiling radars that record Doppler spectra with adequate 

spectral velocity resolution (better than 10 cm s-1) to preserve the narrow spectral 

signatures of insects.

Success of the current Doppler spectra-based approach for identifying insect returns 

holds promise for further classification of radar returns in terms of cloud and rain 
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properties.  The implication is that efficient radar quality control algorithms with less 

dependence on multiple data streams are possible, as are algorithms that generate a much 

richer set of cloud classification masks tailored for the specific objectives of specialized 

research projects.
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9. TABLES

Temp. (°C) Date Temp. (°C) Date

0 1/10/2006 11 3/17/2006

1 3/22/2006 12 12/10/2005

2 2/16/2006 13 12/25/2005

3 1/20/2006 14 2/1/2006

4 12/16/2005 15 12/11/2005

5 3/19/2006 16 4/3/2006

6 2/12/2006 17 3/27/2006

7 1/17/2006 18 12/29/2005

8 3/24/2006 19 3/15/2006

9 1/13/2006 20 4/19/2006

10 3/25/2006

Table 1.   The set of twenty one temperature bins ranging from 0 °C to 20 ºC and their 

associated dates used to develop the model between surface temperature and insect 

coverage, as shown by the plot in figure 3b.



29

training class samples date

clear 2000 2/21/05

cloud 2000 2/21/05

precip 2000 2/21/05

insects 2000 3/28/05

Table 2.   Number of data samples and their dates of occurrence for each class used to 

train the insect clutter detection algorithm.
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10.  FIGURE CAPTIONS

Figure 1. Example of MMCR radar reflectivity on a clear (cloud-free) day at the SGP 

ACRF.  The layer of insect returns near the surface exhibits significant diurnal variability 

in intensity and vertical extent.

Figure 2. Hourly average surface temperature at 60 m and hourly average insect column 

height for May 2005. The Pearson correlation coefficient between average temperature 

and average insect column height is 0.92.  Insect column height is defined as the highest 

range gate containing at least 50% insect returns during a 15 minute interval.

Figure 3. (a) Time-series of insect column height (dotted line) based on the insect 

classifier mask and the 10 °C isotherm height (solid line) derived from the soundings for 

May 2005.  (b) The fractional insect coverage averaged over the 2nd and 3rd MMCR range 

gates (with centers at 150 m and 195 m) as a function of the temperature at 25 m altitude. 

Superimposed is the sigmoid logistic curve (shaded thick line) that models the 

observations reasonably well.  (c) The mean Doppler velocity distribution of insect radar 

returns.

Figure 4. (a--h) Examples of insect-generated MMCR Doppler spectra at the SGP 

ACRF.  The fundamental morphology is a sharp narrow peak, as shown in a).  It is not 

difficult to visualize a)—h) as composed of scaled super-positions of a).  Despite their 

great diversity, we have found insect clutter in the SGPACRF MMCR to contain 
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consistently spiked sub-peaks with sharp roll-offs.

Figure 5. Two curves providing evidence that occurrence of multi-peaked insect spectra 

is heavily biased toward high insect density time-height neighborhoods compared to 

single-peaked spectra. This leads us to speculate that, at least to some extent, spectral 

peaks can be mapped to individual insects. Here,  insect return density is defined as the 

fraction of range gates within a 5 by 5 time-height neighbourhood.

Figure 6. (a) Doppler spectra-based insect detection algorithm main functional 

blocks. (b) Expanded view of the various modules of the feature extractor and the 

neural network. Pv is the input power spectrum of the primary peak, LPF is a 

smoothing filter, H1 and H2 are spectral derivative frequency distribution 

accumulators, σ is the spectral width, <V> is the mean Doppler velocity, K(V) is 

kurtosis, S(V) is skewness, r is range, JD is day of the year, and “winner” is the 

winner-takes-all decision criterion.

Figure 7. (a)  Examples of insect (left) and cloud (right) MMCR Doppler spectra.  (b)  

Insect (left) and cloud (right) primary Doppler spectra peaks after noise floor 

thresholding.  (c)  Insect (left) and cloud (right) primary Doppler spectra peak first 

derivatives. (d)  Insect (left) and cloud (right) primary Doppler spectra peak second 

derivatives. (e)  Histogram of first derivatives for the insect (left) and cloud (right) 

Doppler spectra primary peaks. (f)  Histogram of second derivatives for the insect (left) 

and cloud (right) Doppler spectra primary peaks.
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Figure 8. (a)  Frequency of occurrence histogram of MMCR CDR in the boundary 

layer for the full month of May 2005. (b)  Frequency of occurrence histograms of 

MMCR CDR for insect and hydrometeor radar returns as labelled by the 

insect/hydrometeor classifier.

Figure 9. Accuracy of the insect classification as a function of primary Doppler spectra 

peak spectral width. For spectral widths less than 0.2 m s-1 the overwhelming probability 

is for the return to be from insects.  This, plus the similar morphologies of narrow insect 

and narrow hydrometeor spectra makes identification of hydrometeor returns with narrow 

spectral widths difficult.

Figure 10. (a)  Time-height mapping of MMCR radar reflectivity (0.0--5.3 km) for 

several days in May 2005. (b)  Corresponding hydrometeor/insect classification mask 

produced by the Doppler spectra-based insect detection algorithm for the same period.

Figure 11. (a)  Examples of MMCR reflectivities for mixtures of clouds and insects at the 

SGP ACRF. (b)  The ARSCL cloud mask (green) and the ceilometer cloud base height 

(black line). (c)  The hydrometeor/insect classification mask produced by the Doppler 

spectra-based insect detection algorithm for the same periods as in b). The ceilometer 

cloud base height, the black line in c), is not an input to the classifier.  Blue represents 

range gates classified as hydrometeors and green to those initially classified as insect by 

the classifier that are changed to hydrometeor based on MMCR CDR measurements.  

Red indicates the presence of insect returns.



33

Figure 12. (a)  Example of MMCR (35-GHz) insect returns at the SGP ACRF with (b) 

corresponding returns from the 94-GHz radar.

Figure 13. (a) Scatter plot of insect radar reflectivities at 35- and 94-GHz for May 19, 

2006. (b)  94-GHz LDR frequency of occurrence distributions for May 21, 2006.  For 

both curves in b) the left peak is from hydrometeors and the right is from insects. The 

solid curve is based on extracting the cloud mask from the co-polarized channel SNR, 

whereas the dotted curve is based on the cross-polarized SNR mask. The trade-off 

between sensitivity and class separability is evident, as the dotted curve shows better 

separability but is based on a more aggressive cloud mask with fewer overall returns.
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Figure 1. Example of MMCR radar reflectivity on a clear (cloud-free) day at the 
SGP ACRF.  The layer of insect-returns near the surface exhibits significant 
diurnal variability in intensity and vertical extent.
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Figure 2. Hourly average surface temperatures at 60 m and hourly 
average insect column height for May 2005. The Pearson correlation 
coefficient between average temperature and average insect column 
height is 0.92.  Insect column height is defined as the highest range 
gate containing at least 50% insect returns during a 15 minute 
interval.
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Figure 3. (a) Time-series of insect column height (dotted line) based on the insect classifier mask 
and the 10 °C isotherm height (solid line) derived from the soundings for May 2005.  (b) The 
fractional insect coverage averaged over the 2nd and 3rd MMCR range gates (with centers at 150 
m and 195 m) as a function of the temperature at 25 m altitude. Superimposed is the sigmoid 
logistic curve (shaded thick line) that models the observations reasonably well.  (c) The mean 
Doppler velocity distribution of insect radar returns.  Again, the insect layer height is estimated as 
the highest range gate averaging at least 50% insect returns during a 15 minute interval.

(A)

(C)(B)
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Figure 4. (a--h) Examples of insect-generated MMCR Doppler spectra at the SGP ACRF.  The 
fundamental morphology is a sharp narrow peak, as shown in a).  It is not difficult to visualize a)—
h) as composed of scaled super-positions of a).  Despite their great diversity, we have found insect 
clutter in the SGPACRF MMCR to contain consistently spiked sub-peaks with sharp roll-offs.
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Figure 5. Two curves providing evidence that occurrence of multi-peaked insect spectra 
is heavily biased toward high insect density time-height neighborhoods compared to 
single-peaked spectra. This leads us to speculate that, at least to some extent, spectral 
peaks can be mapped to individual insects. Here, insect return density is defined as the 
fraction of range gates containing insects within a 5x5 local time-height neighbourhood.
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Figure 6. (a) Doppler spectra-based insect detection algorithm main functional blocks. (b) 
Expanded view of the various modules of the feature extractor and the neural network. Pv is the 
input power spectrum of the primary peak, LPF is a smoothing filter, H1 and H2 are spectral 
derivative frequency distribution accumulators, σ is the spectral width, <V> is the mean Doppler 
velocity, K(V) is kurtosis, S(V) is skewness, r is range, JD is day of the year, and “winner” is the 
winner-takes-all decision criterion.

(A)

(B)
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Figure 7. (a)  Examples of insect (left) and cloud (right) MMCR Doppler spectra.  (b)  Insect (left) and 
cloud (right) primary Doppler spectra peaks after noise floor thresholding.  (c)  Insect (left) and cloud 
(right) primary Doppler spectra peak first derivatives. (d)  Insect (left) and cloud (right) primary Doppler 
spectra peak second derivatives. (e)  Histogram of first derivatives for the insect (left) and cloud (right) 
Doppler spectra primary peaks. (f)  Histogram of second derivatives for the insect (left) and cloud (right) 
Doppler spectra primary peaks.

(A)

(B)

(C)

(E)

(F)

(D)
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Figure 8. (a)  Frequency of occurrence histogram of MMCR CDR in the 
boundary layer for the full month of May 2005. (b) Frequency of occurrence 
histograms of MMCR CDR for insect and hydrometeor radar returns as labelled 
by the insect/hydrometeor classifier.

(B)

(A)
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Figure 9. Accuracy of the insect classification as a function of primary Doppler spectra 
peak spectral width. For spectral widths less than 0.2 m s-1 the overwhelming 
probability is for the return to be from insects.  This, plus the similar morphologies of 
narrow insect and narrow hydrometeor spectra makes identification of hydrometeor 
returns with narrow spectral widths difficult.
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Figure 10. (a)  Time-height mapping of MMCR radar reflectivity (0.0--5.3 km) for 
several days in May 2005. (b)  Corresponding hydrometeor/insect classification mask 
produced by the Doppler spectra-based insect detection algorithm for the same period.

(A)

(B)
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Figure 11. (a)  Examples of MMCR reflectivities for mixtures of clouds and insects at the 
SGP ACRF. (b)  The ARSCL cloud mask (green) and the ceilometer cloud base height (black 
line). (c)  The hydrometeor/insect classification mask produced by the Doppler spectra-based 
insect detection algorithm for the same periods as in b). The ceilometer cloud base height, the 
black line in c), is not an input to the classifier.  Blue represents range gates classified as 
hydrometeors and green to those initially classified as insect by the classifier that are changed 
to hydrometeor based on MMCR CDR measurements.  Red indicates the presence of insect 
returns.

(B)

(A)

(C)
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Figure 12. (a)  Example of MMCR (35-GHz) insect returns at the SGP ACRF with (b) 
corresponding returns from the 94-GHz radar.

(B)

(A)
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Figure 13. (a) Scatter plot of insect radar reflectivities at 35- and 94-GHz for May 19, 2006. (b)  
94-GHz LDR frequency of occurrence distributions for May 21, 2006.  For both curves in b) the 
left peak is from hydrometeors and the right is from insects. The solid curve is based on 
extracting the cloud mask from the co-polarized channel SNR, whereas the dotted curve is based 
on the cross-polarized SNR mask. The trade-off between sensitivity and class separability is 
evident, as the dotted curve shows better separability but is based on a more aggressive cloud 
mask with fewer overall returns.

(A)

(B)




