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4.20-P                 A Method for the Automatic Detection of Insect Clutter

                                                in Doppler-Radar Returns

Edward Luke, Pavlos Kollias, Karen Johnson

Brookhaven National Laboratory, Upton, New York, USA

1. Introduction
The accurate detection and removal of insect clutter from millimeter wavelength cloud radar (MMCR) returns is of high
importance to boundary layer cloud research (e.g., Geerts et al., 2005). When only radar Doppler moments are
available, it is difficult to produce a reliable screening of insect clutter from cloud returns because their distributions
overlap. Hence, screening of MMCR insect clutter has historically involved a laborious manual process of cross-
referencing radar moments against measurements from other collocated instruments, such as lidar. Our study looks
beyond traditional radar moments to ask whether analysis of recorded Doppler spectra can serve as the basis for reliable,
automatic insect clutter screening. We focus on the MMCR operated by the Department of Energy's (DOE) Atmospheric
Radiation Measurement (ARM) program at its Southern Great Plains (SGP) facility in Oklahoma. Here, archiving of full
Doppler spectra began in September 2003, and during the warmer months, a pronounced insect presence regularly
introduces clutter into boundary layer returns.

2. Method
The wing and body motions of airborne insects produce Doppler radar spectra with morphologies that, to the trained
eye, are often distinguishable from those of clouds. This leads us to consider whether a signal processing methodology
can be devised to consistently make this distinction as well. Since many cases exist where morphological differences are
less than obvious, we seek a technique that operates on the basis of statistical best estimates. In the boundary layer, the
MMCR at the SGP records 256-FFT point Doppler spectra. Neural networks are well suited to these requirements. We
use a feed-forward neural network architecture and the back-propagation training algorithm. After training our classifier
on 4000 samples from each class (clear, cloud, insect), the processing steps used to classify Doppler spectra are depicted
in figure 1. The insects we are dealing with tend to produce clutter concentrated into narrow spectral width peaks with
sharp roll-offs and variable Doppler velocity. Often the peaks occur in clusters (figure 2) resulting in highly variable
measured Doppler widths.

As input to the neural network, we need a measure of spectrum morphology that is sensitive to sharp roll-offs, but is
simultaneously insensitive to Doppler velocities. That is, we seek invariance to peak positions within the Doppler
spectrum. To achieve this, we accumulate frequency histograms of spectra's first and second derivatives, anticipating
insect histograms to possess characteristic signatures. This information forms the basis for 89% of our input to the
neural network. Figure 2 shows the first and second derivatives of a primary peak. We also input scaled measures of
reflectivity, spectral width, Doppler velocity, skewness, kurtosis, and a sum of high-pass filtered spectrum values.
Finally, we include range gate altitude as a hint to possible altitude dependent insect effects.

3. Results
Figure 3 shows boundary layer reflectivity for May 5, 2005 at the SGP site, overlaid by ceilometer heights in black. This
day has a substantial presence of cloud and insects, but separation of the two based on reflectivity is virtually
impossible. Figure 4 shows the output of our insect classifier. We will compare this to figure 5, which shows a cloud
mask produced by the collection of algorithms known as Active Remote Sensing of Clouds (ARSCL), the state-off-the-
art in cloud profiling (Clothiaux et al., 2000). ARSCL processes data from multiple instrument types to derive a best

judywms
Text Box
__________
Presented at the 7th International Symposium on Tropospheric Profiling, Boulder, CO,
June 12-16, 2006.



estimate of cloud boundaries. At the start of the day, the insect classifier shows a short-lived cloud layer between 1500
and 2000 meters as well as an underlying insect layer extending from the ground to roughly 1000 meters. The ARSCL
mask also shows the cloud, and rejects the insects, as it should. Hours seven through eight see growth of a substantial
cloud layer, leading up to drizzle reaching the ground at hour ten.  Cloud with several periods of precipitation dominate
from here until hour fifteen. Both the classifier and ARSCL mask show general agreement for these features. After hour
fifteen (and a short gap in radar data), the cloud ceiling trends upward with the insect classifier showing a persistent
insect layer reappearing and extending from the ground to the rising cloud ceiling. Finally, over the last four hours of
the day, our classifier shows a thin layer of broken cloud embedded within insects above and below.

During the final three hours of the day, covered by the box labeled “C” in figure 5, there is a problem. The ARSCL
mask shows the presence of scatterers, but its quality control flags indicate ambiguity about their type. Referring back to
figure 3, the fluctuating ceilometer appears to confirm what our classifier calls a thin layer of broken cloud. It is well
recognized in situations such as this that cloud boundaries, especially cloud tops, are difficult to identify. During these
last three hours, most of the scatterers within the mask are probably insects. We can use radar polarimetry to support
this conclusion as follows. During its periodic polarization modes (M5 and M6), the SGP MMCR transmits a right hand
circular (RHC) pulse and receives the backscattered signals via RHC and left hand circular (LHC) channels in parallel to
enable dual polarization measurements. We compute the circular depolarization ratio, CDR = RM6 – RM5 , where RM5 and
RM6 are the mode 5 and mode 6 reflectivities in dB. Due to limited channel isolation (13.5 dB between channels), strong
scatterers result in leakage to both channels, limiting CDR to around -13.5 dB.

Pulse scattering from spherical cloud droplets has consistent polarization, whereas a random phase shift introduced by
irregularly structured targets, such as insects, causes scattering with random polarization. The resulting effect is for
returns from cloud droplets to be consistently attenuated and to cluster near the minimum CDR, but for insect returns to
produce a mean CDR near zero. To confirm the dominant target shape in the four time-height regions labeled A, B, C,
and D of figure 5 we compute CDR frequency distributions for the enclosed range gates. In regions B, C, and D, we
restrict the dataset to gates that are covered by the cloud mask and with reflectivity above noise in both polarizations.
For region A, with no cloud mask, we use all range gates that are above noise in both polarizations. Figure 6 shows the
resulting distributions. Within region “A” there is a tight clustering around zero, confirming our insect classification.
Region “B” shows tight clustering around -13.0 dB, close to the ideal attenuation for spherical scatterers. This confirms
our cloud/drizzle classification. Region “D” also has a strong peak close to -13.0 dB, supporting our cloud classification.
Curve “C”, centered at zero, appears to settle the ambiguity over the final three hours of the day. Our classifier's
conclusion that primarily insect scatterers occupy region “C” appears to be correct.

4. Conclusions
Uncertainty about the possible presence of insect clutter in cloud profiling Doppler radar returns is a hindrance to
boundary layer cloud research in climates and seasons where insects prevail. This is particularly true when cloud layer
thicknesses are important. We have developed a new technique that extracts an indication of insect clutter primarily
from Doppler spectrum morphologies, mitigating a deficiency in the ability of current profiling methods to accurately
locate cloud boundaries in many situations where insects are present.
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Appendix

Each Doppler spectrum to be classified is processed by a feature extractor where it is transformed into a
new pattern space with reduced dimensionality and a more orthogonal representation of the problem
domain. This maximizes neural network efficiency. Feature vectors are then applied to the neural
network. The resulting output is a continuous valued vector with a component for each possible
classification. These outputs range from 0.0 to 1.0, expressing the confidence of spectrum membership in
each class. There is more than one way to interpret the outputs. Our decision criterion implements the
“winner-take-all” approach, choosing the class with the highest strength as the spectrum classification.

Figure 1

An insect clutter spectrum with multiple peaks. First and second derivatives are shown in blue and red.

Figure 2



Boundary layer reflectivity for May 5, 2005 at the SGP site, overlaid by ceilometer heights in black.
This day has substantial presence of cloud and insects, but separation of the two based on reflectivity is
virtually impossible

Figure 3

Insect classifier output for May 5, 2005 at the SGP site. Insects are shown in orange and clouds in blue
and brown.

Figure 4



ARSCL Cloud mask for May 5, 2005 at the SGP site derived by processing data from
multiple instrument types. This represents the state-off-the-art in cloud profiling.

Figure 5

Figure 6




