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Abstract
Observations from the moderate resolution imaging spectroradiometer (MODIS) were used in
combination with a large data set of field measurements to map woody above-ground biomass
(AGB) across tropical Africa. We generated a best-quality cloud-free mosaic of MODIS
satellite reflectance observations for the period 2000–2003 and used a regression tree model to
predict AGB at 1 km resolution. Results based on a cross-validation approach show that the
model explained 82% of the variance in AGB, with a root mean square error of 50.5 Mg ha−1

for a range of biomass between 0 and 454 Mg ha−1. Analysis of lidar metrics from the
Geoscience Laser Altimetry System (GLAS), which are sensitive to vegetation structure,
indicate that the model successfully captured the regional distribution of AGB. The results
showed a strong positive correlation (R2 = 0.90) between the GLAS height metrics and
predicted AGB.
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1. Introduction

Forests contain about 80% of global terrestrial above-ground
carbon stocks (biomass), and play an important role in the
global carbon cycle (Houghton 2005). Tropical forests are
a strong carbon sink (Stephens et al 2007) and tropical
deforestation contributes about one fifth of total anthropogenic
CO2 emissions to the atmosphere (Houghton 2007). Refining
these estimates requires improved knowledge of the density
and spatial distribution of forest biomass across the globe,
particularly in high biomass tropical forest ecosystems.

Africa has the second largest block of rainforest in the
world, next to the Amazon basin, but is the least known in
terms of carbon stocks and rates of forest conversion. The
existing biomass estimates are derived from national or partial
forest inventories that provide precise and accurate estimates
at the plot or local level, but much less accurate information
over broader spatial scales. This is partly because Africa is
diverse in terms of the wide range of ecosystems it includes,

which range from xeric shrublands in the Transvaal region
of the south and the Sahelian zone in the north to the dense
humid forests of the Congo Basin countries (White 1983). It is
also due in part to the very wide range of biomass estimates
associated with these diverse ecosystems (e.g. Gibbs et al
2007), degradation occurring in the Congo Basin associated
with industrial logging (Laporte et al 2007) and deforestation
for agriculture (Hansen et al 2008). But mostly, Africa is
least known because it has often been a difficult place to work
as a result of political instability, a diversity of languages
and cultures, and limited infrastructure to support scientific
research (much more limited than, for example, countries
of the Amazon Basin or Southeast Asia). As a result, few
countries in Africa have forest inventories and many are
obsolete.

The United Nations Framework Convention on Climate
Change (UNFCCC) recognized the important role of
deforestation in the carbon cycle and discussions have
been initiated to reduce emissions from deforestation and
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Figure 1. Pixel mosaic of MODIS NBAR data (RGB 2, 6, 1). The black lines define the MODIS tiles and country borders. The green dots
indicate the location of biomass data.

degradation (REDD) in developing countries. The suggested
schemes for carbon credit allocation based on deforestation
(Mollicone et al 2007) or carbon stock baselines (Gurney
and Raymond 2008) require accurate estimates of carbon
stock.

There have been no comprehensive studies that used
remotely sensed data to map the spatial distribution of forest
biomass for Africa. The most recent estimates are derived from
studies based on applying field measurements to forest cover
type classes (Gibbs et al 2007). While this is an approach that
has utility and has been used frequently in the past, it can miss
information on the variability of forest biomass density within
cover type classes. As a result, there are no detailed maps on
the amount and spatial distribution of carbon in the region.

Remote sensing has been extensively used as a basis
to infer forest structure and above-ground biomass (AGB)
(Dobson 2000, Saatchi et al 2007, Houghton et al 2007,
Baccini et al 2004, Blackard et al 2008, Zhang and
Kondragunta 2006, Zheng et al 2004, Lu 2006). Although
remotely sensed observations do not directly measure biomass,
the radiometry is sensitive to vegetation structure (crown size
and tree density), texture and shadow, which are correlated
with AGB, particularly in the short wave infrared bands
(of which the MODIS sensors have 4). Consequently,
remotely sensed spectral reflectance measurements can be
useful predictors of biomass (Gemmell 1995, Shugart et al
2000, Puhr and Donoghue 2000). Most recently, lidar
(light detection and ranging) remote sensing has been used
to successfully characterize vegetation vertical structure and
height, and to infer AGB (Lefsky et al 2005, Drake et al 2002).

In this paper, we describe mapping AGB across
tropical Africa using MODIS observations and extensive field
measurements. The approach leverages a combination of field
data that provide accurate information at the plot level, and
remote sensing data that are continuous in space over large
areas. A mosaic of best-quality MODIS observations provided

cloud-free spectral reflectance data for the entire region. Field
measurements were then used to calibrate a regression tree
model that estimated AGB for each 1 km2 pixel as a function of
the spectral information derived from MODIS data. The results
were cross-validated using a reserved set of field data, as well
as independent lidar measurements from the Geoscience Laser
Altimeter System (GLAS).

2. Data and methods

2.1. Study area

The study area encompasses about 20 million km2 of tropical
Africa, covered by 19 MODIS tiles (figure 1). The region
is characterized by a diverse range of moist tropical forest,
seasonal and semi-arid woodland, savanna, and wetland forests
(Laporte et al 1998, White 1983).

2.2. MODIS data

The MODIS Nadir bidirectional reflectance distribution func-
tion adjusted reflectances (NBAR) product (MOD43B4.V4)
have 1 km spatial resolution and a composited 16 day tem-
poral resolution. The data have been corrected for solar
and view geometry, atmospheric attenuation, and screened
for cloud cover (Schaaf et al 2002). We used seven bands
designed for land applications with wavelength from 459 to
2155 nm and analyzed ten 16-day periods of NBAR data
for each year between 2000 and 2003, in the process de-
veloping a mosaic of best-quality observations (figure 1).
The MODIS NBAR products we used are already cloud
screened as part of the production process (Schaaf et al 2002).
We leveraged this by using 4 years of data (2000–2003)
and focusing on filling any remaining gaps associated with
clouds by temporally compositing with high-quality screened
data.
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2.3. Lidar GLAS measurements

The GLAS instrument on board the Ice, Cloud, and Elevation
Satellite (ICESAT) is a waveform sampling lidar sensor
originally designed for observation of ice sheets (Zwally
et al 2002). Lidar metrics have been extensively used to
characterize vegetation structure (Sun et al 2008, Lefsky et al
2005, 1999) and to link structure metrics to biodiversity (Goetz
et al 2007). Drake et al (2003) found a strong relationship
between AGB and the height of median energy (HOME),
i.e. 50% of the returned energy between the leading and trailing
waveform edges. Because these HOME metrics are partly
determined by the amount of lidar energy that reaches the
ground surface, they are sensitive to both vegetation vertical
structure and horizontal canopy density (canopy cover) (Drake
et al 2002). As a result, they are useful for forest biomass
estimation, either at plot locations (with satellite sampling
instruments like GLAS) or mapping across spatial domains
(using one of several operating aircraft imaging sensors).

In this work we derived the average vegetation height and
the HOME for about 1.3 million observations recorded by
GLAS Laser 2 (L2A) (figure 2). Observations recorded from
Laser 2, acquired between Oct–Nov 2003, are considered to be
best-quality data based on transmitted power levels (Sun et al
2008), and these data were also closest in time to the MODIS
observations used for this study.

2.4. Biomass data

Field biomass data sets were derived from forest inventories
carried out in Republic of Congo (ROC), Cameroon and
Uganda. The forest inventories provided timber volume or
biomass information at the plot level, or as averages associated
with specific vegetation types. Because of time differences
between field data collection and MODIS observations, the
MODIS pixels used for the analysis were screened using high
resolution orthorectified Landsat GeoCover imagery (Tucker
et al 2003) to verify that major land cover transitions had not
occurred in the interim. Specifically, we used the GeoCover
imagery to determine visually if significant degradation or land
cover change had occurred between 1990 and 2000. If land
cover change or degradation was detected, the field data was
not considered for further analysis.

2.4.1. Republic of Congo. We analyzed a set of forest
inventory measurements collected over the period 2001–
2003, covering four forest management units in the northern
Republic of Congo. The forest inventory was done by a
commercial logging company and was based on a systematic
sampling design, with parallel transects of 200 m length
separated by 2.5 km. The sampling intensity was 1% for large
trees (trunk diameter 40 cm and above), 0.5% for small trees
(in the 20–40 cm range) and 0.2% for ‘regenerating trees’ (5–
20 cm range) (CIB 2003, Wilks 2003). For large and small
trees, all individuals were counted. For regenerating trees only
commercial species were counted. Above-ground biomass for
each plot was derived as a function of the total number of
trees within a range of stem diameter classes, using allometric
equations developed for moist tropical forest based on 172

Figure 2. The black dots show about 30% of the GLAS L2A (year
2003) shots after screening procedures and used in the comparison
analysis with the predicted biomass.

trees with DBH ranging from 5 to 148 cm (Brown et al 2005).
We recognize that logging companies are primarily interested
in timber volume and this can result in an underestimate of total
biomass because foliage and branches are not being included.
But this effect should be minimized because we used DBH
to convert to biomass using Brown et al (2005) allometric
equations that derive total biomass as a function of DBH.

To minimize the effects of subpixel variability and errors
due to mismatches in resolution between field data and satellite
observations, we overlaid the field plots on the MODIS
imagery and computed average biomass for only those 1 km
pixels with at least three field plots. Our assumption was that
three or more samples were sufficient to characterize the spatial
variability of biomass within the 1 km MODIS pixel. This
reflected a compromise between better characterization of the
pixels and the need for a sufficient sample size of training data.
Setting more stringent criteria resulted in less than a usable
number of training data, whereas relaxing it substantially and
unacceptably increased the error in the estimates. If there
were less than three plot per pixel those data were excluded.
Using this approach we identified a total of 942 pixel locations
containing more than 3 field plot inventories. Figure 3 shows
the frequency distribution of the biomass data aggregated to the
1 km pixel.

2.4.2. Cameroon. Forest inventories were collected over an
area of dense humid forest extending about 200 km north–
south and 700 km east–west (Honzak 1997). As with the ROC
data set, Landsat Geocover images were used to screen areas
that had experienced forest cover change between the time
of field inventories (1994) and the MODIS acquisitions. The
sampling design was originally optimized to capture spatial
variability within 1.1 km2 AVHRR Local Area Coverage
(LAC) observations, which is comparable in size to the 1 km
MODIS products we used. The measurements were converted
to biomass using the allometric equations of Brown (1997). A
total of 61 sample locations were retained.
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Figure 3. Frequency distribution of field measurements aggregated to the MODIS resolution for Cameroon, Congo, and Uganda. In the
bottom right corner the distribution of training data used is shown.

2.4.3. Uganda. We derived training data sets from a biomass
map produced as part of the Ugandan national biomass
inventory. The field measurements were collected between
1995 and 1999, and were associated with a high resolution land
cover type map (Drichi 2003). We computed the area weighted
average biomass per 1 km2 pixel. Following screening with the
Landsat GeoCover data, we retained 442 sample locations for
our analysis.

2.5. Analysis

The MODIS product provides quality ranking information
for each of the NBAR surface reflectance measurements.
We analyzed these quality control flags and selected only
reflectance values derived using full model inversion or
‘magnitude inversion’ based on at least 3 observations during
the 16 day compositing period (Schaaf et al 2002). When
more than one observation passed the quality checking, the
average surface reflectance was computed. Thus we used an
average of all good-quality observations during the ten 16-
day periods over the 4 year period. We selected dates that
minimized the effects of fire and that enhanced the difference
between herbaceous and woody vegetation. We did this by
selecting 16 day periods before and after the fire seasons to
minimize the effect of burn scars. The best periods to separate
the grassy vegetation from the woody vegetation were dates at
the beginning of the dry season (early so that the fire season
had not yet started) and just before the beginning of the rainy
season (when trees start greening before grasses).

Tree-based models have been used in many contexts to
predict both categorical (Hansen et al 1996, Friedl and Brodley
1997, Saatchi et al 2007, Friedl et al 2002) and continuous
variables (Michaelsen et al 1994, Prince and Steininger 1999,
Baccini et al 2004). The basic theory behind such models
is reported in Breiman et al (1984). Tree-based models
make no assumptions regarding the distributional properties
of the input data, are able to capture nonlinear relationships
between the response and predictor variables, and provide
easily understandable output. For the work reported here, the
specific methodology is referred to as a regression tree, because
we predict continuous values. Tree-based algorithms perform
recursive partitioning of a data set such that each partition
results in greater homogeneity relative to the unpartitioned
data. The tree is composed of a root node (comprised of
all of the data), a set of internal nodes (splits), and a set of
terminal nodes (leaves). The splitting procedure stops when
the variability within a node is considered sufficiently low
(based on the deviance within the node), or when a prescribed
minimum number of cases is reached. The mean value of the
response variable in each leaf node then serves as the prediction
for all cases within that node.

Bootstrap aggregation (bagging), is a method for
averaging predictions from a collection of bootstrap samples.
The main goal of bagging is to reduce the variance of the
predictions. Bagging produces a model for each bootstrap
sample, and the final prediction provided by bagging is the
average prediction across all models. If small changes in the
training set result in different predictions, bagging provides
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Figure 4. On the left: MODIS 16 day NBAR composite. On the right: MODIS NBAR data resulting from the best-quality pixel mosaic.
Artifacts due to cloud cover residuals and shadows are not present in the best pixel mosaic.

a valid tool for tuning and improving the accuracy of the
predictions (Breiman 1996). Breiman (2001) proposed a novel
extension of tree-based model called Random Forest, in which
random feature selection is used in addition to bagging. In
Random Forest, a large number of trees are grown with the root
node containing a different bootstrap sample of the data with
the same number of cases as the original data. At each node,
splitting is performed using a randomly selected subset of the
predictor variables. To predict unseen cases, Random Forest is
provided a new set of predictors, and the final prediction is the
average of the values predicted by all the trees. Compared to
standard tree-based model, Random Forest is less sensitive to
noise in the training data and tends to result in more accurate
models.

The set of field biomass training data (figure 3) and the
MODIS observations were used to develop the Random Forest
model. Biomass predictions for the entire area were then
generated by incorporating reflectance measurements from the
first seven MODIS spectral bands (the land bands) into the
Random Forest model, effectively extending the model based
on field training data to the entire region. Because one of the
characteristics of tree-based models is the inherent ability to
stratify data into homogeneous subsets (in this case different
ecological regions) by decreasing the within-class entropy,
the model identifies initial strata representative of the broad
ecological domains present in the study area, and there is no
need to stratify a priori.

To assess the accuracy of the predictions, a subset of the
field data not used in model development were reserved for a
cross-validation analysis (Friedl and Brodley 1997). We used
10% (154 samples) of the field data, which were extracted
using a random sampling design (Cochran 1977).

GLAS data were screened on the basis of: (1) the number
of peaks in the Gaussian waveform determined by GLAS post
processing; (2) the presence of geographic coordinates for the
shot; (3) the difference in elevation between Shuttle Radar
Topography Mission (SRTM) and GLAS measured surface
elevation; (4) the maximum signal never exceeding twice the
noise level. We then analyzed lidar metrics relative to the

predicted biomass values with the assumption that as biomass
increases the lidar height and HOME metrics would also
increase (Drake et al 2002). Finally, we screened any GLAS
shot on terrain exceeding 10% slope, using the SRTM gridded
elevation data set.

3. Results

3.1. Distribution of biomass density

The temporal compositing of the three years of MODIS NBAR
products resulted in a high-quality cloud-free data set for each
of the seven MODIS spectral bands (figure 1). Although
NBAR products are cloud screened, high thin cirrus and clouds
edges can be difficult to detect, thus artifacts may be evident in
some regions (figure 4). The temporal compositing approach,
long used in AVHRR data products (Holben 1986), provided
a useful solution to the problem of optical remote sensing in
areas of persistently high cloud cover. This was particularly
evident in the coastal areas of tropical west and central Africa.
We found the process also effectively reduced the effects of
seasonal burning and associated smoke.

The field data used in the study extend across a relatively
narrow latitude band (2◦ N and 6◦ N) but they cover a very
large range of biomass values in a wide range of cover types,
ranging from savannas to the dense humid forest (as compared
to a Koppen ecological map (Koppen 1936) and the GLC2000
(Mayaux et al 2004) land cover map). This assured good
representation of the range of African ecosystems, despite
the relatively narrow latitude range of the sites, and this
observation was supported by the integration of the field
measurements and MODIS reflectance in the Random Forest
model. More than 96% of the variance in above-ground
biomass density was explained, with a root mean square
error (RMSE) of 23.5 Mg ha−1 (figure 5), when the same
data set was used for the training and cross-validation. The
model explained 82% of the variance in above-ground biomass
density, with a RMSE of 50.5 Mg ha−1 when tested against
the 10% of reserved data that was not used for training. The
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Figure 5. Relationship between observed biomass (Mg ha−1) and
Random Forest predictions. A 1:1 line is indicated.

Table 1. Regression coefficients, standard errors and fit statistics
showing relative sensitivity of the MODIS land reflectance bands.

MODIS bands Coefficients Std error t value Pr(>|t |)
B1 0.260 0.059 4.434 1.00 × 10−5

B2 −0.132 0.025 −5.233 1.93 × 10−7

B3 −0.362 0.091 −3.988 7.00 × 10−5

B4 −0.411 0.075 −5.440 6.31 × 10−8

B5 0.491 0.039 12.700 <2 × 10−16

B6 −0.705 0.049 −14.451 <2 × 10−16

B7 0.432 0.043 9.920 <2 × 10−16

range of observed (figure 3) and predicted biomass was 0–454
Mg ha−1 and 0–359 Mg ha−1, respectively.

The utility of using tree-based models compared to more
traditional multiple regression analysis is shown in table 1,
where we report results from linear regression models using
the same set of data. When applied to the same validation
data set used for Random Forest, the explained variance is
71% compared to 82% from Random Forest. This suggests
substantial improvement in using a non-parametric statistical
model such as Random Forest. It is also interesting to note that
the short wave infrared band (B6) had the largest coefficient,
thus the largest contribution to explained variance in biomass.

Using the Random Forest model, we produced the first
spatially continuous biomass density map of tropical Africa
using remote sensing observations (figure 6). The map shows
the distribution of AGB across Central Africa as well as the
spatial variability of AGB. The map indicates that the above-
ground biomass in the region varies from 0 to 356 Mg ha−1

at 1 km spatial resolution and that most of the high values
biomass are concentrated in the Democratic Republic of
Congo.

Table 2 shows how the biomass values were related to
land cover type classes, as provided by the GLC 2000 map
(Mayaux et al 2004). The biomass values, which were

Table 2. Average biomass by GLC2000 land cover type.

GLC2000 land cover type Mean biomass (Mg ha−1)

Submontane forest (900–1500 m) 238.1
Swamp forest 251.0
Closed evergreen lowland forest 216.3
Degraded evergreen lowland forest 121.2
Montane forest (>1500 m) 169.6
Mosaic forest/croplands 91.5
Mosaic forest/savanna 77.4
Closed deciduous forest 85.0
Swamp bushland and grassland 32.7
Deciduous woodland 35.2
Open deciduous shrubland 12.7
Deciduous shrubland with sparse trees 11.5
Closed grassland 7.0
Croplands (>50%) 5.3
Open grassland with sparse shrubs 1.0
Sparse grassland 2.3
Open grassland 1.9

produced without the use of land cover information, partitioned
into values that were reasonable and expected in terms of
mean values. For example, the high value (238 Mg ha−1) was
associated with submontane forest and the lowest values (less
than 10 Mg ha−1) were associated with grassland classes.

3.2. Comparison with other data sources

We computed the total amount of above-ground standing
biomass for the Democratic Republic of Congo (DRC) to be
34.7 Gt (billion tons). The estimate is consistent with the Food
and Agriculture Organization of United Nations (FAO) Forest
Resource Assessment (FRA), which reports a value of 37.8 Gt
for the year 2000.

Gibbs et al (2007) report a total of 20.4 Gt carbon
(equivalent to 40.8 Gt of biomass) for the DRC, including
the below-ground component. By adding the below-ground
component to our estimate using an average ratio for tropical
rainforest (0.37) Eggleston et al (2006), and converting the
biomass into carbon (as 0.5 units C per unit biomass), we arrive
at a value of 23.7 Gt C (equivalent to 47.4 Gt of biomass) in
the DRC. Using a modified estimate of 0.33 for below-ground
allocation (Mokany et al 2006) for tropical rainforest we get a
total of 23.0 Gt C.

The analysis of the GLAS data (figure 2) showed a strong
relationship between MODIS biomass predicted and the GLAS
metrics (figure 7). We also found a strong positive relationship
between MODIS biomass aggregated in classes of 10 Mg ha−1

with the average vegetation height (r 2 = 0.90) and the ratio
of HOME and height (r 2 = 0.90). Because forest biomass is
mainly a function of tree size (DBH and height) and the number
of trees per unit area, lidar metrics are useful for biomass
estimation and our results are consistent with those of other
lidar studies of tropical forest biomass (e.g. Drake et al 2003,
Lefsky et al 2005, Drake et al 2002). These comparisons
provide strong support for the validity of the approach and
associated map.
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Figure 6. Biomass map derived from MODIS imagery and field data. The three high resolution figures show the vegetation formations with
different AGB. Each figure has a length of 1 km.

Figure 7. Relationship between GLAS derived height, ratio of HOME and height and predicted biomass (Mg ha−1) aggregated in classes of
10 Mg ha−1. The horizontal bars show the standard error for the GLAS metric within biomass bin.

4. Discussion

The results of the biomass mapping demonstrate the utility
of satellite data sets, including optical imagery, for estimating
above-ground carbon stocks even in persistently cloudy areas
of the world. The frequent temporal coverage of MODIS
imagery increases the likelihood of capturing cloud-free
acquisitions, and the sensitivity of the composited reflectance
to canopy density and structure provides the means to link
canopy reflectance to above-ground biomass. We note here
that we tested combinations of spectral bands and other

MODIS standard products including the NDVI, EVI and
LAI, as well as climate data (precipitation, temperature, and
evapotranspiration) and topography. The gain in adding these
variables was quite limited, and carried with it some negative
attributes including the emergence of spatial artifacts in the
resulting biomass distribution map. As a result, we decided
to use the simplest approach and model based on the 7 MODIS
spectral bands designed for land studies.

The comparisons with independent GLAS lidar energy
metrics confirm this sensitivity. Moreover, the Random Forest
models are powerful for mining relationships in intensively
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sampled data sets. There are, however, limitations to the
Random Forest model in the prediction phase (figure 4).
The model tends to over predict low biomass values and
under predict high biomass values. This trend is intrinsic of
regression tree-based models whose predictions are the average
of the values within the terminal node. Although the model
tends to overestimate in the small biomass classes, the biomass
map indicates very low biomass in the sub-Saharan region of
Mali, Burkina Faso, and Sudan. In this region the vegetation
is characterized by sparse trees and low brush that is highly
fragmented and dominated by bare soil reflectance.

Furthermore, the model seems to significantly reduce
the predicted accuracy when tested on an independent set
of data, as the increase in RMSE and decrease in explained
variance indicate. These caveats should be kept in mind,
as with those of any other technologically-based monitoring
approach, in the context of the current political discussions on
REDD. Despite efforts to expand field measurement efforts,
particularly via the FAO, there are currently limited high-
quality field biomass estimates available at sufficient spatial
extent to develop and independently validate maps of AGB
across tropical regions. Thus there is a need to expand these
efforts along with improved field estimates of deforestation and
degradation rates.

A limitation of empirical models, including regression
tree models that are strongly influenced by the distribution
of the training data, is the availability of field measurements
representative of the biomass variability of the region. We
used the most extensive field biomass data sets we could
assemble in a consistent fashion, but additional field data
collection could improve the resulting biomass map. Also,
a common problem in the use of remotely sensed data in
combination with field measurements is the mismatch between
the area sampled on the ground and the resolution of the
satellite observations. We minimized this effect by specifying
a minimum number of field plots within each 1 km2 MODIS
pixel, but areal weighting using high resolution satellite data
may permit improved spatial scaling from the plot to the pixel
resolution (Baccini et al 2007).

5. Conclusion

The new role of Africa in the global economy, particularly the
demand for new land for agro-industry, has the potential to
significantly increase pressure on existing natural resources. It
is therefore critical to have reliable and current information on
the spatial distribution of AGB.

We describe methods to map above-ground biomass over
tropical Africa using multi-year MODIS satellite observations
and a wide range of field measurements. The results indicate
that the MODIS data sets, used in a cross-validated regression
tree model, captured the amount and spatial distribution of
above-ground biomass across tropical Africa. Comparison
with GLAS lidar energy height metrics, particularly HOME,
showed strong positive correlations with the mapped MODIS
biomass density values, and low standard errors across the
full range of predicted AGB. This is the first biomass map
of Africa based on satellite observations, and it provides not

only important information on carbon stocks but an essential
baseline for monitoring and modeling carbon exchange in
tropical Africa at relatively high spatial resolution.

Our future work will focus on fusion of lidar observations
describing vegetation vertical structure with multi-temporal
MODIS and other remotely sensed data products to further
improve above-ground biomass and extend the results to
additional regions.
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