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Abstract. Aerosol mass spectrum (AMS) data contain hundreds of mass to charge ratios and
their corresponding intensities from air collected through the mass spectrometer. The
observations are usually taken sequentially in time to monitor the air composition, quality and
temporal change in an area of interest. An important goal of AMS data analysis is to reduce the
dimensionality of the original data yielding a small set of representing tracers for various
atmospheric and climatic models. In this work, we present an approach to jointly apply the
cluster analysis and the non-negative least squares method towards this goal. Application to a
relevant study demonstrates the effectiveness of this new approach. Comparisons are made to
other relevant multivariate statistical techniques including the principal component analysis and
the positive matrix factorization method, and guidelines are provided.

1. Introduction

Atmospheric aerosols are significantly related to environmental issues such as rainfall, air pollution,
and climate change. In recent years, quantitative aerosol studies based on mass spectrometry data have
evolved rapidly in such field as particle formation research and air pollution analysis (see, e.g., [1]-[6]).
Another area of great interest is dimension reduction. The goal is to obtain, from the original high
dimensional aerosol mass spectrum (AMS) data, a much smaller set of representative tracers that will
elucidate the source and interaction of different aerosol components, and to be plugged in as part of
the model variables, to the next generation of climate models.

Several multivariate analysis techniques have been applied individually towards the dimension
reduction of AMS data. These include principal component analysis [7] and cluster analysis [8]. The
most widely used technique in the atmospheric research community however, is Positive Matrix
Factorization (PMF), also known as the non-negative matrix factorization [9]. It has been developed
[10] to yield factors with non-negative coefficients which would be more intuitive and interpretable
than factors with a mixture of positive and negative coefficients. Plenty of work using PMF have been
done [10-14] with two review papers published recently [15, 16]. However, a number of undesirable
features inherent in PMF including subjectivity and non-uniqueness [17] have made it clear that better
method must be developed to better serve the climate research communities.
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In this paper, we propose a joint cluster analysis on variables (VARCLUS) [18-20] and non-
negative least squares (NNLS) [21] approach to better achieve the goal of dimension reduction. Each
method alone is not new; however, their combination is novel and as shown later, is rather effective in
solving the problem at hand. The rest of the paper is arranged as follows. Section 2 provides a brief
introduction to the AMS data from Milagro. Section 3 describes the proposed method in details while
Section 4 presents the analysis of the Milagro data using the new method. Finally, Section 5 concludes
with a comparison between the proposed method and the existing methods, especially the PMF.

2. Aerosol Mass Spectrum Data

2.1 Aerodyne Mass Spectrometer

Ambient Pressure
Sampling Crifice Quadrupole Mass Spectrometer-] |
.
Aerodynamic Particle  Particle Beam
; Focusing Lens TOF Chopper
S L -
urbo Pump, urbo Pump, <'TU§rbD Pum? DS

Figure 1. Basic schematic of the Aerodyne aerosol mass spectrometer.
(http://cires.colorado.edu/~jjose/ams.html)

The aerosol mass spectrum data analyzed in this work are recorded by the Aerodyne mass
spectrometer. Its basic mechanism is illustrated in Figure 1. In summary, the air flows into the orifice.
Particles are then focused in the focusing lens and passed through the chopper which is set to either an
open or a closed mode. Vaporized and ionized, particles are introduced into the spectrometer
sequentially with their weights and frequencies recorded. The instrument alternates in the MS mode
and the TOF mode. During the MS mode, the chopper alternates between the open and blocked
position every 5 seconds and the particle rates are record, while during the TOF mode mass
spectrometer is set to a singe m/z and sampled at a user defined rate. In this work, only data from the
MS mode are involved. A full description of the Aerodyne mass spectrometer can be found in [1].

2.2 Data Preprocessing

The data we analyzed were collected on March 19, 2006 from Milagro containing signals with mass to
charge ratios (m/z) ranging from 1 to 452 measured every 12 seconds for a total of 943 measurements
in time. Two modes of data were obtained -- data recorded when the aerosol beam was unobstructed
(MSSopen) and data collected when the beam was blocked by the chopper (MSSClosed). Each mode
also has its own baselines, designated as MSSOpenBaseL and MSSClosedBaseL. We used the
difference between the open mode and the closed mode to remove the contribution from background
gas in the detector. Thus the data file we analyzed in this paper is named MSSDiff and defined as:

MSSDiff = (MSSOpen - MSSOpenBaseL) - (MSSClosed - MSSClosedBaseL)
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Data in MSSDiff contain negative values, which are expected for signals that are close to zero. Since
MSSDiff contains negative signals, it does not satisfy the requirement to apply PMF directly.
Although replacing all negative values with zeros would be a viable approach, it will nonetheless
destroy the linearity of the AMS data. Since the proposed joint cluster and NNLS approach would
allow negative values, we are able to retain all negative values for the analysis.

Our analysis is focused on the subset organic aerosols ranging in m/z values from 1 to 100.
Twenty-eight inorganic aerosols in the range (m/z’s 1-11, 14, 16-18, 20-23, 28, 32-36, 39-40, and 47)
were removed by setting the corresponding intensities to 0. The dataset was further normalized by
dividing by the standard deviation at each m/z value. In addition, two time steps (time = 353, 643
seconds) appeared as outliers and were removed. The processed data are shown in Figure 2.
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Figure 2.Pre-processed organic aerosol data where each colour represents the time series of a unique
m/z value.

3. Method

3.1 Notations and Overview

Let ORG represent the pre-processed AMS data with Ni columns for m/z values ranging from 1 to Ni,
and Nt rows for Nt temporal measurements. Thus the i column of the matrix ORG is the time series
corresponding to m/z value i, and the t" row of ORG is the mass spectrum at time point t. Our goal is
to find a mass spectrum basis, MS, with lower dimension of Nc¢, such that

ORG=C*MS+E (1)

Here, ORG is an Nt*Ni matrix (in our work Nt=941, Ni=100). MS is an Nc*Ni matrix, Nc<<Nt. Our
goal includes two parts: first, we need to decide Nc, the dimension of the basis; next, we need to
estimate MS.

The above decomposition can be solved by the principal component analysis (PCA), factor
analysis (FA) or positive matrix factorization (PMF). PCA and FA could yield a suggestive Nc based
on the variation explained by the basis. However, there are two apparent disadvantages to these
methods. First, it is hard to interpret the output basis; second, the output basis usually contains
negative values that are often unacceptable for practical purposes. The PMF method could avoid the
second problem but not the first one. Furthermore, PMF returns different output using different
starting matrix. That is, it is not unique [9, 17, 22].
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To resolve these issues, we propose a combined cluster analysis on variables (VARCLUS), PCA
and non-negative least square (NNLS) approach to better achieve the goal of dimension reduction. In
summary, first we use VARCLUS to determine the dimension Nc¢. Next we perform the PCA to obtain
the matrix C. Finally we apply the NNLS to estimate the non-negative matrix MS. More details are
given below.

3.2 VARCLUS and PCA

The goal of VARCLUS is to divide the m/z values into disjoint clusters based on their correlations.
The inherent linearity of AMS data usually returns explainable clusters with m/z values belonging to
the same aerosol chemical class grouped together. Therefore the number of major aerosol classes can
be estimated by the number of major clusters. Since the first principal component for each cluster is a
weighted linear combination of all m/z values in the given cluster, with non-negative coefficients, and
would explain the most (and often the majority) variation in the given cluster, it is the natural choice
of the representing tracer for each cluster. Thus the dimension of basis Nc equals to the number of
major clusters. And the basis consists of the first principal components from each major cluster. The
matrix C is thus determined.

The VARCLUS procedure follows the following steps. [23, 24]

1. We treat the m/z values as variables, and different time points as observations. The data set is
normalized by dividing by the standard deviation at each m/z value.

2. A cluster is chosen for splitting, for which the percentage of variation explained by its cluster
component is the smallest. (The whole dataset is in the same cluster at the very beginning.)

3. The chosen cluster is split into two clusters by finding the first two principal components,
performing an orthoblique rotation, and assigning each variable to the rotated component with which it
has the higher squared correlation.

4. Variables are iteratively reassigned to clusters to maximize the variance accounted for by the cluster
components.

Steps 2-4 are repeated until the stop criterion (total percentage of variation accounted for) is satisfied.
A hierarchical tree is produced as the final output.

In each cluster, we use the first principal component (PC) to represent the whole cluster. Each PC
forms a column of the matrix C. The PC’s from all major clusters thus form the basis (the tracer set).
We denote columns of ORG as MZ,,...,MZy (cach of length 941), while rows of ORG as
Ty,... Toqr.(cach of length 100). Thus, the i" column of C is C = Z a,MZ, . VARCLUS

produces disjoint clusters so that each C;is a weighted summation of disjoint subset of the m/z’s
(MZy’s). For practical reasons, clusters that would explain a small amount of variation in the data are
either merged to its nearest major clusters, or simply discarded.

keCluster #i

3.3 Non-Negative Least Squares
Now that we have obtained the basis dimension Nc and the basis matrix C, our next goal is to find the
matrix MS in

ORG= C *MS+E

941%100  941*Ne Nc*100
such that we can express each original m/z value as a linear combination of the basis with non-
negative coefficients. This will further elucidate the relations between the original AMS data and the
newly obtained tracer set. In other words, we need to calculate the non-negative coefficients 3 in the
following equation system:

Mz, = 181,1C1 + IBI,ZCZ +..t ﬂl,NcCNc +e
Mz, = ﬁZ,lCl +ﬂ2,2C2 +"'+ﬁ2,N(7CNc te,

WIOO = ﬂlOO,ICI + ﬂlOO,ZCZ tot ﬂlOO,NcCN(? + elOO
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This is achieved through the NNLS algorithm by minimizing || ORG — ORG ||, with the constraints that

each [ is non-negative. The details of the NNLS algorithm can be found in [21]. For better fit, we add
constant terms in the above linear equation system as follows.

Wl = 181,0 + ﬂl,lcl + ﬁl,ZCZ +..t+ IHI,NCCNC +e
Mz, = 182,0 + ﬂz,lcl + ﬂz,zcz ot /Hz,NcCNc +e, (2)

WIOO = ﬂlO0,0 +ﬂ100,lcl +ﬂ]00,2c2 +"'+ﬂ]00,Nchz' +e]00

In matrix form we have: ORG = C * MS , where C is C with an extra column of 1, and
941*¥100  941*(Nc+1) (Nc+1)*100

MS is MS with the added row (B> Brg-s Broo) - Notice that (BB, ..., By,,) is allowed to be
negative. We used the NNLS command in MATLAB to estimate f3.

4. Results

4.1 VARCLUS and NNLS output
The VARCLUS output, a hierarchical tree, is shown in Figure 3. Based on the output tree and the
related aerosol information, we have, clearly, 4 major clusters.
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Figure 3. VARCLUS output: the hierarchical tree. From the tree structural, we decided four major
clusters. Numbers in blue indicate the m/z values of cluster members while numbers in black are m/z
values not belonging to any major cluster. The proportion of variance explained at each step of the
binary tree split is displayed along the vertical axis.

Table 1 contains detailed information on these four major clusters. As discussed in Section 3.2,
the advantage of using VARCLUS is that the clustering results are usually explainable if there is
inherent linearity in the data. The AMS data are inherently linear with organic aerosols usually coming
from several main sources. For example, hydrocarbon-like organic aerosols (HOA) mostly come from
fossil fuel, while oxygenated organic aerosols (OOA) mostly come from secondary organic aerosols
(SOA) [7]. This property supports the VARCLUS data assumptions and in our output we can clearly
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identify these 4 clusters. All 1* PCs in these clusters represent a high percentage of variation explained
with non-negative coefficients. Thus, it is reasonable to use these four 1* PCs as the basis (tracer set)
for the given AMS data.

Table 1. VARCLUS and PCA output.
Total variation explained by the basis consisting of four PC’s is 71.14%.

Cluster Members Variation 1* PC Variation Label
(m/z values) Explained | in Each Cluster
15,25:27,38,41:43,45,50

Cluster#1 | 51,53:59,63,67:72,74:79, 49.72% 76.16% HOA
82:87,89,91:97,99,100

Cluster#2 | 48,64,65,66,80,81,98 9.15% 94.16% Sulfate

00A

Cluster#3 g’ég’ﬁ’%’”’““’ 9.50% 68.36% and

T BBOA

Cluster#4 | 30, 46 2.77% 99.68% Nitrate

Based on the VARCLUS output, we obtained the matrix C mentioned above. The matrix MS was
estimated using NNLS. The output is shown in Figure 4.
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Figure 4.The basis of four 1* PC’s are linear combinations of individual m/z values within each
cluster. Significant peaks on each 1% PC are labelled.

4.2 Validity of Tracers
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We checked the validity of the four tracers from three aspects: (a) whether they are interpretable for
the given aerosol study; (b) how much of the total variation they could explain; (c) whether they could
represent most of the aerosols in the original AMS data.

The organic aerosol factors from theoretic analysis are listed in Table 2 to check for (a).
Compared with Table 1, the VARCLUS and PCA outputs are consistent with these factors for each
major cluster containing all the corresponding critical m/z’s correctly.

For (b), we found that 71.14% of the total variation is explained by the tracers as shown in Table
1. Figure 4 shows the time series of the four tracers. Compared to the single m/z tracer used by Zhang
et al (2005), we found that the new tracers have larger variability as illustrated in Figure 5.

Table 2. Organic aerosol factors. The emphasized m/z’s are important signals for the given factor.

Organic acrosol Ionized at 600C m/z O: C ratio
factors

HOA Less
hydrocarbon-like CH,—>C_H_ " 27,29,41,43,55,57,69,71,... | Oxidized
organic aerosols

OO0A2

Oxygenated organic | C,H,0>C,H;0", C;H,0", R" | 43,55,...

aerosols type 11

BBOA More
biomass burning | R >R",C,H,0,", C;H,0," | 44,45,... Oxidized
organic aerosols

OOALl

Oxygenated organic | C,H,0, - CO,", HCO,", R" | 60,73,...

aerosols type |
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Figure 5.Time series of 1* PCs in clusters. Comparison between 1* PC in cluster#1 (HOA ) and m/z
57 is shown in Fig5.1; comparison between 1* PC in Cluster#3 and m/z 44 is shown in Fig5.3. The
single m/z values of m/z 44 and m/z 57 were used as tracers for OOA and HOA in Zhang et al (2005).
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To check for (c), we need to verify that most of the peaks in the aerosol mass spectrum could be
represented by our tracers. We first used the ordinary least squares regression (OLS) for this purpose.
For each m/z=i, we fit the equation M7 =, +a, *C +a,,*C, +a,,*C,+a,,*C, +e, » Where C,

represents the 1% PC in the j™ major cluster and i=1, 2,..., 100. The goodness of fit for each regression,
as evaluated by the coefficient of determinant R? for each regression equation, is reported in Figure 6.
We found that most R are bigger than 0.8 (the mean of R” is 0.81, the standard deviation is 0.23). For
the few m/z’s with small R? such as m/z19, it is because they are not in any major cluster and thus
their signals can not be expected to be explained by the tracers. Lastly, stepwise regression was
performed. The results support that these four tracers are not reducible.

We therefore conclude that the given tracers are highly satisfactory gauged by the three criteria

(a), (b) and (c).

4.3 Error Analysis

To further validate our analysis, especially the NNLS portion of the analysis, we performed an error

analysis by examining and comparing the coefficient of determination (R?) from both OLS and NNLS.
Let SSE = Zjﬂ (ORG, —O/RE]. )* be the sum of squared errors (SSE) for m/z=i (the i-th column in

ORG), and SS];:ZQ_‘“I (ORG,-ORG,)’ be the corresponding total sum of squares (SST). The
-

coefficient of determination (at m/z=i) is defined as [25]:

sz = 1_%
SST,

R? for each m/z using OLS or NNLS were calculated to examine the regression goodness-of-fit. We
can see OLS and NNLS give similar R* for most m/z’s in the given example. R’=0.36, which
corresponds to a multiple correlation of 60%, was used as a threshold to determine outliers. Six
outliers were found: they’re m/z 19, 24, 49, 62, 88, 90. The reason causing these outliers is quite clear.
These are the six m/z’s that are not assigned to any of the four major clusters as shown in Figure 7.
Hence, all the other m/z’s could be well represented by the four tracers (first PC’s of the 4 major
clusters) with non-negative constraints except for these outsiders.
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Figure 6.The coefficient of determination (R?) for each m/z using OLS or NNLS. Outliers are
specified.
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Figure 7. Outliers are displayed in the hierarchical clustering tree.

5. Discussion

Many commonly used multivariate statistical methods are not suitable in the intended AMS data
analysis of dimension reduction and tracer extraction due to negative coefficients of the resulting basis.
Both the PMF and the proposed method of joint cluster and NNLS analysis can achieve non-negative
tracer coefficients. The major draw-back of the PMF lies in its non-uniqueness and subjectivity.

Generally speaking, PMF is not unique. For example, if X=ABC, where A, B and C are all
positive matrix, then we have at least two different PMF’s in X=(AB)*C=A*(BC). Different
factorizations are called “rotations” in factor analysis. For the proposed joint analysis method, there is
little flexibility in deciding the major clusters and thus the basis. Subsequently, given the fixed C
matrix, the MS matrix determined by the NNLS procedure would be unique.

As P. Paatero (See [17]) pointed out “It is unfortunate that introducing a priori information also
introduces some subjectivity in the analysis.” To apply the PMF analysis, one needs to first decide
upon at least two things: the number of factors and the “rotation” parameter. Otherwise one will find
the solution non-unique. Both of these two choices have determinant effect on the final output. For our
method, we still have to refer to some prior knowledge from the field. However, the “subjectivity”
exists in only one step — the determination of major clusters based on the VARCLUS output.
Furthermore, even for this step, our decision is based mainly on objective criterion such as the percent
variation explained by each cluster as shown in the given study.

There is space yet for us to improve upon in the proposed method. First, since the sources of
organic aerosols are complicated, the disjoint clustering method may not perform well for overlapping
aerosol groups. Secondly, if the first principal component for a given cluster could only explain a
modest amount of variation, one would need to find additional tracer(s) for the given cluster. Perhaps a
combined VARCLUS and PMF approach with the PMF done within each cluster would better serve
our purposes. Further research is warranted in this area.
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