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Abstract
We simulated a marine stratus deck sampled during the Marine Stratus/Stratocumulus
Experiment (MASE) with a three-dimensional large eddy simulation (LES) model at different
model resolutions. Various characteristics of the vertical velocity from the model simulations
were evaluated against those derived from the corresponding aircraft in situ observations,
focusing on standard deviation, skewness, kurtosis, probability density function (PDF), power
spectrum, and structure function. Our results show that although the LES model captures
reasonably well the lower-order moments (e.g., horizontal averages and standard deviations), it
fails to simulate many aspects of the higher-order moments, such as kurtosis, especially near
cloud base and cloud top. Further investigations of the PDFs, power spectra, and structure
functions reveal that compared to the observations, the model generally underestimates
relatively strong variations on small scales. The results also suggest that increasing the model
resolutions improves the agreements between the model results and the observations in virtually
all of the properties that we examined. Furthermore, the results indicate that a vertical grid size
<10 m is necessary for accurately simulating even the standard-deviation profile, posing new
challenges to computer resources.
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1. Introduction

Aerosol indirect effect (AIE) on climate probably is the most
uncertain among known climatic forcings (Intergovernmental
Panel on Climate Change 2007); furthermore, its forward and
‘inverse’ estimates also demonstrate large discrepancies
(Anderson et al 2003). An uncertainty analysis pointed out that
vertical velocity (W ) was one of the largest uncertainties in the
assessment of the first AIE (Chen and Penner 2005). Vertical
velocity fields also were highlighted as the most important
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variable in the parameterization of the AIE in a single-column-
model inter-comparison study (Menon et al 2003).

Vertical velocity, W , is critical for aerosol activation
processes that are the first bridge between aerosols and
clouds, and is known to affect both the number concentration
(Twomey 1977) and the relative dispersion of cloud droplet
size distribution (Liu et al 2006). Updrafts/downdrafts also
significantly impact the temporal evolutions of pockets of open
cells of various reflective properties (Xue et al 2008), their
lifetime, and thus domain average reflectivity and radiative
budget consequentially. More importantly, W is known to
vary substantially, even in seemingly uniform stratocumulus
clouds (Lu et al 2007); such variation could influence the AIE
evaluation strongly in both maritime- and continental-clouds
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(Feingold et al 2003, Leaitch et al 1996). However, most
global climate models (GCMs) diagnose W based on large-
scale convergence/divergence, but their coarse resolution
(∼100 km) likely fails to represent subgrid processes that
generate small-scale fluctuations, and thereby limiting their
ability to characterize W and its variations (Kiehl et al 1998).
The high multi-scale variability in W probably is a major
source of large uncertainties in the expressions employed to
relate cloud properties (e.g., droplet concentrations and relative
dispersion) to pre-cloud aerosol properties (Ghan et al 1995,
Liu et al 2006, Peng et al 2005). Quantitatively understanding
and parameterizing the subgrid variability in W is also the
key to improving cloud parameterizations in GCMs in general
(Lohmann et al 1999, Intergovernmental Panel on Climate
Change 2007, Menon et al 2003).

High-resolution atmospheric models, such as cloud-
resolving models and large eddy simulation (LES) models, can
resolve the spatial-and temporal variations in W much better
than GCMs. Considering various observational limitations
(such as the instrumental restrictions, sampling bias) and
incomplete observational records, researchers suggested using
high-resolution simulations to complement such observations
(Ackerman et al 2004, Diner et al 2004) in developing the
parameterizations of subgrid variability. However, despite
the great progress in LES modelling, few studies have been
devoted to examining the variability in W in LES against
the corresponding observations. This lack is especially true
for high-resolution simulations mainly because of limited
computer resources.

Recognizing the profound significance of W and its
variability and the need to evaluate high-resolution models
against observations, in this study, we took the advantage
of a highly scalable supercomputer (IBM Blue Gene) which
is lately available at Brookhaven National Laboratory (BNL)
to explore the characteristics of W and its spatial variations
within a marine stratus cloud sampled on 19 July, 2005 during
the MASE (Marine Stratus/Stratocumulus Experiment, Daum
et al 2008). We compared aircraft in situ observations with
the LES outputs at different model resolutions. Special focus
was on the quantitative measures of variability, and on the
agreement between observations and LES outputs of different-
order moments of W (e.g., standard deviation, skewness, and
kurtosis), probability density functions (PDF), power spectra,
and structure functions of W .

2. Model set-up and case description

We chose the three-dimensional parallel version of the
Goddard cloud ensemble model (GCE) for this study
(Juang et al 2007, Tao et al 2003, Tao and Simpson
1993). Turbulence is parameterized via a 1.5-order closure
scheme; the microphysical parameterization of clouds is a
single-moment bulk scheme; and broadband shortwave- and
longwave-radiative transfer modules are interactively coupled
with cloud fields.

The model domain is 6.4 × 6.4 km2 horizontally, and
1.25 km vertically. The horizontal (�x) and vertical (�z) grid
sizes, respectively, are 25 and 10 m in the base case, denoted

as ‘X25Z10’. We conducted two sensitivity tests with different
vertical grid sizes of 20 and 40 m (denoted, respectively, as
‘X25Z20’ and ‘X25Z40’), mainly because the simulations of
this kind of sub-tropical marine boundary layer under strong
inversion (during the MASE) are more sensitive to vertical
resolution than to horizontal resolution (Guo et al 2008). Our
simulations began at 15:30 LST (local standard time) on 18
July, 2005; and the entire simulation period was 32.5 h. (Note:
Guo et al (2008) give more detailed descriptions of the model’s
set-up and the case of interest.) We mainly undertook our
analysis from 9:30 to 11:30 LST on 19 July when the aircraft
in situ measurements of W were available. During the MASE,
the measurements of W were made with a gust probe aboard
the Department of Energy G-1 research aircraft. The original
sampling frequency was 100 Hz. We utilized the W data at the
10 Hz frequency to reduce measurement noise. The associated
observational uncertainty was about 0.07 m s−1, mainly arising
from the interference among different electronic instruments
aboard the aircraft.

3. Model outputs and comparison with observations

3.1. Vertical profiles of standard deviation, skewness, and
kurtosis

Figure 1 compares the vertical profiles of standard deviation
(σW ), skewness (SW ), and kurtosis (KW ) of W from the aircraft
in situ observations with the model outputs at different model
resolutions. We note that the horizontal averages of W at
different altitudes generally are close to 0 m s−1, indicating
the near cancellation of updrafts and downdrafts over the
horizontal domain, and the importance of local fluctuations
(such as σW ) associated with the boundary layer turbulence.
According to the airborne observations (the red squares in
figure 1(a)), the magnitude of σW is about a few hundredths
of m s−1, and increases from 0.03 m s−1 at an altitude of 70 m
(near the cloud base) to 0.07 m s−1 at an altitude of 360 m
(near the cloud top), and then decreases sharply to nearly
0 m s−1 at an altitude of 500 m (above the clouds). These weak
vertical motions lead to a small maximum super-saturation rate
of about 0.05–0.08% near the cloud base (Daum et al 2008).

The simulated σW in ‘X25Z10’ compares reasonably well
with the observed σW and captures major vertical variations.
However, with a coarser resolution, such as in ‘X25Z20’ and
in ‘X25Z40’, the magnitudes of σW are underestimated, and
this underestimation becomes more significant with decreasing
model resolutions. Underestimation is expected because in a
lower-resolution simulation, small-scale convection is under-
resolved, and thus, smeared out by dissipation, so generating
weaker updrafts/downdrafts and smaller fluctuations (σW ). It
is noteworthy that this underestimation is more significant near
the cloud base than that at the middle of the cloud or near
the cloud top. This might be traceable to the following two
reasons. First, the cloud base of this stratus is low and close to
the sea surface. The simulated cloud properties near the cloud
base would, therefore, be more or less influenced by lower
boundary conditions, where W is set to be 0 m s−1. Second, the
large-scale forcing is of profound importance for simulation
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Figure 1. Profiles of the standard deviation (a), skewness (b), and kurtosis (c) of vertical velocity (W ) from the aircraft in situ observations
and from the model outputs at different resolutions sampled from 9:30 to 11:30 LST. Red squares represent the observations (Obs.); black
solid, dashed, and dotted curves refer to the model outputs in ‘X25Z10’, ‘X25Z20’, and ‘X25Z40’, respectively; pink up-triangles and
down-triangles refer to the averaged cloud top and cloud base heights, respectively.

results. Since we used nudging terms to emulate large-scale
forcing (Guo et al 2008), we conducted another sensitivity test
using a stronger nudging forcing. It turned out that there was a
better agreement with observations, and the relative difference
in (σW ) can be reduced to about 30% with the most refined
resolution of �x = �y = 25 m and �z = 20 m near the
cloud base (not shown here). Hence, large-scale forcing is
of importance, and more realistic forcing data are needed to
achieve better agreement with observations.

The observed values of skewness (SW ) generally are
negative throughout the cloud layer (figure 1(b)). It was
demonstrated that a negative SW often is associated with
downdraft cores surrounded by a large area of weak updrafts
(Moeng and Rotunno 1990, Moyer and Young 1991).
Accordingly, the dominance of the negative SW suggests that
cloud top longwave-radiative cooling is an important driver for
this marine stratus cloud. Near the cloud base, observations
suggest that the SW is slightly positive, signifying positive
buoyancy contributions from surface sensible and latent heat
fluxes. The SW then drops to −0.4 at the middle of the cloud
at an altitude of 0.28 km, and rises to about 0 above the cloud
layer (the red squares in figure 1(b)). From the model outputs,
the SW is consistently negative and tends to increase from the
cloud base to the cloud top (the black curves in figure 1(b)).
This monotonic increase of SW with height does not conform
to that from the observations, but is compatible with other LES
results (Moeng and Rotunno 1990). The discrepancy between
the model outputs and the observations may be associated
with the upper/lower boundary conditions (used in the model)
that change the shapes of eddies as eddies hit the boundary,
modify their circulations, and hence, impact the SW (Moeng
and Rotunno 1990). On the whole, the SW from ‘X25Z10’
seems to agree with that deduced in the observations from
the lower to upper cloud layers, although both ‘X25Z20’ and
‘X25Z40’ underestimate the magnitude of the SW .

The value of kurtosis (KW ) of the observed W is larger
than that of the modelled W in ‘X25Z10’, ‘X25Z20’, and
‘X25Z40’, indicating that the observed W has stronger local
fluctuations (or a ‘fatter’ tail) than the modelled one, especially
near the cloud base and the cloud top. Within the cloud layer,
the difference between the observations and model outputs is
relatively small, but not negligible (figure 1(c)).

Figure 2 depicts the relative differences of the model
outputs in ‘X25Z10’, ‘X25Z20’, and ‘X25Z40’ with respect
to the observations. Clearly, for σW and SW within the
cloud layer, the highest-resolution run (‘X25Z10’) exhibits the
smallest difference (∼30%), while the lowest-resolution run
(‘X25Z40’) shows the largest difference (∼100%) (figures 2(a)
and (b)). So, with increasing resolution there is better
agreement for the second and third order moments of W . For
the fourth-order moment (KW ), the magnitudes of the relative
difference all are about 100% for different resolution runs; here
the superiority of a higher-resolution simulation of ‘X25Z10’
is not evident (figure 2(c)). It is noteworthy that subgrid-
scale contributions are not explicitly included in the above
analysis, because most of the eddy energy is resolved in LES
(Moeng et al 1996) and the subgrid contributions are implicitly
accounted for via turbulence closure. Furthermore, most of the
higher-order moment statistics are not readily obtainable from
low-order turbulence closure schemes, for example, 1.5-order
closure or the first-order closure scheme, as implemented in
most LES models and cloud-resolving models.

3.2. Probability density function (PDF)

Preceding analyses suggest that the LES results agree
reasonably well with observations only for the lower-order
moments of W such as horizontal averages and σW in
high model resolution runs. The agreement between them
increasingly worsens with coarser model resolution and for
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Figure 2. Similar to figure 1, but for the relative differences (%) between the model outputs at different resolutions (i.e., ‘X25Z10’, ‘X25Z20’,
and ‘X25Z40’) and the aircraft in situ observations (Obs.).

Figure 3. Probability density functions (PDFs) of vertical velocity (W ) from the aircraft in situ observations and from the model outputs at
different resolutions near the cloud top (H = 0.37 km) in (a), at the middle of cloud (H = 0.28 km) in (b), and near the cloud base
(H = 0.07 km) in (c) sampled from 9:30 to 11:30 LST.

higher-order moments of W . The poor performance of
the model in generating higher-order moments implies the
possibility of its failure to simulate strong local fluctuations.
To confirm this point, we further examine, in this section, the
probability density functions (PDF) of W at different altitudes.

Figure 3 compares the PDFs of W derived from the
model simulations at three different resolutions with the
corresponding ones from the airborne observations. For
the purpose of clarity, we show only the results at three
representative altitudes: near the cloud base (H = 0.07 km),
at the middle of cloud (H = 0.28 km), and near the cloud

top (H = 0.37 km). All the PDFs peak near W = 0 m s−1

and are approximately symmetric around it, thereby explaining
the fact that both the observations and model outputs yield a
mean W of about 0 m s−1. The horizontal averages of the
observations are −0.006,−0.006,−0.007 m s−1, respectively,
at H = 0.07 km, 0.28 km, and 0.37 km; the model’s
averages are 0 m s−1 at all three altitudes. The negligibly small
mean vertical motion in this cloud suggests the importance
of local fluctuations for predicting aerosol activation and
the subsequent evolutions of the cloud microphysical- and
radiative-properties (Menon et al 2003, Leaitch et al 1996).
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Figure 4. Similar to figure 3, but for the relative differences (%) between the model outputs at different resolutions (i.e., ‘X25Z10’, ‘X25Z20’,
and ‘X25Z40’) and the aircraft in situ observations (Obs.).

From the cloud base to the cloud top, all the PDFs
tend to broaden, suggesting that turbulent vertical motions
strengthen with increasing altitudes. The PDFs from the base
run of ‘X25Z10’ compare best with the observations. With
decreasing vertical resolution, the PDFs become narrower and
the averaged magnitudes of W decline. Then accordingly,
the difference between the observations and the model outputs
becomes larger, especially over the ‘tails’ of the PDFs. Near
the cloud base, the underestimation of W is more significant
than those at the middle of cloud and near the cloud top.
Especially in ‘X25Z40’, the magnitude of W is less than
0.02 m s−1 (figures 1 and 3) while the observed W could
reach 0.16 m s−1. This underestimation is expected to under-
predict activated aerosol particles, and would potentially bias
the estimate of the first aerosol indirect effect. Nevertheless,
the underestimation could be gradually alleviated by refining
model resolution to some degree.

Although the model results capture the gross features of
the observed PDFs reasonably well, they fail to reproduce
the tails of the observed PDFs (figures 3 and 4). Compared
to the model outputs, the observations suggest much fatter
tails, and these differences increase as the magnitude of W
increases (toward the ‘tail’ of W ). It also is evident that the
magnitudes of relative differences between the observations
and the model outputs increase up to ∼100% when the
magnitude of W reaches or exceeds 0.1 m s−1 (figure 4),
suggesting that the model then increasingly under-represents
the local but relatively strong vertical motions. This under-
representation reinforces our findings from the analyses of
the standard deviation, skewness, and kurtosis discussed in
section 3.1 (figures 1 and 2).

3.3. Power spectrum

In addition to the PDFs, another aspect of the variability of a
variable is auto-correlation and/or variability at different scales
(frequencies). One way to measure this aspect of the variability
is via the power spectrum in Fourier space (Mason and Brown
1999). In other words, variables with the same PDF can exhibit
very different power spectra. Generally, multi-scale variability
can arise from different PDFs and/or auto-correlations. For
example, Mandelbrot (1997) refers to the variability with
a fat-tailed PDF as the ‘Noah effect’, and the variability
with the long-range dependence (auto-correlation) as the
‘Joseph effect’, respectively. Some studies have indicated
that turbulent clouds may feature both types of variability
(Marshak et al 1997, Davis et al 1996). Power spectral
analysis provides information on the auto-correlation of the
variable (of interest) and locates the dominant frequencies,
and hence, complements the PDF analysis. To illustrate this
point, figure 5 shows the power spectrum of W at H =
0.28 km where the agreement in PDFs between the airborne
observations and the model outputs is the best (figure 3(b)). For
the airborne observations, the power spectrum was calculated
by performing the periodograms of W at a given sampling
altitude. For the three-dimensional model outputs at a given
altitude, these one-dimensional power spectra were calculated
by performing the periodograms of W in the x-direction and
then averaging over the y-direction and over time from 9:30
to 11:30 LST. The power spectrum of the observed W clearly
follows the celebrated Kolmogorov’s −5/3 power law over a
range of wavenumbers from 10−4 to 3×10−2 m−1, so providing
some confidence in the observations. However, although the
power spectra from the tests of ‘X25Z10’, ‘X25Z20’, and
‘X25Z40’ are encouragingly similar, the power density of
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Figure 5. Power spectra of W at the middle of cloud (H = 0.28 km)
from the aircraft in situ observations and from the model outputs at
different model resolutions (‘X25Z10’, ‘X25Z20’, and ‘X25Z40’).

the modelled W generally is lower than the observed value,
suggesting that the model underestimates the variations in W
at various scales (especially at small scales). Nevertheless,
with increased model resolutions, the power spectrum tends
to show a slope closer to the ‘−5/3’ spectrum before falling
off sharply; also the power density is higher (especially at
high wavenumbers) and decays more slowly. Hence, higher-
resolution simulations are desirable to better resolve the small-
scale variability and long-range dependence of W , and to
reach closer agreement with observations as well as with
theoretical predictions. (Note: we conducted spectral analyses
at H = 0.07 and 0.37 km as well, and obtained similar spectral
behaviours for W from both the observations and the model
outputs.)

Furthermore, the power density of the modelled W
exhibits a sharp spectral fall-off from a certain wavenumber
(figure 5), although this sharp fall-off occurs at higher
wavenumber in higher-resolution runs. This falling-off is
associated with a filter operation that separates resolved scales
from subgrid scales. The filter length (λ) often is proportional
to the grid’s spacing, as is adopted in the turbulence (subgrid)
parameterization through which the resolved motions are
aware of the subgrid motions (Tao and Simpson 1993). With
increased resolution (or smaller grid spacing), λ becomes
smaller since λ is positively correlated with the grid’s size (�x ,
�y, and/or �z), so that less energy then is represented by
the subgrid processes that impose a dissipative effect upon the
resolved-scale processes. This means that the dissipative effect
of the subgrid processes becomes effective at smaller-scale
processes with increasing the model resolution. Accordingly,
a −5/3 slope behaviour could be better represented in smaller
scale (or higher wavenumber) processes, rather than smeared
out by the subgrid dissipation. In other words, this rapid drop-
off begins at higher wavenumbers in higher-resolution runs.

3.4. Structure function

Another way to examine auto-correlation and range-depend-
ence is to examine the so-called qth structure function (Monin
and Yaglom 1975), defined as the qth-order statistical moments
of the absolute changes in W (〈�W (r)q 〉) across the horizontal
distance r :

〈�W (r)q〉 = 〈|W (x +r)−W (x)|q〉 (q = 1, 2, 3, 4, . . .)

Figure 6. Ensemble averages of the second-order structure functions
of the vertical velocity (〈�W (r)2〉) versus the distance normalized
by the grid size (r/�x) at the middle of cloud (H = 0.28 km) from
the aircraft in situ observations (Obs.) and from the model outputs at
different model resolutions (‘X25Z10’, ‘X25Z20’, and ‘X25Z40’).

where 〈·〉 refers to ensemble averages, and here we substituted
it with horizontal average; x denotes spatial position. Previous
studies have suggested that the statistical moments, such as
〈�W (r)q〉 are likely to be independent of x (see Davis et al
1996, wherein there is a good description of the differences
and similarities between power spectral and structure function
analysis). We calculated different-order structure functions
at H = 0.28 km to uncover any statistical differences of
the horizontal variations in W . Figure 6 presents the 2nd-
order structure functions of W (〈�W (r)2〉) versus the distance
normalized by the grid size (r/�x). For the observed W , the
magnitude of 〈�W (r)2〉 increases with the distance, r , for
0.025 km < r < 25 km, and then declines for r > 25 km
(figure 6), indicating that the observed W is correlated at
(spatial) scales from 0.025 to 25 km, beyond which it becomes
less well correlated.

The observed W exhibits significant variations on small
scales (such as �x), but the modelled W likely fails to reveal
such variations. In ‘X25Z10’, the model can capture the
variations in W on a scale equal to or larger than 25�x =
32�x = 0.8 km (figure 6). In the coarser resolution runs
such as ‘X25Z20’ and ‘X25Z40’, the model only captures the
variations on the scale of 26�x = 64�x = 1.6 km or even
larger. Moreover, the increase of 〈�W (r)2〉 with r/�x is faster
in the coarser resolution runs, indicating that the simulated W
becomes more and more statistically non-stationary, therefore,
to obtain meaningful statistics for W , a longer dataset (and/or
over a larger domain) is needed (Davis et al 1996).

The magnitude of 〈�W (r)2〉 of the observed W generally
is larger than that of the modelled W , that is, the former usually
has larger spatial variations, especially at smaller r/�x . The
magnitude of 〈�W (r)2〉 increases with r/�x , but this increase
is much slower for the observed W than for the modelled one
(comparing the red squares with black markers in figure 6).
Consequently, the smaller the r/�x , the more the 〈�W (r)2〉
differs between them. The relative differences of the model
outputs with respect to the observations always are positive and
larger at smaller r/�x (figure 7(a)).

The analysis of the 2nd-order structure in physical space
basically confirms our findings about the second-order moment
from the power spectral analysis in Fourier space. To
further examine the long-range behaviour of the higher-order
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Figure 7. The relative differences of the second-order structure functions (log2〈�W (r)2〉) at the middle of cloud (H = 0.28 km) between the
model outputs at different model resolutions (‘X25Z10’, ‘X25Z20’, and ‘X25Z40’) and the aircraft in situ observations (Obs.) in (a); and the
relative differences of the qth-order structure functions (log2〈�W (r)q 〉, q = 1, 2, 3, 4) at the middle of cloud (H = 0.28 km) from the base
run of ‘X25Z10’ compared with the observations in (b).

moments, figure 7(b) shows the relative differences of the first-
, second-, third-, fourth-order structure functions (i.e., q = 1,
2, 3, and 4) for the base run of ‘X25Z10’. As evident from this
figure, the relative difference generally decreases with r/�x no
matter what the value of q is, suggesting that the model outputs
become more comparable (in magnitude) with observations
over longer averaging scales (or over larger domains). It is
especially noteworthy that the relative differences are bigger
for larger q (or higher-order structure functions), implying that
even for a run of the highest resolution, the model performs
increasingly poorly for higher-order structure functions. These
results are understandable since stronger fluctuations at smaller
scales carry relatively larger weights and become more distinct
in the higher-order moments and/or structure functions. This
relationship also underlines the deficiency of the models’
capability to capture these small-scale variations and/or the
higher-order moments and structure functions of W (such
as fourth-order ones). To obtain more robust numerical
results, we need more powerful computer resources to perform
simulations at higher resolution.

We also calculated the 2nd-order structure functions at
H = 0.07 and 0.37 km, and different-order structure functions
for the tests of ‘X25Z20’ and ‘X25Z40’, and noteworthily, the
results were qualitatively similar to the above. Hence, they are
not detailed in our discussion.

4. Concluding remarks

We examined various characteristics of the vertical velocity
(W ) within the marine stratus-topped boundary layer during
the MASE (Marine Stratus/Stratocumulus Experiment) both
from aircraft’s in situ observations and from large eddy
simulations. Our main purpose was to characterize W and its
vertical and horizontal variations, and to examine the fidelity
of large eddy simulations at reproducing them.

The horizontal average W at different latitudes are close
to 0 m s−1 from both the airborne observations and the

model outputs, suggesting that local fluctuations due to
boundary layer turbulence are major contributors to local
updrafts/downdrafts.

The magnitude of the vertical profiles of the standard de-
viations is comparable in magnitude between the observations
and the model outputs. Generally, the skewness is negative
within this cloud layer, indicating that cloud top radiative
cooling mainly drives this stratus cloud. The model outputs
underestimate the kurtosis compared to the observations. The
agreement between observations and model outputs generally
deteriorates, with coarser model resolution, for higher-order
moments of W , and towards the cloud top and/or cloud base.

Probability density function (PDF) analysis shows that
although the model captures the gross features of the observed
PDFs reasonably well, it fails to reproduce the ‘fatter’ tails
of the observed PDFs. Power spectral analyses also point
to an underestimation of small-scale variations in the model
outputs. Further structure function analyses reveal that small-
scale variations (here over a length scale of �x = 25 m) still
are significant, but the model probably under-resolves them
and thus smears them out. It also suggests that the scale-
independent statistics might be obtained only over a spatial
scale of at least 25 km. Therefore, to achieve meaningful
statistics, we need data not only from high-resolution runs
and/or samplings down to metres (or even more refined), but
also over larger spatial scales up to tens of kilometres or
greater.

The combined results indicate that the model does not
catch the relatively strong vertical motions at small scales,
and its agreement with observations worsens for higher-order
moments and/or structure functions of W and with coarser
model resolutions. A recent study by Guo et al (2008) found
that a minimum vertical resolution of 40 m is required to
capture cloud diurnal variations. The results in this study
suggest an even higher vertical resolution (i.e., finer than 10 m)
is necessary if the variability property of vertical motions is of
primary concern. Considering that small-scale variability in
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real turbulent clouds is ubiquitous, and that both the so-called
‘Noah effect’ and ‘Joseph effect’ are likely the norm in any
cloud, it is evident that all these aspects of variability in the
vertical motion are critical for activating aerosols into cloud
droplets and the subsequent droplet-growth processes (Shaw
2003, Kostinski and Shaw 2005).

In addition to the local fluctuations, the mean vertical
velocity is also of profound significance in the assessment of
aerosol indirect effects. For example, (in deep convection)
stronger updraft cores in concert with the suppression of
precipitation by aerosols can transport more cloud water to a
higher altitude, where the cloud water releases more latent heat
by freezing, reinforces convection strength, and thus magnifies
the aerosol indirect effect (Khain et al 2005).

Current deficiencies of LES models in representing
the multi-scale variability in vertical velocity necessitate
much finer numerical simulations to resolve small eddies,
extending over a larger spatial domain to encompass meso-
scale organizations of stratiform and cumulus convection,
and runs of longer duration to cover lifecycles of cloud
systems. Furthermore, the statistics of higher-order
moments are not readily obtainable via the low-order
turbulence closure schemes as commonly implemented in
cloud models. These requirements pose new challenges for
high-performance computer resources, effective and efficient
numerical techniques, and high-resolution simulations under
the limited computer resources.

Nevertheless, there exist potential measurement problems,
e.g., flow distortion, attack angle, amplification or reduction
of pressure fluctuations, and time delay of the circulation
generated by the wing (Kalogiros and Wang 2002a, 2002b).
Moreover, for higher-order moments, smaller time (length)
scale fluctuations are important. But their smaller power,
because of the decrease of the power density with wavenumber
to the ‘−5/3’ power (figure 5), requires more demanding
resolution and timing, and thus makes the measurements of
higher-order moments more challenging, in addition to the
required large sampling size (Lenschow et al 1994).
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