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Abstract. Regression analysis, especially the ordinary least squares method which assumes 
that errors are confined to the dependent variable, has seen a fair share of its applications in 
aerosol science. The ordinary least squares approach, however, could be problematic due to the 
fact that atmospheric data often does not lend itself to calling one variable independent and the 
other dependent. Errors often exist for both measurements. In this work, we examine two 
regression approaches available to accommodate this situation. They are orthogonal regression 
and geometric mean regression. Comparisons are made theoretically as well as numerically 
through an aerosol study examining whether the ratio of organic aerosol to CO would change 
with age.  

1.  Introduction and a General Structural Model  
The classical ordinary least squares regression theory relies on the assumption that the explanatory 
variables are measured without error. In aerosol science as well as in many other scientific disciplines, 
this assumption is often found untrue when randomness exists in the regressors due to measurement 
error or other underlying volatility. Two popular approaches, the orthogonal regression and the 
geometric mean regression, have been proposed for the analysis when both the dependent and the 
independent variables are random. The immediate question confronting the scientist is which approach 
to adopt for his or her data, and what to do if neither approach is suitable. In this paper, we address this 
question in the context of simple linear regression through the analysis of a general structural model 
suitable when both variables are random.  

Suppose both X and Y contain some random errors, ! and! , which may come from measurement 
or other resources.  A suitable model is as follows.    
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where ! and !  are independent random errors. There are two analysis approaches concerning this 
model: the functional and the structural. The basic difference between the two approaches is whether 
to consider !  as a non-random variable or a random variable following normal distribution with mean 
µ  and variance 2! , and independent to both random errors. Since the latter approach is more general, 
in the discussion below, we will follow the structural model where X and Y follow a bivariate normal 
distribution with mean and covariance structure as follows: 
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2.  Comparing Different Regression Approaches 
2.1.   Estimation Based on the General Structural Model  
For the general structural model above, its mean vector and covariance matrix can be easily derived as 
follows: 
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Given a random sample of observed X’s and Y’s, we can obtain the MLE of the slope of the 

regression. Its value, however, depends on the ratio of the two error variances                      [1] 
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Inference (hypothesis test, confidence interval) on the slope parameter can be carried out similarly 
using the maximum likelihood approach. We consider this the general and correct approach when both 
variables are random. Since it is a parametric model, the readers are reminded that normality 
transformation should be performed prior to the regression analysis if a variable is found not normal. 
In the following, we will compare two commonly used regression methods when both X and Y are 
random, the orthogonal regression and the geometric mean regression, to this general approach. 
Guideline will be provided on whether and when each approach is considered suitable.  

2.2.   Ordinary Least Square Regression (OLS) 
As illustrated in Figures 1a and 1b, the ordinary least square (OLS) estimate of Y on X will minimize 
the squared vertical distance ( )
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y x! !" "# from the points to the regression line. The OLS 

estimate of the slope is
1

ˆ /
XY XX
S S! = . This is the case when ! = "  in the general structural 

modelling approach. Similarly, the OLS estimate of X on Y would minimize the horizontal distance to 
the regression line. The latter is also called the reverse regression. The OLS is suitable when only one 
of the two variables is random.  
 
2.3.   Orthogonal Regression (OR) 
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Instead of minimizing the vertical (or horizontal) distance as in the OLS, the orthogonal regression 
takes the middle ground by minimizing the orthogonal distance from the observed data points to the 
regression line as illustrated in Figure 1c. 

 
 

Figure 1. The ordinary least squares regression (a, b) and the orthogonal regression (c). 
 

2.3.3. Point Estimate 
The resulting OR estimate of 

1
!  is: 

2 2

1

( ) 4ˆ
2 2

YY XX

YY XX YY XX XYXY

XY

S S

S S S S SS

S
!

"
+ #

" + " +
= =   

This is the same as the MLE in the general structural modelling approach when 1! = .It means that 
the orthogonal regression is suitable when the error variances are equal. 

 

2.3.2  The Connection Between Orthogonal Regression and PCA 
There is a close relationship between the Principle Component Analysis (PCA) and the Orthogonal 
Regression [3].  

For the sample covariance matrix of the random variables (X, Y), XX XY
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the slope of the first principal component is 
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the same as the slope estimator from the orthogonal regression.  
Intuitively, the first principal component is the line passing through the greatest dimension of the 

concentration ellipse, which coincides with the orthogonal regression line. Therefore, existing 
statistical inference techniques for the PCA can be applied directly to the inference of the slope 
parameter,

1
! , from the OR approach as shown in the following.  
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2.3.3. Inference for Orthogonal Regression 
From its equivalence with PCA, we can obtain the confidence interval and conduct hypothesis for the 
orthogonal regression slope as follows. 

Let l1 and l2 be the eigenvalues of the sample covariance matrix (l1 > l2), 
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Similarly, we obtain the following hypothesis test for the slope: 
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where 2 2 2

1 2 1 2( ) ( )r l l l l= ! +  

2.4.   The Geometric Mean Regression (GMR) 
Besides the orthogonal regression, another intuitive approach of taking the middle ground when both 
X and Y are random is to simply take the geometric mean of the slope of y on x regression line, and 
the reciprocal of the slope of x on y regression line. This approach is called the “geometric mean 
regression” (GMR). By definition, the estimated slope via the GMR approach is 
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Comparing to the MLE in the bivariate normal structural modelling approach, we notice that the 
GMR estimator is equal to the MLE if and only if 

YY XX
S S! =  [4].This means that the GMR 

approach is suitable when the randomness from X and Y are from the random errors only. That is, 
when we take the functional analysis approach by assuming that ξ is not random. 
      
3. Data Analysis 
We measured organic aerosol and CO concentration at 10 different ages (time since the CO was 
emitted) to examine if the ratio of organic aerosol to CO would change with age. On the time scale of 
interest CO is inert so this change would reflect the atmospheric reactions forming organic aerosols [8].  

We found it plausible to assume that the log transformation of CO follows normal distribution [9] 
[10], and the error variances for both measurements are equal [8]. That is 1! = . This means OR, 
coinciding with the general structural modeling approach, is presumably the most suitable model to 
use in our case.  

For comparison purposes, we also examined the OLS and the GMR models at each age point. It 
can be shown theoretically that the MLE of slope will decrease while λ increases: 
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This is reflected from the analysis of our particular data set. An obvious descending trend is shown 
from OR ( )1! = to GMR (λ ranges from 30 to 140) to OLS ( )! = "  at each time point (Figure 2). 

In summary, we found that the estimated regression lines using the GMR and OLS approaches both 
fell out of the 95% confidence interval (CI) of orthogonal regression estimate although the geometric 
mean regression provided closer estimates to the OR than the OLS. This illustrates that different 
regression approaches can yield drastically different results for a given data set.  

 
Figure 2. Analysis of data from an aerosol study 
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