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ABSTRAcr

The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program operales 35­
GHz millimclcr·w:lvclenglh cloud radars (MMCRs) in several c1imalOlogically distinct regions. The
MMCRs. which afC centerpiece instruments for Ihe observation of douds and precipitation. provide con­
tinuous, vertically resolved informmion on all hydromclcors <1hovc the ARM C1ima[~ Research Facilities
(ACRF). However, Ih~ir ability 10 observc clouds in th~ lowCSI 2-3 km of Ihe atmosphere is oflen ubscured
by the presence of strong echoes from insects, especially during thc warm months at the conlinentflJ
midJatitude Saul hem Great Plains (SOP) ACRE Here, a new automflled technique for the delection and
elimination of insect-contaminated echoes from the MMCR observations is presented. Thc lechnique is
based on recorded MMCR Doppler spectra, fl feature extractor 111<It conditions insect spectral signatures,
and the usc of a neural nelwork algorithm for the generation of an insect (clullcr) mask. The technique
exhibits significam skill in the identification of insect radar returns (morc than 92% of insect-induced
returns arc idcntified) when the sale inpul 10 the classifier is the MMCR Doppler speclrum. The adlJilion
of circular polatil.alion observations by lhe MMCR and ccilomcler c1oud-hase measurements further im­
prove the performance of tlw technique and form an e\len more reliable method for the removal of insect
radar echoes at the ARM sileo Recently. a 94·0Hz Doppler polarimetric radar was installed next to the
MMCR at Ihe ACRF SOP sileo Observalions by bOlh radars arc used to evaluale the potential of the
94·GHz radar as being insect free and to show that dual wavelength radar reflectivity measuremenlS can be
used to identify inseci radar returns.

J. Introduction

During the past 20 yr, there has been substantial
progress in Ihe developmem and applicalion of mill i­
meter~wavelength radars in atmospheric research (Kol­
lias el al. 2007a). Their shan wavelengths (3 and 8.6
mm, corresponding to frequencies of 94 and 35 GI-Iz,
respectively) allow these radars to detcct clouds with
small droplets or ice cryslals al high spatial and tempo­
ral resolutions and to infer important information on
their microphysical and dynamical structures (e.g.,
Lhennilte 1987; Frisch el al. \995; Kollias and Albrechl
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2000; Sassen el al. 1999; Hogan el al. 2005). Allhough
cloud radars are insensitive to Bragg scattering in the
lower troposphere, hydrometcors are not their only
source of atmospheric backscatter. Small insects pro­
duce strong radar echoes in the lowest 2-3 km of the
atmosphere (e.g., C10lhiaux el ai, 2000; Geerls and
Miao 2005), especially over land and during Ihe warm
season. These insect radar echoes in the boundary layer
have renectivities comparable to those of clouds and
precipitation, and they contaminate and mask the lrue
cloud returns, making dctecLion of cloud base difficult
without the use of a laser insLrwnent. Insect radar ech­
oes ("alffiospheric plankton"; Lhermille, 1966) are nOI
new to radar meteorologists and in some cases can be
used as a lracer of the wind field al low levels in scan­
ning weather radar applications (e.g., Vaughn 1985;
Achtemeier 199]; Wilson el al. 1994).
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The U.S. Department of Energy (DOE) Atmo­
spheric Radiation Measurement (ARM) Program op­
erates a network of millimeter-wavelength cloud radars
(MMCRs; Moran et aJ. 1998) iIi several climatological
regimes (C1othiaux et aJ. 2000). These cloud radars are
one of the primary observing tools [or quantifying the
properties of nearly all radiatively important clouds
over the ARM Climate Research Facilities (ACRF;
e.g., Ackerman and Stokes 2003). Clothiaux et aJ.
(2000) show that about 90% of the radar range gates in
the boundary layer are contaminated by insect clutter
during June-August at the ARM site in Oklahoma.
This limits our ability to sample properly boundary
layer clouds and to assess accurately the role of these
clouds in earth's radiation budget. Thus, the accurate
detection of insect clutter in MMCR returns is of high
importance to ARM program boundary layer cloud re­
search.

In this study we look beyond traditional Doppler ra­
dar moments to ask whether analysis of recorded
Doppler spectra can serve as the basis for reliable, au­
tomatic insect-clutter screening. We focus on the
MMCR operated at the Southern Oreat Plains (SOP)
ACRF in Oklahoma. I-Iere, archiving of full Doppler
spectra began in September 2003, and the pronounced
insect presence regularly introduces clutter into bound­
ary layer returns. The Doppler spectrum signatures of
insects have characteristics that differ from those of
cloud and precipitation particles. We arc able to en­
hance these differences by applying an appropriate fea­
ture extractor to the recorded Doppler spectra and in­
putting the [catures to a neural network to classify each
range gate as insect contaminated or not.

Recently (fall of 2005), a 94-0Hz Doppler polarimet­
ric radar was installed next to the MMCR at the SGP
ACRF. Insect observations [rom both radars are used
to evaluate the potential of the 94-GHz radar as being
insect free. When these two radars are collocated, dual
wavelength radar reflectivity measurements can be
used to identify insect radar returns.

2. Background

Since the beginning of MMCR observations at the
SOP ACRF (November 1996), it was evident that in­
sect radar returns pose a serious obstacle in our effort
to detect boundary layer clouds. Insect clutter is a com­
mon year-round occurrence at the SGP ACRF, even
during the winter months. For example, insect returns
were observed on 85% of the days from 1 January to 21
March 2006. Similar insect-induced radar echoes have
been frequently observed at other ARM sites, espe­
cially in the tropics (e.g., Darwin, Australia), and the

European CloudNet sites (e.g., Chilbolton, United
Kingdom). Insects have radar reflectivities comparable
to those from typical boundary layer clouds and Dopp­
ler velocities that are a combination of the vertical air
motion and their own motion (Geerts and Miao 2005).
If only MMCR Doppler moments (reflectivity, mean
Doppler velocity, and Doppler spectrum width) are
provided, it is difficult to achieve a reliable screening of
insect clutter from cloud returns because their Doppler
moment distributions overlap. Screening of profiling
cloud radar insect clutter has historically involved a la­
borious manual process of cross¥referencing radar mo­
ments against measurements from other collocated in­
struments, such as the ceilometer (Clothiaux et al.
2000).

During the single-column modeling/cloud intensive
observing period (JOP; 27 April-17 May 1998) at the
SGP ACRF, in situ samples of airborne insects were
collected. Using a remotely operated capture device (Il.
Balsley 1998, personal communication) flown from a
tethered balloon and <l parafoil kite, insects were col­
lected between the surface and 700 m above ground
level during several days of the lOP. For a typical flight,
approximately 70 insects were collected during 1 h al
several hundred meters' altitude. This equates to

roughJy one insect per MMCR range gate most of the
time. The physical characteristics of the average insect
were a wing length of 4-5 mm, a wing width of 1-2 mm,
and a body length of 2 mm, suggesting the presence of
non-Rayleigh scattering at millimeter wavelengths.

A typical example of MMCR insect radar returns on
a cloud-free day is shown in Fig. 1. The atmospheric
plankton (insect layer; Lhermitte 1966) covers the
lower 1-2 km of the atmosphere. At 35 GHz, the insect
radar reflectivity distribution covers a wide range
(-35-0 dIlZ) and the texture of the insect layer exhib­
its great variability. Radar returns from nonprecipitat­
ing and precipitating strati and broken cumuli cover a
similar range. The depth of the insect layer follows the
diurnal variation of the convective boundary layer with
a minimum during nighttime, sharply increasing during
the morning, and reaching a maximum in the afternoon.
Figure 2 shows hourly average temperatures for the
month of May 2005 at a 60-m altitude, along with
hourly average insect column heights for the same pe­
riod. The hourly average temperatures are highly cor­
related with the height of the insect column.

To demonstrate further that temperature is a strong
controlling factor in insect-layer presence and depth,
consider Fig. 3a. This figure shows insect-layer top
height and the 10°C isotherm height from sowldings.
Their Pearson product-moment correlation coefficient
is 0.67. The Pearson product-moment correlation coef-
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FIG. I. Example of MMCR radar reflectivity on a clear (cloud free) day at the sap ACRE The layer of insect
returns near the surface exhibits signific<ml diurnal variability in intensity and vertiC-'ll extent.

ficient of the two variables X and Y is defined as their
covariance divided by the product of their standard de·
viations:

Cov(X, Y )/[u(X)u(Y)].

We find that the 10·C isotherm height can be used as an
approximation for the ceiling of the insecllayer in mOSl
cases. A similar finding on the relationship between
insect presence in the boundary layer and temperature
was found by Khandwalla et al. (2002). We do find
exceptions to lhis rule, one of which appears to be a
willingness of insects to tolerate lower temperatures af­
ter prolonged periods of lower-than-average and, espe·
cially, subfreezing temperatures.

To gain a better sense of this relationship we identi-

[jed a set of 21 days from November 2005 to April 2006,
with hourly averaged temperatures between 2000 and
2100 UTC [1400 to 1500 local standard time (LST)]
falling into bins ranging from 0° to 20°C in PC incre·
ments (Table 1). Our choice of the period 2000 to 2100
UTC was guided by the observation that both the
hourly average temperature and insect coverage reach
their peaks near this time of day (Fig. 2). For consis­
tency. when multiple days were available for a given
temperature bin, we always chose the day with the least
cloud cover. For each chosen day, we computed the
fractional insect coverage averaged over the second­
and third-range gates (150 and 195 m, respectively)
from the ground. Figure 3b shows that the fractional
coverage near the surface can be predicted on the basis
of temperature (T) in ·C by a sigmoid logistic function,
as follows:

f=-~=1 + e(lO Tl21·

This model predicts a 50% probability of insect occur­
rence per range gale at a temperature of 10°C, with a
sharp falloff at decreasing temperatures. Thus, near the
ground, 10·C seems to be an approximate threshold
temperature as to whether insects decide to take flight
on a given day. Geerts and Miao (2005) show that in­
sects may seek updrafts opportunistically to augment
their own mobility. We see possible evidence of this as
well. Figure 3c shows the distribution of insect (verti­
cal) mean Doppler velocities for 5 May 2005 at the SGP
ACRF. The bimodality suggesls two organized sets of
behavior with a preference for ascent at rougWy 0.1
ms- I . -

During the ARM multi frequency radar lOP in 2001,
a 94-GHz vertically pointing Doppler radar was de­
ployed next to the MMCR to evaluate whether the 94-
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FIG. 2. Hourly average surface tempernture at 60 m and hourly
average insect column height for May 2005. The Pearson corre­
lation coefficient between average temperature and average in­
sect column height is 0.92. Insect column height is defined as the
highest range gate containing at least SO% insect returns during a
IS-min interval.
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FIG. 3. (a) Time series of insect column height (dolled line) based on the insect classifier
mask and the lO"C isolherm height (solid line) derived from the soundings for MilY 2005. (b)
The fractional insect covcwgc averaged over the second- and third·MMCR range gates (with
ccnters at 150 and 195 m) as a function of the temperature at a 25-m altitude. Superimposed
is the sigmoid logistic curve (shaded thick line) that models the observations reasonably well.
(c) The mean Doppler velocity distribution of insect radar returns.

GHz radar cloud measurements are less affected by
insec' cluller (Khandwalla et al. 2001,2002). The analy­
sis revealed that the MMCR (35 GHz) insect renectivi­
ties are consistently higher by aboul 20 dB than the

TAULl:. 1. The set of 21 temperature bins ranging from 0" to
20"C and their associated dates used to develop the model be­
tween surface temperature and insec! coverage. as shown by the
plot in Fig. 3b.

Temperature Temperature
(0C) Date (0C) Date

0 10 Jan 2006 II 17 Mar 2006
I 22 Mar 2006 12 10 Dec 2005
2 16 Feb 2006 13 25 Dec 2005
3 20 Jan 2006 14 01 Feb 2006
4 16 Dec 2005 15 11 Dec 2005
5 19 Mar 2006 16 03 Apr 2006
6 12 Feb 2006 17 27 Mar 2006
7 17 Jan 2006 t8 29 Dec 2005
8 24 Mar 2006 t9 15 Mar 2006
9 13 Jan 2006 20 19 Apr 2006

10 25 Mar 2006

94-GHz insect renectivitics. The use of polarimetric fil­
lering of insect rcturns was also explored at the ARM
site. The findings suggest that both linear and circular
polarization millimeter-wavelength radar measure·
ments could offer a means of distinguishing between
cloud droplels and insects (Sekelsky et al. 1998; Mart­
ner and Moran 2001). However, this requires the ex­
tensive use of a polarization mode at the expense of
valuable cloud information.

In 2003, ARM initialed an upgrade of Ihe MMCR
digital signal proccssors to allow for enhancements to
Iheir operational parameters (Clolhiaux et al. 2000;
Kollias et al. 2005). The new sampling slrategy for the
ARM profiling cloud radars (Kollias el al. 2oo7b) in­
cludes significant improvement in temporal resolution
(i.e., less than 1 s for dwell and 2 s for dwell and pro­
cessing), wi~er Nyquist velocities, operational dealias­
ing of Ihe recorded spectra, removal of pulse compres­
sion while sampling the boundary layer, and continuous
recording of 128- and 256-poinl FFT Doppler speclra.
The MMCR Doppler spectrum reporls the distribution
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FICo. 4. (a)-(h) Exnmples of insect-generated MMCR Doppler spectra at the SGP ACRE The fundamental morphology is a sharp
narrow pcak, as shown in (a). II is not difficult to visualize (a)-(h) as composed of scaled superpositions of (a). Despite their great
diversity. insect clutter in the SGPACRF MMCR has been found 10 conlnin consistently spiked subpeaks with sharp roll-orrs.

of the return echo over a range of Doppler velocities.
Although the main objective of Doppler spectra re·
cording is the extraction of infonnation relevant to the
microphysical and dynamical content of the observed
cloud and precipitation conditions at the ARM sites, we
investigate here the potential for accurate identi(icarion
of insect c1uller returns from Ihe recorded Doppler
spectra. In the following sections we will present our
automated algorithm [or the detection of insect returns
(section 3) and examples of insect masks that illustrate
its potential (section 4). We then discuss the potential
of a 94-0H1. cloud radar as being insect free.

3. Insect-detection algorithm using Doppler
spectra

Our primary objective was to develop an automatic
spectrum analysis tool for generating masks of insect
c1uller Ihat is solely based on recorded Doppler spec­
tra. Such an algorithm is described here and will be
applied 10 all ACRF (35 and 940Hz.) cloud radars that
suffer (rom strong returns from insects. The algorilhm
is applicable to all profiling radars that record Doppler
spectra with adequate spectral velocity resolution (bet­
ler than 10 cm S·I).

The body and wing motions of airborne insects pro­
duce Doppler radar spectra with morphologies that are
often distinguishable by eye from those of clouds. This
led us to develop a signal-processing methodology that
makes this distinction as well. Doppler spectra from
range gates that have a contribution from insects have
distinct features (e.g., Fig. 4) that are used by our algo­
rithm for the classification of cloud, insect, and mixed
returns.

The fundamental morphology of insect-generated
Doppler spectra is a sharp narrow peak, as shown in
Fig. 4a. Figures 4a-h are also examples of insect­
generated spectra. It is not difficult to visualize these as
composed of scaled superpositions of Fig. 4a. Despite
their great diversity, we have found insect·c1ultcr re­
turns in the SOP ACRF MMCR to conlain consistently
spiked subpeaks with sharp roll-offs. The number of
subpeaks appears to be related to the density of the
insect layer. More specifically, our analysis indicates
that multipeaked spectra are significantly more prob­
able in higher-inseci density neighborhoods, leading us
to speculate that at least to some extent, peaks can be
mapped to individual insects occupying a range gate.
To demonstrate this we computed [or each range gate
from 0100 to 0200 UTC (1900 to 2000 local standard
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FIG. 5. Two curves providing evidence thaI occurrence of muJ­
lipcakcd insect spcctru is hc,wily biased toward high-insect den­
sity time-height neighborhoods compared to single-peaked spec­
tra. This leads us to speculate that at least to some extent, spectral
peaks can be mapped to individual insects. Here, insect-return
density is defined as the fraction of range gates within n 5 x 5
time-height neighborhood.

time) on 1 February 2006 lhe insect-return density,
wh.ich we defined as the fraction of inscct·containing
range gates in a surrounding 5 x 5 time-height neigh­
borhood of range gates. We then separated range gates
into single- and muItipeaked groups and for each group
computed the cumulative distributions of insect-return
density (Fig. 5). The distribution of multipeaked range
gates is concentrated toward the higher insect-return
densities.

In addition to the goal of identifying insects near the
ground in fair weather, we are interested in finding
insects embedded within douds, above clouds, and im­
mersed in precipitation. Considering the spectral com­
plexity associated with a dense cloud of insects, particu­
larly ones embedded within cloud, we anticipated that
the effective characterization of the typically busy spec­
tral fluctuations involved would be one key to success.
Because many cases exist in which morphological dif­
ferences between insect and hydrometeor spectra are
less than obvious, we sought a technique that operates
on the basis of statistical best estimates and adopted a
neural network approach. Neural networks are well
suited to 256-FFT-point Doppler spectra (e.g., Kosko
1992), whieh is the size of speclra from the boundary
layer mode of lhe MMCR at the SOP ACRF.

In this study we used a feed-forward neural network
architecture and the back propagation of error training
algorithm. At the top level, our system is composed of
three main functional blocks (Fig. 6a). The first of these

is a feature extractor that receives thc raw Doppler
spectra (64-, 128-, or 256-FFr poinls for lhe MMCR
operational settings) and transforms their information
content into a form that is more expressive of the prob­
lem domain. To remove unwanted noise, spectra with
256 elements are initially smoothed by a 5-element box­
car window filter, and spectra with 128 or 64 clements
are smoothed by a 3-elemcnt window filter. Because
the spectra of radar echoes containing insects typically
change quiekly with Doppler velocily (i.e., FFT bin), we
need as input to the neural network a measure of spec­
trum morphology that is sensitive to sharp roll-orrs.
Doppler velocity itself is not well correlated with the
presence of insects, so features should be insensitive to
it (Morse et al. 2002). We define positive velocily as
downward throughout this paper.

The feature extractor generates outputs that are fcd
to the second main functional block, a reed-forward
neural network (Fig. 6a). The output from the neural
network is a continuous-valued vector with a compo­
nent for each possible classification. The outputs range
[rom 0.0 to 1.0, expressing in parallel the confidence of
spectrum membership in each class. The third main
functional block, the decision criterion, is simply a
method of interpreting the neural network output vcc­
lOr and converting it into a discrete decision state. In
our case, it is the "winner-take-all" function, choosing
the output with the highest value as the spectrum clas­
sification. The four neural network outputs are clear
air, cloud, precipitation, and insects. In the results pre­
sented here we merged the cloud and precipitation
classes into a single hydrometeor class.

The feature extractor (Fig. 6b) can itself be broken
down into a set of smaller functional units. Of central
importance among the feature extractor's outputs arc
frequency of occurrence dislributions of the first and
second derivatives of the Doppler spectra primary
peaks. Figure 7 illustrates the processing steps to arrive
at these distributions using insect and cloud Doppler
speclra. To begin, each Doppler power speclrwn (Fig.
7a) is stripped of conlent not belonging toits primary
peak (Fig. 7b), based on a noise floor computed with
the Hildebrand-Sekhon method (Hildebrand and
Sekhon 1974; Kollias, et al. 2007b), and applied to the
input of the feature extractor. The primary peak's first
and second derivatives (Figs. 7c,d) are computed at
each point, and each is accumulated into a 50-bin his­
togram, labeled H2 arid HI (in Fig. 6b), covering a
range of -5.0 lo 5.0 dB bin- l and dB bin-2

, respec­
tively (Figs. 7e,f). The examples shown in Fig. 7 ilIus­
lrale the differences in the frequency-of-occurrence dis­
lributions of spectral derivatives [rom cloud and insect
Doppler spectra. Collectively, the outputs of the two
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FIG. 6. (a) Doppler spectra-based insect-detection algorithm main functional blocks. (b)
Expanded view of the various modules of the feature exlraClOr and the neural network. I'v is
the input power spectrum of the primary peak, LPF is a smoothing filter, HI and H2 are
spectral derivative frequency distribution accumulators. (T is the spectral width, (V) is lhe
mean Doppler velocity, K(V) is kurtosis, S(V) is skewness, r is range, JD is the Julian day of
the year, and "winner" is the winner-lakes-all decision criterion.

histograms provide 100 of the feature extractor's 112
outputs, and thus they convey the bulk of the spectral
morphology information to the neural network.

The feaLUre exlraCLOr also contains two low-pass fil­
ters (LPF) lhal successively smooth the input power
spectrum of Ihe primary peak. The differences belween
the smoothed and original spectra are integrated and
applied as two inputs to the neural network, as a mea­
sure of overall spectrum high-frequency content. The
average power within the primary peak is also applied
as a neural network input. Speclral width (CT), mean
Doppler velocity [(Vl], skewness [S(V)], and kurtosis
[K(V)J of the primary peak, as well as targel range (r),
are applied to the neural network to take advantage of
any secondary information they might convey. Three
inputs labeled "64," "128," and "256" infoml the neural
network as to lhe number of bins in the original spec·
trum. Thus far, we have only used 256-clement spectra,
which is the number of FIT poinIs used in the MMCR

boundary layer mode. Finally, Julian day of the year
(JD) is input to enable seasonal variations to be incor­
porated into the neural network's training. For this
study we kept the seasonal inpulS constant, but we may
explore their utility in the future. A modest-size dataset
comprising 2000 Doppler speclra samples from each of
the four classes (clear, cloud, precipitation, and insects)
was used to Irain Ihe classifier (Tabte 2).

4. Results

The inscct/hydrometeor classifier output is evaluated
against MMCR polarimetric measurements and ccilo­
meter cloud base. A polarization mode was installed on
the SGP ACRF MMCR (August 2004) that provides
co- and cross-channel Doppler spectra and moments
(Kollias el al. 2007a). During Ihe polarizalion mode,
returns from (right hand) circularly polarized Iransmil­
ted signals are received by both left hand (cochannel)
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primary Doppler spectra peaks after noise Ooor thresholding. (e), (Jeft) Insect and (right) cloud primaly Doppler
spectra peak first derivatives. (d), (left) Insect and (righl) cloud primary Doppler spectra peak second derivatives.
(e) HislOgmm of first derivatives for Ihe (Iefi) insect and (right) cloud Doppler spectra primary peaks. (f) Histo­
gram of second derivatives for the (left) insect and loud (right) Doppler spectra primary peaks.

and right hand (cross channel) circular receivers on a
pulse-la-pulse basis. Utilizing the less-negative circular
depolarization ratios (CDRs), defined as the ratio of
power received in the cross channel to that received in

the cochannel, of nonspherical scatterers (e.g., insects),
the polarization mode can be useful for identifying in­
sects in the boundary layer. For the SOP ACRF
MMCR several problems limit the use of CDR for
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TABLE 2. Number of data samples and their dates of
occurrence for each class used to train the iose!.:1 dUller-detection
algorithm.

FlO. 8. (a) Frcqucncy·of·occurrencc histogram of MMCR CDR
in lhe boundary layer for the full momh of May 2005. (b) fre­
quency-of-occurrence hislograms of MMCR CDR for insecl and
hydrometeor radar returns as labeled by the insecl/hydromcteor
classifier.

identification of insects. First, the poor antenna cancel­
laLion raLio (13-15 dB) of the MMCR imposes limita­
tions on the use of CDR for identifying insects in f<:ldar

returns. Second, the coarse temporal sampling interval
(30 s) and spaLial resolution (90 m) of the MMCR po­
larization mode further limits its usc for insect detec­
lion.

Figure 8a shows the rrequency-or-occurn:nce histo­
gram of MMCR CDR observations in the boundary
layer for the entire month of May 2005. The left peak
corresponds to spherical scatterers, which we take to be
hydromcLeors, and the right to nonspherical. which we
assume are insects. We find this pattern of bimodality
occurs ubiquitously LhroughoUL the MMCR data ar­
chive regardless of time frame, as long as insect and
hydrometeor returns are captured in the same sample

2.0

Insects

0.5 1.0 1_5
Spectrol Width (rn/s)

Hydromeleors

LO []"""""~~~~--~'--'""========'- ..---'--/1/·=_·=_.=.,.,

FIG. 9. Accuracy of tbe insect classification as a funclion of
primary Doppler spectra peak spectral widlh. For spectral widths
less than 0.2 m S-I Ihe overwhelming probability is for Ihe return
to be from insects. This, plus the similar morphologies of narrow
insect and narrow hydrometeor spectra, makes identification of
hydromelcor returns wilh narrow spectral widlhs difficuh.

0.0 'V
0.0

<It 0.8
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set. It is beyond the scope of Ihis study to dctennine
whether insects avoid clouds, possibly enhancing the
separation of these peaks. However, CDR values at­
tributable to spherical hydrometeors dictate that very
lillIe power be received in the radar's cross-polarized
channel. Even a small contribution of power to the
cross-polarized channel from an inseCI embedded in (I

doud will strongly swing the net CDR in a positive
direction, in most cases well pasl the valley located
around -10 dB and inLo the right-hand peak.

The CDR measurements of spherical hydrometcors
(i.e., cloud and drizzle dropleLs) are concentraLed
around -15 dB in accordance with the MMCR's an·
tenna cancellation ratio. We run the insect/hydro­
melcor classifier for the same period (May 2005) and
subset the CDR values into two groups according to
our classifier's insecL/hydromeleor OULpUL (Fig. 8b).
The resulting CDR frequency·of-occurrence distlibu·
tions for insects and hydrorneleors have good scpara­
lion. Using a CDR Lhreshold of -10.5 dB, the classifier
successfully identifies an insect radar return as insect
92.7% of Ihe time and a hydromeleor radar return as
hydrometeor 86.9% of the time.

The misclassification of hydrometeor radar returns as
insects by lhe Doppler spectra-based classifier is fur­
ther explored. Figure 9 shows classification accuracies
of insecls and hydromcLCors as a funclion of the spec­
tral width of the primary peak. For spectral widths less
than 0.2 m S-I tile overwhelming probability is for the
return to be from insects. This, plus Ihe similar mar·
phologies of narrow insect and hydrometeor spectra,
makes idenlification of hydrometeor rclUrns with nar·
row spectral widths difficult. Additional analyses indi·
caled that the misclassifications are not random range
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FIG. 10. (a) Timc-hciglll mapping of MMCR radar rencclivity (0.0-5.3 km) for scvel<ll days in May 2005. (b)
Corresponding hydromctcor/insccl classification mask produced by the Doppler spectra-based insect detection
algorithm for the same period.

gates in cloudy areas. They are coherent structures that
coincide with the presence of very low turbulence
(quiel air) condilions in clouds (e.g., Gossard et a1.
1997). Such conditions arc not Frequently observed in
boundary layer clouds. When they do occur, the result
is minimum turbulence spectral broadening and very
low Doppler spectral width (e.g., Kollias et al. 2001).
Thus, we attribute a large portion of the misclassifica­
tions to confusion between narrow single·insect clutter
and narrow hydrometeor Doppler spectra peaks in
quiet air conditions.

Because most of the hydromeLeor radar returns mis­
classified as insects have a narrow Doppler spectra
width (less than 0.2 m S-1) and very low radar reOec­
tivity, we added a postclassifier criterion to minimize
these misclassifications. If the Doppler spectrum width
is less than 0.2 m S-I and the classifier output is insect,
the neareSl (in time and height) CDR value is consid­
ered. If the CDR value is greater lhan -10.5 dB (non­
spherical particle return) the decision state remains,
otherwise the decision state is reversed. The addition of

this postclassifier criterion improved the accuracy of
hydrometeor classification to approximately 95%.

Figure lOa shows a time-height mapping of MMCR
radar reOectivily for several days in May 2005, with a
gap in the MMCR observations belween 10 and II May
2005. The temporal resolulion is 4 s, and the spatial
resolution is 45 m. During tllis period, a substantial
presence of insects with embedded boundary layer
clouds and precipitation is observed. The top of the
insect layer fluctuates between 1 and 2 km, and there is
poor separability of insects from hydrometeors in the
radar reflectivity image. In the absence of insects, the
MMCR (Moran et al. 1998) is capable of detecling
clouds in the boundary layer with refiectiviLies as low as
-50 dBZ. The presence of insects in the boundary layer
generates a MMCR minimum-delectable signal of -10
to -5 dBZ For hydromeleors. That is, the presence of
insects impedes the delection of hydromeleors thai do
not produce radar renectivities substantially higher
than those from insects, with maximum values around
-10 to -5 dBZ.
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The hydromelcor/insecl classification mask produced
by the Doppler spectra·based insect detection algo­
rithm for the same period in May 2005 is shown in Fig.
lOb. The classification mask has Ihree different classes:
insects, hydrometcors (Le., combined cloud and rain
classes), and the CDR reclassified, which contains
samples initially classified as insect thal were relabeled
as hydromcleor using the CD R observations. The clas­
sifier produces structures of hydrorncleors that are co­
hesive in time and space and consistent with ccilometer
cloud base detections.

Ccilometers can be used to identify the presence of
insects and douds in the boundary layer. The concen­
tration of insects is several orders of magnitude lower
than the concentration of cloud droplets, and as such, a
ceilomeler will only delect a hydromeleor layer. If a
ceilometer detects no cloud base height in the boundary
layer, all the radar echoes arc generated by insects.
Accordingly, if the ceilometer detects a cloud-base, the
radar echoes below the ceilomelcr cloud base heighl
can be atlributed to insects and the radar echoes above
the cloud base height can be allribuled 10 hydromete­
ors. This radar/lidar approach is used to remove non­
hydrometeor radar returns in the Active Remote Sens­
ing of Clouds (ARSCL) produci (Clothiaux et al. 2000).
ARSCL processes data from multiple instrument types
to derive a best estimate of cloud location and bound­
aries. This approach, which requires laser·derived cloud
base heights, assumes that radar echoes below ceilome­
ter cloud basc are from hydrometcors only if the below­
cloud reflectivities are greater than temporally sur­
rounding values from any known insects and no insects
are above the ceilorneter cloud-base height, which is
often not the case for shallow broken clouds. As a re­
suiI, Ihe screening of radar insect clutier has historically
involved a laborious semiautomated process of cross­
referencing radar moments against measurements from
other collocated instruments, such as ceilometer and
lidar (C1otbiaux el al. 2000).

Significant improvements in automatic c1oud·mask
generation in insect-conlaminated boundary layers are
possible with the new automated Doppler spectra­
based algorithm. Figure 11a shows twO examples of
boundary layer MMCR radar rellectivilies: a 4-h period
(1800-2200 UTC or 1200-1600 LST) on 5 May 2005,
and a 12-h period (1200-2400 UTC or 0600-1800 LST)
on 12 May 2005. In bOlh cases, clouds and insects arc
presenl in the boundary layer. The cloud mask pro­
duced by ARSCL and the ceilometer cloud base are
shown in Fig. llb. The currenl ARSCL mask heavily
depends on Ihe detection of a cloud base heighl from
the ceilometer or micropulse lidar. For the 5 May case,
all MMCR radar reflectivities above the ceilometer

cloud base are Dagged by ARSCL as hydromeleor­
candidate echoes. Before 1400 UTC on 12 May, all
MMCR radar reflectivities above the ceilometer cloud
base are also nagged by ARSCL as hydromeleor·
candidate returns. On 12 May, radar reflectivities below
the ceilometer base are also included in Ihe ARSCL
hydrometeor mask, as precipitating size particle radar
returns between 2200 and 2400 UTC produce radar re­
[]ectivities greater than those from nearby (in time and
space) insects.

The hydrometcorlinsect classification masks pro­
duced by the Doppler spectra-based insect-detection
algorithm for lhe same time periods are shown in Fig.
11c. For 5 May 2005, the classifier is able 10 deleci Ihe
shallow liquid layer embedded in the insect layer, and
the range of heights of the liquid layer is consistent with
the ceilometer cloud-base heights. Relative to the
Doppler spectra-based classifier, Ihe ARSCL mask
overestimates the vertical thickness and cloud fraction
of the hydrometcor layer, exemplif)'ing one limitation
of the current ARSCL scheme in cases in which insects
are present at the tops of hydromcteor layers. For the
12 May case, the classifier accurately maps the cloud
amount and boundaries, preserving the precipitation
returns from 2200 to 2400 UTC that are below ceilo­
meter cloud base. Taken lOgether, (hese tWO results
indicate that the current approach is a viable one for
replacing the ARSCL algorithm and thereby removing
lhe necessity of the two assumptions embedded in the
ARSCL algorithm described above.

s. 94-GHz radar observations or insects

During previous field experiments at the SGP ACRF
(e.g., fall 1997 cloud lOP; 2001 multi frequency radar
lOP), 94-GHz radars were collocated wilh Ihe ARM
35-GHz MMCR (e.g., Sekelsky et al. 1998; Khandwalla
et al. 2001). Measurements from these lOPs indicated
that inseci radar returns at 94 GHz are almost 20 dB
lower than corresponding measurements at 35 G Hz.
Non-Rayleigh scaltering by insecls (i.e., scattering by
particles not small compared to the wavelength) at mil­
limeter-wavelengths can explain the observed dual­
wavelength ratio (DWR) values from insects at the two
radar frequencies. Scattering of liquid cloud droplels at
millimeter-wavelengths falls in the Rayleigh scattering
regime (i.e., scattering by particles small compared to
the wavelength), leading to identical radar reflectivities
at the lwo wavelengths and DWR values of zero.
Khandwalla et al. (2003) developed inseci filters based
on the linear depolarization ratio (LOR) at 94-GHz
and applied to dala for which DWR values were also
available. LOR is defined to be the ralio of cross-
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FIG. 11. (<I) Examples of MMCR reOectivities for mixtures of clouds and insects al the SGr ACRF. (b) The
ARSCL cloud mask (green) and the ceilomctcr cloud-basc height (black line). (c) Thc hydromcteor/insect clas­
sific.ltian mask produced by the Doppler spectra-based insect detection algorithm for Ihe same periods as (b). The
ceilomcter cloud-base height, the black line in (c), is not an inpul 10 the c1assirier. Blue represents range gatcs
classified as hydrometcars and green to those initially classified as insect by the classifier that are changcd to
hydrameteor based on MMCR CDR measurements. Red indicatcs the presence of insect returns.

polarized received power to copolarized received
power for a radar with dual-channel linear polarization.
The findings of these studies indicated that 94-G1-I2 ra­
dars are less sensitive to insects and that DWR mea­
suremenls at 35 and 94 GHz and LDR measurements at
94 Gl-lz can be used for distinguishing clouds from in­
sects in the boundary layer.

In 2005, a highly sensitive ground-based polarimetric
94-Gl-lz Doppler radar was deployed to the SGP
ACRF (Mead and Widener 2005). This 94-GHz radar
incorporates the latest technological developments in
millimeter-wavelength radar design, records Doppler

spectra, and measures LOR. It was placed at the SGP
ACRF to help resolve the insect problcm in the bound­
ary layer. Examples of insect returns from both radars
are shown in Fig. 12. On 19 May 2006, the ccilometer
detected no cloud base, the microwave radiometer de­
tected no liquid water, and the total sky imager (Long
et al. 2001) hemispherical pictures of the sky showed no
evidence of clouds. Insects were clearly the only scat­
tcrers at radar wavelengths in the boundary layer on
this day. The morphology of the insect layer from the
two radars is similar, with the top of the insect layer
higher at 35 GI-lz by an average of 100-300 m relative
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FlO. 12. (a) Example or J\.·IMCR (35 GHz) inseci relUrns at the SOP ACRF with (b)
corresponding returns from (he 94-01-lz radar.

10 thaI at 94 GHz_ Nonetheless, the 94-GHz radar de­
lects many insects in the boundary layer, making it dif­
ficuil to discriminate clouds from insects using 94-GHz
radar renectivilies.

This last finding is not consistent with previous 94­
GHz radar observaIions of insects at the SGP ACRF.lt
is due 10 Ihe greater sensitivity of the 94 GHz recently
deployed aI the SGP ACRF as compared to Ihe 94­
GHz radars used in the previous field experiments (e.g.,
fall 1997 cloud lOP; 2001 muhifrequency radar lOP).
Due to non-Rayleigh scattering, the insect returns at 94
GHz are suppressed by 20 dB on average compared to
the same insect reIurns aI 35 GHz (Fig. 13a)_ The 94­
GHz radars deployed at the SGP ACRF in Ihe past had
an average sensitivity of -30 to -33 dBZ at a l-km
height. As a resuh, only a small ponicn of the observed

insect reflectivities in Fig. 13a would have been ob­
served by them. The 94-GHz radar now al Ihe SGP
ACRF has an average sensilivily of -50 dBZ al a 1-km
height and a much larger number of (previously unde­
tected) insect radar returns are observed. As a result,
though the contrast between cloud and insect radar re-

neclivilies al 94 GHz is enhanced (i.e., improved hy­
drometeor to clutter return ratio), it is not sufficient to
separate hydromcleors from insects.

We also examined Ihe use of94-GHz LDR as a basis
for filtering the insect returns in the boundary layer
(Khandwalla et aJ. 2003). Figure l3b shows Ihe LOR
frequency-of-occurrence distribulion for 21 May 2006,
a day that included both cloud and insect radar returns.
The polarization isolation of the 94-GHz antenna is
around -26 dB, allowing the measuremcnL of very low
LOR values. Two different cloud masks are used, one
based on eopolar channel signal-to-noise ratios (SNRs)
and the other based on cross-polar channel signal-to·
noise ralios. As Fig. 13b illuslrates, the insect LDR
distribution covers values from -35 to +10 dB with a
primary peak at -10 dB, depending on insect size and
shape. The secondary peak at -26 dB is the hydrome­
teor LOR distribulion, and ils position depends on Ihe
antenna polarizalion isolation. Ideally, we would like to
have a beller antenna polarizalion ratio (e.g., -35 dB)
to create better separation between the insect and hy·
dromeleor LO R dislribulions.
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FIG. 13. (a) Scallcrplot orinsccL radar renectjvities at 35 and 94 GJ-Iz for 19 May 2006. (b)
The 94-GHz LOR frequency~of·occurrencedislributions for 2\ May 2006. For both curves in
(b), the leFt peak is from hydromeleors and the righl is from inseclS. The solid curve is based
on extracting lhe cloud mask from Ihe copolarized channel SNR, whereas the dOlled curve is
hased on the cross-polarized SNR mask. The trade-off between sensitivity and class separa­
bility is evident, as the dotled curve shows beller separability but is based on a more aggressive
cloud mask with fewer overall returns.

As it is, the overlap of the LOR distributions suggests
that it is not feasible to create an insect filter that is
solely LOR based. Also, LOR is not measurable at low
signal-to-noise ratio conditions. Nonetheless, LOR
measurements could be pan of a conditional insect­
filtering algorithm that includes olher inputs, such as
DWR or the Doppler spectra-based classifier output.

6. Summary

Uncertainty about the possible presence of insect
dUller in c1oud~profiling Doppler radar returns is a hin-

drance to boundary layer cloud research in climates and
seasons where insects are prevalent. lltis is particularly
(rue in radiative transfer and cloud parameterization
studies for which liquid cloud layer thicknesses and
fractions are of high importance. We have developed a
new technique that eXlracts an indication of insect clut­
ter primarily from Doppler spectrum morphologies,
mitigating a deficiency in the ability of current profiling
methods to accurately locate cloud boundaries in many
situations in which insects are present. The algorithm is
applicable to all profiling radars that record Doppler
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spectra with adequate spectral velocity resolution (bel­
ter than 10 em 5- 1) to preserve the narrow spectral sig­
n<Hures of insects.

The technique is based on recorded Doppler spectra,
a feature extractor that conditions insect spectral sig­
naLUres and the use of a neural network algorithm for

the generation of an insect (c1uner) mask. Perhaps the
most imponant features in the current approach are
frequency of occurrence histograms of spectral first and
second derivatives, because insect and cloud spectra
possess different slopes and concavities. These features
form the basis for about 90% of OUf input to the neural
network. Olher features extracted from the spectra are
the average received power, spectral width, mean
Doppler velocity, skewness, kurtosis, and a measure of
overall high-frequ~ncy contenL Finally, we include
rilllge gate altitude and day of the year (Q capture pas·
sible altitude- and time-dependent insect effects.

The classifier successfully identifies an insect radar
relUrn as insect 92.7% of the time and a hydrometeor
radar return as hydrometeor 86.9% of the time. The
addition of a CDR-based postclassifier filler further im­
proves the accuracy of hydrometeor classification to
approximately 95%. The classifier exhibits operational
stability and does not require any assumptions on the
venical extent of the insect layer or in its presence (or
lack thereof) above a low-level cloud layer; also, it does
not depend on ceilometer data. Thus, it improves on
the current cloud-masking technique in the boundary
layer, which depends heavily on the detection of cloud
base height by a ceilometcr and assumptions on the
vertical extent and location of insects.

Observations from a 94-G Hz radar recently installed
al the SOP ACRF demonslrale Ihal 94-0Hz radars de­
tect significam amounts of insect return. Previous as­
sessments, which indicated that 94-GI-Iz radars detect
fewer insects, were based on observations collected
with radars with limited sensitivity that missed insect
radar returns (due to non-Rayleigh scattering) below
lhe radar noise. We found lhal 94-0Hz LOR measure­
ments, by themselves, are nOl sufficient to filter insect
radar returns. The use of a polarization mode in milli­
meter-wavelength radar research for the filtering of in­
sect returns is not a good practice because these mea­
surements occur at the expense of other valuable cloud
observations. DWR measurements have the potential
to discriminate hydromcteor and insect returns but re­
quire the presence of two radars. In contrast, the Dopp­
ler spectra-based algorithm for lhe discrimination of
hydrometeor from insect returns requires only the re­
cording of Doppler spectra, not polarization or DWR
measurements. The algorithm is applicable to all pro­
filing radars that record Doppler spectra with adequate

spectral velocity resolution (better than 10 cm S-I) 10

preserve the narrow spectral signatures of insecls.
Success of the current Doppler spectra-based ap­

proach for identifying insect returns holds promise for
further classification of radar returns in terms of doud
and rain properties. The implication is thal efficient
radar quality-control algorithms with less dependence
on multiple data streams arc possible, as are algorithms
that generate a much richer set of cloud classification
masks tailored for the specific objectives of specialized
research projects.
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