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Homogeneous nucleation theory for binary mixtures is developed as a two-component extension of
the classical multistate kinetics rate theory. A matrix formulation, based on the stochastic model of
Shugard and Reisgl. Chem. Phys65, 2827 (1976], provides the framework for solving the
strongly coupled two-dimensional flux network associated with tracking the evaporation and growth
kinetics of each component for several thousand binary clusters, of varying composition, throughout
the region of critical size. This approach avoids the assumption of a single nucleation path, e.g.,
through the saddle point of the binary free-energy surface, and considers, instead, all possible paths
whose current density contributes to the nucleation rate. Calculations are presented for the
steady-state nucleation rate and, by a new method based on the negative eigenvalue theorem, for the
distribution of relaxation times in sulfuric acid—water mixtures. At water relative humidities typical

of the atmosphere, quantitative agreement with the predictions of a closed-form rate expression due
to Shugardet al. is found. At high supersaturations, typical of diffusion cloud chamber operation,
the nucleation current is found to bypass the saddle point, due to kinetic forcing, resulting in a
higher-than-expected nucleation rate.

I. INTRODUCTION pointed out by Stauffetgven prior to development of a fully
two-dimensional kinetic theory.

Binary homogeneous nucleation is a mechanism for gas- The present work was motivated in part by analogy with
to-particle conversion that can result in significant rates ofecent molecular-based treatments of single-component
new particle formation even if both components are undernucleatior®”’ In the molecular approach, a two-dimensional
saturated in the gas phase. An important example is the afree-energy surface is introducéelven for a one-component
mospheric production of sulfuric acid in the presence of amsystem and the nucleation rate is given as a sum of contri-
bient water vapor, which has been indicated as a leadingutions from all possible paths over this surface. For binary
mechanism for new particle formation in marine aerdsbls Systems, a two-dimensional surface results even when the
and Arctic hazé.New particle formation in the atmosphere treatment remains classic@s in the present papeand is
inevitably occurs in the presence of background aerosol, iffot molecular based. Conversely, the computational tech-
competition with particle growth, and is most prominent in Niques introduced in the present paper may be expected to
clean environments where the surface area of backgrourﬁP”t”bUte to further developments of the molecular-based
aerosol is low. The outcome of the competition between nevih€0rY-

particle formation and growth, which determines particle ~ 1he matrix formulation of Shugard and_Ré‘is’s ex-
size and number density, depends critically on time-€nded in Sec. I to obtain a fully two-dimensior{@D) de-
Pnpuon of binary nucleation kinetics. General solutions for

dependent nucleation kinetics and on the balance of fluxes %1 A :

the steady-state flux distribution and nucleation rate are ob-
steady state. ) " . P

tained. In addition, the matrix formulation is shown to pro-

From the standpoint of the foundations of classical . - : .
. ) . . —vide a complete description for time-dependent behavior dur-
nucleation theor§, binary and single-component nucleation .

S L ng the approach to steady state. The extended treatment
processes have strong similarities: The description of eacbg bp y

beai it th larit imatidrto obtain the cl rovides a powerful framework for solving the strongly
egins wi € capiiarity approximatiorp obtain the clus- coupled two-dimensional flux network problem associated

ter free-energy §urface, and detailed balgnce, to obtayn trWith tracking the evaporation and growth kinetics for several
cluster evgporanon rate. N.evert.heless, full |mplgmentat|on Ofhousand binary clusters, of varying composition, throughout
the classical theory, which inherently requires a tWo-yhe region of critical size. The new approach avoids the re-
dimensional flux network for binary mixtures, to representyyced dimensionality assumption of a single nucleation path,
the evaporation and growth of each component species, r:g. through the saddle point of the binary free-energy sur-
mains incomplete. Previous treatments of binary systemgyce, and considers, instead, all possible paths whose current
have invoked a reduced'dimenSionality aSSUmptiOn by anensity contributes to the nucleation rate.

signing a specific path, generally through the saddle point of  The two-dimensional flux network for binary nucleation
the cluster free-energy surfa¢gec. 1V), along which nucle- in sulfuric acid—water mixturegéincluding hydratesis con-
ation is constrained to take place. Limitations of the saddlestructed in Sec. lll. The sulfuric acid—water system was se-
path assumption, including the possibility that the binarylected both for its importance to atmospheric particle
nucleation current can be shifted from the saddle pointformationt—3 and because of the existence of a number of
where the thermodynamic free energy is lowest, werevell-documented prior studies to which the present results

2088, ynloddShem-Rhys 402 (31 Jreboeany, 1998 4ist 9021 R808ARM OROMNH1H$8,00- or-copyright,~see-http:/fjcp.aip.org/jcp/copyright.jsp



Robert McGraw: Kinetics of nucl

can be quantitatively compared. Calculations are described
in Sec. IV. Steady-state flux distributions and nucleation rates
are obtained for both undersaturated, 50% relative humidity
(RH), and highly supersaturatéd00% and 300% RHwater
vapor conditions. The latter conditions, while not observed in
the atmosphere, are typical of diffusion cloud chamber
operatiom The steady-state nucleation rates are compared
with those obtained using the model of Shugatal° and
suggest a quantitative range of validity to this model that
could not have been demonstrated prior to a full 2D analysis
of flux contributions to the nucleation rate. The agreement is
guantitative except at the highest water supersaturation con-
ditions, typical of diffusion cloud chamber operation, where
the saddle path flux model underestimates the nucleation
rate. Hydrates are included in the kinetics, following the pre-
scription of Heist and Rei$sas described in Ref. 12. Com-

eation in mixtures

j+1
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|
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puter codes of Schelling and Refi$svere used to obtain the FIG. 1. Fluxes for cluster evaporation and growth. Satidshedl arrows
free-energy surface. Results obtained at the highest waté&how the positivénegative contribution to the time evolution of clusters of

supersaturation examined, 300% RH, illustrate a case wher&®
steady-state currents are sufficiently controlled by kinetics
that the dominant nucleation flux completely bypasses the
saddle point.
A new computational approach to time-dependent nucle-
ation, based on the negative eigenvalue thedreis,also
presented in Sec. IV. A convenient version of the algorithm
suitable for direct application to compactly stored bande
matrices, is described in the Appendix. Since the negative

0.J).

.{) to size {,j+1):

Ji(1,])=B1s(i, (L)) —ya(i+1.))s(i+ 1) (I +1.)),

(2.13

where the subscript 1 refers to thecoordinate(horizontal
Jlux) from cluster (,j). Similarly, for the net current for
conversion of clusters of size

eigenvalue theorem can be used to rapidly locate each eiged,(i,j)=B,S(i,j)f(i,j)— y,(i,j +1)s(i,j+1)f(i,j+1),

value (relaxation time of the rate matrix, it represents a sig-

(2.1b

nificant advance over variational methods, which have bee@here the subscript 2 refers to theoordinate(vertical flux)
limited in application to determination of an upper bound forfrom cluster ,j). In these equationsg,(5,) is the accom-
the smallest eigenvalue or, equivalently, a lower bound fomodation rate per unit area of surface for molecules of com-
the longest relaxation time, or lag time, governing the apponent 1(component 2 s(i,j) is the surface area, aridi, j)
proach to steady state. The method is used to obtain cumys the concentration of clusters of sizej(.

At equilibrium the net flux vanishes and

lative relaxation time distributions for the description of non-
steady-state behavior in sulfuric acid—water mixtures.
Section V presents a discussion and summary of results.

Bis(i,j)n(i,j)=y1(i+1,))s(i+1,j)n(i+1,j),

(2.2

While this paper was in its final stages of preparationheren(i,j) is the cluster concentration at equilibrium. This
the author received a preprifitthat uses a similar matrix expression of principal of detailed balance is used to elimi-
method to obtain the steady-state flux distribution in tWOnate the Size_dependent cluster evaporationy@tg similar
dimensions. Calculations for the steady-state nucleation ratgquation is formed from the right-hand side of E2.1b) for

were carried out for sulfuric acid—water mixturé30%-—

90% RH, and for the ammonia—water system. Order-of-tgke the form

magnitude agreement between the rates predicted by the ma-
trix method and by the Stauffer theSrwere found for the
sulfuric acid—water mixtures. The present study differs from
Ref. 14 in its inclusion of hydrates, comparisons with thegp
binary theory of Ref. 10, and extension of the matrix method

to the time-dependent domain for calculation of the relax-
ation time distribution.

II. MATRIX FORMULATION

Figure 1 shows the basic configuration for fluxes to and
from a binary cluster of sizei(j) containingi molecules of

J1(i,])=pB1s(i,j)n(i,j)

J2(i,1) = Bos(i,j)n(i.j)

(i)

f(i+1,j)

n(i,j) n(i+1,)]

(i)

f(i,j+1)

nGi,j) n(i,j+1))

elimination of v,. Then the equations for the net currents

(2.33

(2.3b

Time evolution of the cluster population is given in
terms of the currents specified by E@2.3):

arip_
A N(EERI

Ja(1,)) + 3o, = 1) = Ja(i))

(2.9

component 1 anj molecules of component 2. The equation together with the boundary conditions for monorher.g.,

for the net current for conversion of clusters of sizg) to
size (+1,j) takes the form

f(1,0)/n(1,0)=1, and the Szilard boundary conditions
f(i,])=0 along a specified outer path having sufficiently
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TABLE I. Scheme for assigning the nonzero element& of

f/n=0 SZILARD BOUNDARY CONDITION

on(i) for k< (i,j) and
Kklzﬁls(lvj)n(i+—l‘j) l—(@i+1j)
oG for k< (i,j) and
KkFﬁzS(hJ)m l—(i,j+1)
5 K= pB1s(i—1,j) for k<—>.(i,j)_and
= l—(i—1,))
& K=B-s(i,j—1) for k—(i,j) and
5 K Lo (inj—1)
o 3 Cni-1)) - for the main diagonal
& Kkk:_[ﬁls(l_lrj) nGij) +/31S(I,J)} ke(i,))
g2 ConGi-y
<, —|Besli,j—1) nGij) +Bos(i,)

Q O
1T 2 3 4
£/n = 'I/ WATERS PER CLUSTESR (i) °
sider with nearest-neighbor transformatiofBig. 1) are
listed in Table | and result in a nonsymmetric banded struc-
FIG. 2. Two-dimensional network configuration for describing binary nucle- ture for the matrixk.
ation kinetics in sulfuric acid—water mixtures. Each open circle node corre-  Each of the eight terms in Table | corresponds to a vector
spon(_js to ani(j) c_Iuster_ Who_se concentration is to be determined andjn Fig. 1. Four of these terms, corresponding to the dashed
contributes to the_dlmensmnahty 6.fTh9 figure also shows the free water vectors in Fig. 1, appear in the diagonal eIemKrm( and
monomer and Szilard boundary conditions. . . . ) .
make a negativ€loss contribution to the right-hand side of
Eq. (2.4). Certain properties of the elementskofare evident
from Table I. For each elemert connected in reciprocal
large values ofi andj (Fig. 2. As in the case of one- fashion to its neighborgi.e., not next to the monomer or
component systems, the Szilard boundary should be suffSzilard boundary locationghe sum of the elements in col-
ciently removed from the critical cluster siZeaddle point umnk of K equals zero. An important additional property,
location that the steady-state currents and steady-state cormelatingK,, andK, through detailed balance, is given by Eq.
centrations are insensitive to its position. Equati¢h8) and  (2.12 below. From Eqs(2.3) and Table | it is seen that the
(2.4) can be combined to express the evolution of the clustenet current for transformation of clusters of tykes(i,j) to

population in vector—matrix form: typel«—(i’,j") can be written in the form
df J(k—=1) =Ky f=Kgf (2.9
dt Ki+a, @9 which vanishes when the equilibrium cluster concentrations

n(i,j) are substituted fof (i,j). Finally, it should be noted
wheref is the cluster population vector and thés a con-  that transformations beyond nearest neighbors, if required,
stant vector dependent on source rates at the monomare accommodated within the matrix formulation simply by
boundary condition. adding more nonzero elements Ka In Sec. Il it will be

Equations(2.3), extended over a range of cluster size,shown that nearest-neighbor transformation is sufficient for
describe a system similar to an electrical network with thedescribing nucleation in sulfuric acid—water mixtures, even
variousf/n as potentials and as currents. This analogy is when collisions with hydrate clusters are included in the
explored further in Sec. IV C below. The quantiti@s, and  model.

s are known, or can be estimated, from the physical prope
ties of the system, and the equilibrium concentratio(isj)
are obtained in the usual manner from the free-energy sur- The steady-state solution to EQ.5) is obtained through
face, which is itself derived using the capillarity matrix inversion as follows: First, separdt@to its transient
approximatiorf: This system of equations can be solved forand steady-state components. Following the notation of
the concentration$(i,j), once the boundary conditions on Schelling and Reig&

the potentialsf/n have been specified. When these concen-

r .
A. Steady-state solution

trations are substituted back into Eq8.3) the horizontal =grtdss 2.7
and vertical currents are obtained. Substitution into Eq(2.5) gives

The elements of the matriX are determined from Egs.
(2.3) and(2.4) following the positioning of the elements &f dﬁ = a+Kgsst Kgr- 2.9

A straightforward way to proceed is to set up a one-to-one  dt
mappingk«(i,j), I~ (i’,j’) between the components bf
and the cluster composition,{). The specific mapping de-
pends on the monomer boundary condition as shown belo
in Sec. Ill. Then the five classes of nonzero entries to con- gss= —K ™ la. (2.9

The requirement that the transient solution decay to zero at
J\(/)ng time implies thab+Kggs=0 or, equivalently,
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Obtaining the steady-state network solution is, therefore, =Dy, (2.16

ivalent to finding the i f th thx .
equivaient 0 finding the Inverse of the ma then from Eqs(2.10 and(2.14) we obtain

B. Transient solution dyr _
' ot Hir. (2.17

Substitution of Eq(2.9) into Eq. (2.8) gives the funda-

mental equation for the transient component:of The formal solution to Eq(2.17) is

dgr Yr()=V exp(— D)V ir(0), (2.18
ot Ko (210 \yhereV diagonalizesH:
To proceed further it is useful to convert the rate matrix to ~ V~'HV =D, (219

Hermitian form. For a one-dimensional nucleation path, the, 4 D,
matrix K is tridiagonal and readily converted to Hermitian
form by similarity transformation using diagonal matriées.
However, the approach developed in Ref. 8 is not inherently (D)) =X\;. (2.20
limited to 1D systems and it is easy to show that the sam&jnce the columns of are the eigenvectors &f, Eq.(2.19

similarity transformation also converts a nontridiagoal  may e put into more explicit form. In Dirac notation:
arising from the 2D flux problem, to Hermitian form. This is

shown as follows. — ) . .
Define the diagonal matrix: Yt EI (rOIVyer=AD}Vi) &2

is the resulting diagonal matrix having the eigenval-
ues ofH as elements:

D= exgdw(i,j)/kT] (21D showing the full dependence on the eigenval{ieg and

whose elements correspond to the—(i,j) mapping. eigenvectorgV;} of H. The initial condition used in comput-
w(i,j)=w, is the free energy for forming a cluster of type iNg the inner productglocal density of statgsof Eq. (2.21)
(i,j). Since the equilibrium concentrationi,j) are them- follows ffolst‘ (Eq. 2.16. For example, iff(0)=0 then
selves proportional to the Boltzmann factors expj(i,j)/  #r(0)=—D"“gss. Equations(2.7), (2.9), (2.16, and (2.21)

kT], inspection of Table | reveals that for all pairs,{), the  Provide a complete solution for the time-dependent flux dis-
following identity holds: tribution and nucleation rate.

Kiie=expl (W= w) /K T]K g (212 | TWO-DIMENSIONAL FLUX NETWORK FOR
Equation(2.12 has its origin in the detailed balance condi- BINARY NUCLEATION IN SULFURIC ACID-WATER
tion. Note that when Eq2.12) is substituted into the current MIXTURES
formula[Eq. (2.6)] for J=0, the equilibrium population dis-
tribution is obtained. From Eq¢2.11) and(2.12), the rans-  gamework suitable for describing nucleation in general bi-

pose ofK is nary mixtures. Here we apply the model specifically to sul-
KT=DKD 1. (2.13 furic acid—water mixtures. To establish the rates of interclus-
ter conversion, which comprise the matrix elementofit
is convenient to make two simplifying approximations for
the vapor phase, which will be shown to be well satisfied for
H=-DYKD~?, (2.14  the system under study. These approximations are introduced
specifically for the purpose of treating hydrate clusters
within the framework of the general matrix approach devel-
HT=—(DYKD~Y3)T=—-p-Vk D2 oped in Sec. II, and are not restrictions on that approach. For
T 112 12 =12 binary systems where clustering in the vapor phase in unim-
=~ D7 DKD D= ~DTKD=H, (215 portant, the general model can be immediately applied.
where Eq.(2.13 has been used. This derivation shows that  First, most of the vapor-phase acid molecules are in the
H is brought to Hermitian form by a similarity transforma- form of (h,1)-hydrate clusters consisting bfmolecules of
tion with a diagonal matrix whose elements are the squareater(component 1and a single molecule of acidompo-
root of the Boltzmann factors in terms of which the equilib- nent 2. At 298 K, Jaecker-Voirol and Mirabel estimate that
rium cluster populations are defined. Note that the key stept 200% RH, 99.8% of the acids are bound into these hy-
in proving the Hermiticity of H lies in demonstrating, drates, at 50% RH the percentage is still 98 BFar setting
through the entries in Table |, that EQ.12 extends to the up the flux network, with appropriate monomer boundary
2D flux case. This result is used in E&-13. The remaining  conditions, we will therefore neglect free-acid molecules and
steps in the proof are formally identical to the 1D derivationacid clusters and consider only monoacid hydrates and free-
of Ref. 8. Note, finally, that since the transformation matricesvater molecules in the vapor phase. This is the first approxi-
are diagonalH has the same banded struct¢&ec. I\V) as  mation.

In Sec. Il, the matrix formulation was developed in a

With K andD, the Hermitian matrixd can be constructed.
Consider

whereD*? s the square root of the diagonal matbx Then

doeskK, but is in symmetric form. The second approximation is that sulfuric acid, in any of
We can now describe the kinetics in the frame of theits hydrate forms, is present in only trace amounts, compared
transformed matrid. Let to the amount of water vapor present, since only trace

Downloaded-14-Mar-2005-t0-130.199.3. 29 &H& Qi BiYS~-¥objL02: Noa Bt iuasy199right, ~see—http://jcp.aip.org/jcp/copyright.jsp



2102 Robert McGraw: Kinetics of nucleation in mixtures

amounts of sulfuric acid are required in the presence of water In the absence of free acids, the network shown in Fig. 2
to obtain high nucleation rates. To see where this approximaresults. The small clustefmonomey boundary conditions
tion enters, we return to the flux description of Fig. 1: Equa-are simplified in that water is the only free species whose
tions(2.13 give the flux for conversion of clusters of sizg concentration is explicitly fixed:.The fixed activity of acid is

to clusters of sizei+1,j through the addition of water implicitin B,.) Thus from Eq.(2.3):

monomer, which is the dominant species. Equati¢héb

give the conversion of clusters of sizg to clusters of size Jl(l,O):ﬁls(]_,O)n(l,O)[1_ @} (3.49
i,j+1, nominally through the addition of a single molecule n(2,0)
of acid. However, as noted above, most acid molecules are f(1,1)
bound with water in hydrate form. Since most hydrates con-  J,(1,0)=8,5(1,0)n(1,0)| 1— n(1 1)}, (3.4b

tain a single acid, the addition of the hydrate will indeed
change the index of the cluster by unity. However, we still where the monomer boundary conditié(l,0)/n(1,0)=1
need to examine changes in the indethat occur with hy- has been used. Note that the elemiit,0), corresponding
drate addition. From the preceding discussion it is clear thato the concentration of water monomer, will not appeaf in
hydrate additions will appear in Fig. 1 as fluxes with bothas this is held constant by the boundary condition. Thus the
horizontal and vertical components, depending on the watesrdering of the elements dfbegins with(1,1) and is carried
content of the colliding hydrate species. This apparent diffi-out so as to minimize the bandwidth of tKematrix. Let the
culty is easily circumvented by invoking the second approxi-network extend to a maximum afl max water molecules
mation above, namely, that for all cases of practical interestper cluster anch2 max acids. Therf will be a vector of
water is the greatly dominant species and the number of fredengthnl max(n2 max+1)—1 with elements:

water molecules far exceeds the number of hydrates. Con- _

sider, e.g., that the fluxes due to hydrate addition have been F=0f1,1),7(1,2),....F(1,n2 max,(2,0),...,
resolved into their horizontali and vertical {) compo- f(n1 max,n2 max], (3.5

nents. Since water collisions dominate, any contribution to T
the horizontal flux from hydrate collisions will be insignifi- wheref " denotes the transpose iAll but two elements of

cant compared to the horizontal fluxes due to the condenS<’:t1r—]e constant source vectar[Eq. (2.5] are zero and these

tion and evaporation of water itself. Thus we can neglect th(% gréirooﬁl(;;ne?(';stﬁ;efﬁ;t?&nllr;efgol;oLn :jr:ztf::n;?nlginEa[tli%n
horizontal component of the fluxes due to hydrate additionWith wgter mgnomer and thé flux 1@ O)yfrom water—water
The vertical fluxes, on the other hand, result largely from '[heCollisions Com aris’on with Eq(3.5) ’ for the osit;)ns of
addition of monoacid hydrates, which change the cluster in; ' P A P
dexj by unity. These are included in E(.1b. these elements, shows that the nonzero elemerdsaoé

To incorporate hydrates in the elementskafthe prod- a;=B3,s(1,0)f(1,0),
uct B,s(i,j) is replaced by an average over hydrate species _ (3.6)
and is identical to the quantity(i,j) defined in Ref. 12: 8n2 maxr1=B18(1,0)1(1,0).

The dimensionality of the square matrik matches the
length of the vectorf. The matrix is five-banded with no
nonzero elements at a distance greater thiamax+1 from

the main diagonal. The network of Fig. 2 determines the
one-to-one mapping« (i,j) of Sec. Il with

Bos(i,j)=(87kT)Y2Y, gy ?n(h,1). (3.0
h

In this equationo, is the sum of the radii of the colliding
speciesuy, is the corresponding reduced mass, afid, 1) is k=(n2 maxt+1)(i—1)+j. (3.7
the equilibrium number density of hydrates containinga-
ter molecules. The accommodation rate of the remaining vans cALCULATIONS
por species, single water molecules, on a cluster of surface
areas(i,j) is given in the usual manner: All parameters needed for the following calculations,
e.g., surface tension of the solution, partial molar volumes,
o kT \Y2 chemical potentials, etc., are as assigned in the computer
:815("1):<le) s(i,j)n(1,0), (32 codes of Schelling and Reit&except for the equilibrium
vapor pressure of pure sulfuric acid for which the more re-
wherem, is the water monomer mass and an accomodatiofent measurement of Chu and Morrison is uSedhis as-

coefficient of unity is assumed. signment, 3.X10 > Torr at 298 K, is in the range of the
The second approximation, above, is equivalent to théneasurements of Ayeet al® advocated in Ref. 9. The free-
condition. energy surfaces at 50% RH and 200% RH obtained for these
parameters are shown in Fig. 3. The corresponding acid
B18(i,))> B,s(ij). (3.3  activities! of 1.0x10 % at 50% RH and 1.210 © at 200%

RH were selected to yield test conditions similar to those of
Note that if Eq.(3.3) were not satisfied for the hydrate clus- Ref. 12.
ters, the general matrix formulation could still be applied, but ~ Results of the full 2D nucleation kinetics calculations are
would require the introduction of non-nearest-neighborpresented for the preceding two sets of conditions and also
transformations in the flux network of Fig. 2. for a 300% RH condition. In the examples treated below, we
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R (I -4 ea_ Y-S ate currents In the sau € point region Tor wate+ (]
WATERS PER CLUSTER (I and acid activity=1.0e—03.
a
' '\‘*3 upon substitution of the steady-state cluster concentrations
17.5 ] obtained from the solution vectass. The recovery ofa,
o) 5 ] upon multiplication of the solution vector byK [Eq. (2.9)],
& was used as a check on the matrix inversion calculation.
'g: 2.5 ] Steady-state currents in the vicinity of the saddle point
o ’ region are shown in Figs. 4 and 5. Note that, while these
& 10 ] currents are defined and computed only for integeandj,
b the vector plot routine interpolates for fractionadnd| val-
o —_— . :
S 7.5 ] ues. Figure 4(50% RH shows the flux stream passing
< through the saddle region and continuing to follow the nar-
S row valley of the free-energy surface. This trend continues,
with a slight broadening of the current stream as more acids
2.5 /_) are added, corresponding to a similar broadening of the free-
i energy valley, until the horizontal portion of the Szilard

100

0 50 150 200
WATERS PER CLUSTER (i)
b

boundary(Fig. 2) is reached at thg¢-range limit of the cal-
culation. At 200% RH the free-energy surfafféig. 3(b)]
acquires a more complex shape. The flux stream, shown in
Fig. 5, traverses the saddle region and subsequently proceeds

FIG. 3. Free-energy surfaces for sulfuric acid—water clusters in the (:apilln the direction of water grOWth' This trend continues until

larity approximation. The vertical and horizontal coordinates give the num-
ber of acid molecules and water molecules, respectively, in the binary clus-
ter. (Top) water RH=50%; acid activity=1.0e—03. (Bottom) water RH
=200%,; acid activity=1.2e—06. Contour spacing10 KkT. Outer contours

are more closely spaced for reference at 100 and 102 KT.

consider clusters from 0 to 20 or 25 acids, and from 1 to 200
water molecules in size. This corresponds ti-aatrix di-
mensionality in the 4000 range.

A. Steady-state flux distribution

Solutions for the steady-state cluster population and flux
distribution require inversion of the matriX used in Eq.
(2.9). Elements of the source vectarfollow Eg. (3.4) and
the monomer boundary conditiof(1,0)/n(1,0)=1. Be-
cause of its large size, and sparse banded struckuris,
stored in compressed form. Matrix inversion was accom-
plished using compressed banded matrix subroutin€sl-
culations were carried out in double precisitd® decimal
place$. Steady-state fluxes were computed from EHGsb)

12.0
c 10.07
i Coe e
=
2]
=2
e T
2 ' » s . L i i R e b b b o e ot e
E 80— - - . B i b T i I S Y
o - e e e - e -
Q e e e e e o
1. .- oo o
60 . L.l .
v T T T T T T T
20.0 40.0 60.0 80.0 100.0
WATERS PER CLUSTER (j)

—> = 2.000e+00

FIG. 5. Steady-state currents in the saddle point region for water 8%
and acid activity=1.2e—06.
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2104 Robert McGraw: Kinetics of nucleation in mixtures

TABLE Il. Results for sulfuric acid—water mixtures. The SHR nucleation

rate was computed using E@.1). J
1000
Nucleation Nucleation
Relative Acid rate (2D) rate (SHR) ] a
humidity activity (cm3s7h (cm3s7h 100
x 3
50% 1.4-3) 76.91 76.94 E ]
200% 1.2-6) 1.96 1.84 ] b
300% 1.0-9) 2.13) 05 10 4
1 -
. . . L . ! L L | L !
the vertical portion,i-range limit, of the Szilard boundary 0 2 4 o 100 102

shown in Fig. 2 is reached; at which point approximately
93% of the total current is along ttje=8 path.

The nucleation rate consists of contributions from all
possible paths throughout the network and is evaluated asFé(?-_G- Cumulative eigenvalue distribution for water RB0% and acid
sum over all currents reaching the Szilard boundary. _Table I ;g\égfoigigg %g:ﬂmn?é I:Lc;se}s()r;?mggufrc;rég;&)v g'i‘\jg: fhkeenquurﬁgir
shows results from the present 2D network calculations fogt eigenvalues less than Units ofx are sL. Curve b gives the cumulative
the steady-state nucleation rate together with a comparisogigenvalue distribution for pure water at 50% RH, corresponding to relax-
with the rate computed using the Shugard—Heist—Reiss SHRfion of the water clusterj&0) population.
model® At 300% RH, more than 99% of the total current is
along thej =2 path, and continues to follow this path, until
the Szilard boundary is reache@ince a vector plot on the Equation (2.21) shows that the description of time-
scale of Figs. 4 and 5 indicates only the 2 flux path, no dependent nucleation is complete once the solution to the
separate figure for this case is showAt 300% RH, the eigensystem associated with the rate malttihas been ob-
saddle point, corresponding to a critical cluster containing 4ained. However, matrix diagonalization is generally not fea-
acid and 32 water molecules and a barrier height of 43,1  sible for application to binary nucleation due to the large
is not reached by the current stream. Instead, the predomimatrix size. Here we present a new computational approach
nant nucleation flux is found to skirt over a higher pass in theo time-dependent nucleation based on the negative eigen-
direction of the water coordinate, which peaks at a clustewvalue theoren{AppendiX. The theorem allows the distribu-
size of 2 acid and 106 water molecules and a barrier heigttion and/or localization of the eigenvalues ldfto be effi-
of 53.2kT. Under these conditions the model of Ref. 10, for ciently determined without diagonalization. Since eigenvalue
which the nucleation current is constrained to pass througlocalization can be carried out rapidly, to whatever degree of
the saddle point, gives a three order of magnitude underesticcuracy is requiretf the negative eigenvalue theorem of-
mate of the nucleation rate. This interesting case confirms thiers a significant improvement over variational methods,
Stauffer predictiorf, mentioned in Sec. |, and would seem to which have been limited in application to the determination
require a rexamination of the definition of critical cluster of an upper bound for the lowest eigenvalue or, correspond-
size, perhaps to include the kinetic as well as thermodynamimgly, a lower bound for the longest relaxation tinme
forcing properties of the system. The conventional 1D patHag) for the system to approach steady state.
approaches, which constrain the flux to pass through the ther- Figures 6 and 7 show cumulative distributions for the
modynamic saddle point, may in general be expected to ureigenvalues oH obtained through repeated applications of
derestimate the nucleation rate by neglecting the more favothe negative eigenvalue theorem as described in the Appen-
able kinetic forcing mechanism. Nonetheless, even at 200%lix. Figure 6 (distribution 8 shows a clear separation of
RH, the SHR model underestimates the rate by less thaeigenvalues oH for the 2D network, implying a correspond-
10%, and a comparison of Figs(b3 and 5 shows that most ing separation in time scales for relaxation of the time-
of the current still passes through the saddle region. dependent cluster population given by ER.21). Here the

Two independent checks were made on the presemiumber of small eigenvalues, 25, is equalnt® max, sug-
method of analysis. First, the diagonal elementKoffor  gesting that the long time behavior in E.21) is controlled
those nodes adjacent to the Szilard boundary, were eaddy relaxation in the acid coordinate direction. Further evi-
modified to remove the boundary sink te(ffable ) and the  dence for this interpretation can be obtained by setéisg0
steady-state solution vector obtained as before. As requiretd obtain distribution b of the figure. Here the total number
for this case, the steady-state currents were found to vanishf eigenvalues is greatly reduced since only pure water clus-
and the steady-state and equilibrium cluster concentrationgrs, corresponding to the lower row of nodes in Fig. 2, re-
were found to be identical. As a second tghtwas set equal main connected to the monomer source. In this case relax-
to zero, forcing the nucleation to occur along the single-ation is to the equilibrium water cluster distribution, since
component water path. In this case the computed nucleatiaiime nucleation rate for pure water is zero at 50% RH. Com-
rate was found to agree with the result obtained indepenparison of the a and b cumulative eigenvalue distributions
dently from the Becker—Doring rate formula for single- suggests that the large eigenvalues of the full 2D network
componeniwatep nucleation’ (distribution g, which govern the short time behavior in Eq.

B. Relaxation time distribution
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Robert McGraw: Kinetics of nucleation in mixtures 2105

Becker—Doring rate formul,but with double summation
over the two-component indicés and j) characterizing the
binary cluster state:
-1) -1
] . 43

fi f
J=(—1——S) |E {Z Bas(i. i)
] I
Equation(4.1) contains the same parameters that occur in the
elements oK (Table |) and is compared with the present 2D
] model predictions for the steady-state nucleation rate in
13 Table Il. Equation(4.1) is identical to Eq(18) of Ref. 10 for
1 1 potentialsf,/n,=1, andf{/ns=0 along the Szilard bound-
10 10 10 10 ary for sufficiently large.
x(1/s) The results of Secs. IV Aand IV B suggest a quantitative
range of validity to the physical assumptions behind Eq.
FIG. 7. Cumulative eigenvalue distribution for water RB00% and acid (4.1) that could not have beefn demo-nStrated prior to carrying
acti\-/ity-=1.2e—06 (curve g. Plots shown(x) for 1000 point sampling of out the fu"_ ZD_ rate Calcu!atlons' This ?UCCESS warrants fur-
Fig. 6. Units ofx are s. Curve b gives the cumulative eigenvalue distri- ther investigation. Returning to the resistor network analogy
bution for pure water at 200% RH, corresponding to relaxation of the wateintroduced in Sec. Il, the term in curly brackets in E4.1)
cluster §=0) population. approximates the overall resistance of the network as

=3

1000

n(x)

_k
— <
(=] o

T R RTIT BRI B A
ot

(2.22), result from rapid relaxation in the water coordinate

direction. This wide separation of time scales underlies the

guantitative agreement found between the SHR model anwith the definitions

the present 2D calculations seen at 50% RH in Table II. 1

Indeed the postulate of time scale separation is fundamental _z Bos(i,in(ij) 4.3
i

-1
2 ﬁzsa,j)n(i,j)] . (42

to the SHR mode(Sec. IV Q. Figure 7 shows similar results R
for the 200% RH calculation. Here the number of small ei-
genvalues is less tham2 max and there is somewhat less and
time scale separation.

The negative eigenvalue theorem, through its ability to izlgzs(i,j)n(i,j) (4.4)
localize the eigenvalues @i, can also be used for accurate Rij
dete“’.“i”a“‘”? of the gorre;ponding eigepvectors through thﬁwe double summation is equivalent to a series/parallel resis-
teqhnlque of inverse iteratiort Although e|genvector calcu- tor model of the network. This is shown as follows. Refer-
lations are beyond the scope of the present study, it should bf%g to Fig. 2, the resistand®, ; is assigned to the network
noted that inverse iteration is expected to be especially Weiegment émzlmating in the vlgrtical direction from nage
suited to the determination of long time behavior in Eq'These are summed in parallel over indein Eq. (4.3 to
(2.22) due to the wide separation of the smallest eigenvaluegbtain R;. The latter is the aggregate resistancé frlom jow

seen in Figs. 6 and 7. to row j+1 in Fig. 2. TheR; are, in turn, summed in series

i 0,
RH IFh.e SGTZ!ZSZ glgﬂgfl;gg;ﬁ#gﬂte% at;jfr?(;.ggté’ q in Eq. (4.2) to obtain the overall network resistanBe The
'9. j 0 '9. /)—as Indl approximation requires that all nodes along a r@enstant

chis of hese valles give the corteaponding nucleation mf) D & the same potentiatip), which in general wil be a
9 b 9 nction of j. A necessary, but not sufficient, requirement for

lags. Interestingly, the time lags estimated in Ref. 12 using, . . . . e
the variation method are of the same order of magnitude dhis to hold is that the inequality, E¢3.3), be satisfied. Only

. . .2 n will the horizontal resistance links, connecting ndgj
those obtained here, despite use of the full 2D kinetics mode © e horizontal resistance links, connecting nddgs

: o ) ..andi+1,j in Fig. 2 and defined wittB; replacingg, in Eq.
and a different equnl_brlum vapor pressure for sulfuric acid |n(4_4)’ be small enough, relative to the vertical resistance
the present calculations.

links, for the equipotential condition to hol@This same in-
equality was used in Sec. lll as a convenient way to handle
hydrates in sulfuric acid—water mixtures, but is otherwise not
required in a 2D kinetics modelThe equipotential condi-

In the preceding sections, the general 2D kinetics modetion, implying zero net current along network rows of con-
of Sec. Il was applied to a specific binary system, sulfuricstantj, is equivalent to the assumption of local equilibrium
acid—water, with strong asymmetry in the physical propertiewith respect to the addition of water molecules used in the
of its two components. This asymmetry, while not requiredderivation of Eq.(4.1) in Ref. 10. Under conditions of local
in the general model can, when justified, be used to derive aquilibrium, the summation over the water indg)eq. (4.1)]
convenient, closed form, expression for the steady-statprovides an effective accounting for the width of the current
nucleation raté® The result is similar in structure to the distribution passing through the saddle.

C. Comparison with the Shugard—Heist—Reiss model
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2106 Robert McGraw: Kinetics of nucleation in mixtures

As noted above, the inequality, E®.3), is not sufficient  sons for the steady-state nucleation rate suggest a quantita-
for Eq. (4.1) to hold. Since the Szilard boundary condition tive range of validity to the model of Shugasd all° that
setsf/n=0 for sufficiently larga (Fig. 2), the potential will,  could not have been demonstrated prior to a full 2D analysis
in fact, not be constant along a row of network nodes and thef flux contributions to the nucleation rate. Side-by-side
assumption of local equilibrium cannot strictly be met. Fail-comparisons with the flux distributions and relaxation times
ure of the local equilibrium assumption is most pronouncecbbtained by the full 2D kinetics model, and from an analysis
at high water RH, where the nucleation flux is found to bebased on the resistor network model, indicate that the closed-
predominantly in thd-coordinate direction for sufficiently form rate expression of Ref. 1&q. (4.1)] can be used with
largej. Under these conditions, as seen in Table Il, Bdl) confidence under conditions important for atmospheric new
underestimates the nucleation rate. At low water RH, on thearticle formation.
other hand, the vertical Szilard bounddfjig. 2) lies in an At high supersaturatiofB00% RH, in the realm of dif-
inaccessible region of cluster space due to the high fregfusion cloud chamber operation, the nucleation flux was
energy barrie(Fig. 3); a feature that permits local equilib- found to bypass the saddle point, thereby violating a key
rium independent of th&/n value maintained along that seg- assumption made in the conventional 1D saddle path models.
ment of the Szilard boundary. Then, as found above, EqUnder these conditions, the full 2D kinetics model is re-
(4.2) is an excellent approximation to the full 2D kinetics quired to obtain accurate assessments of the flux distribution
result. Further insight into the local equilibrium assumption,and nucleation rate, which are shaped by a combination of
based on the required separation in the time scales for relakinetic and thermodynamic forcing.
ation in thei- andj-coordinate direction¥ can be found in
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critical cluster size. The nucleation rate consists of contribu-
tions from all possible paths throughout the cluster networkAPPENDIX: APPLICATION OF THE NEGATIVE
and is evaluated as a sum of contributions over all current&|GENVALUE THEOREM

reaching the SZiIard boundary. The 2D kinetiCS mOde| pl’O— Presented be|0W is a description Of the negative eigen_
vides a quantitative method for testing the reduced dimengajue theorem, followed by a convenient reformulation of
sionality assumption invoked in conventional 1D models ofthe algorithm recommended for banded symmetric matrices
binary nucleation that prescribe a fixed, usually thermodystored in compressed form. Proof of the theorem and its use
namically derived, nucleation path. The model has been prep, the determination of eigenvectors through inverse iteration
sented here for nearest-neighbor cluster transformatidns can be found in Ref. 13.
=+*1,Aj==*1), but is easily adapted to the more general  The negative eigenvalue theorem provides an efficient
case. method for computing the eigenvalues of a real symmetric
For time-dependent studies, a new method, based on thfatrix. The particular form of the theorem that we will apply

negative eigenvalue theorem, was developed to obtain thest upon partitionindd into four submatricesA;, A,, By,
distribution of relaxation times governing the approach toandBI, with A, of order unity(i.e., scalar.

steady state. Specifically, the relaxation times were obtained

as reciprocals of the eigenvalues of the Hermitian rate matrix _ A1 By (A1)
H, which was shown in Sec. Il B to provide a complete - BI Ayl
solution for the time-dependent current distribution and
nucleation rate. The new method affords a highly efficientWhere
means of eigenvalue localization, that can be used for single- A;=ay;,
component as well as for binary nucleation studies and is,
therefore, a significant improvement over variational meth- B1=(a12813.- .- 81n), (A2)
ods, which have been limited to the determination of an up- M@y @3 . . @]
per bound on the lowest eigenvalue, corresponding to a
32 a3 . . A

lower bound on the time lag for approach to steady state.
Calculations were presented for the steady-state current A,=| . . -
distribution and relaxation time distribution for binary nucle-
ation in sulfuric acid—water mixtures. Here the model was
applied to a system whose individual components have very L8 - - - B
different physical properties, including hydrate clustering ofand B] is the transpose oB;. Next consider the matrix
the minority (acid component in the vapor phase. Compari- M ;(x) =H —xI wherex is a positive real number ards the
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identity matrix, also of orden. Now H will have precisely

c7j;{M 1(x)} of its eigenvalues Iesg thaq where 7{M4(x)} is LaH‘X | a12 - a1 a1n
efined as the number of negative eigenvaluelsl gfx). By

choosing different values fot, and evaluating;{M ,(x)} for ap 2-x 32,3 a2 hi1
each, the distribution, and/or localization, of the eigenvalues

of H is determined. The negative eigenvalue theorem pro-

vides the means to determingM ;(x)}. ag 3-x az 4 a3 hs2

Deart® introduces the following notation:

a4,4-x a5 A ht3 4h+3

X1=A;—xly,
Z1=Ay—Xxly, (A3)
8h,h - X h,2h-1
le Bl’ -
Y
where the matrices on the right-hand side are as defined in
Eq. (A2). In this new notation the partitioning &f—xI takes ah+1,h+17X T 3h+1,2h
the form : .
X1 Y1 )
M(x)= YT 7, (Ad) ann - X 0o --- 0 0

and the negative eigenvalue theorem gives the result

FIG. 8. Application of the negative eigenvalue theorem to banded matrices
[M1(X)]1=9[ X+ 5[Z1— YIXl_lYl]. (A5) in compressed form.

SinceX, is a scalar, the first term on the right-hand side of

Eq. (A5) is simply determined from the sign of;. It is

equal to 0(1) when the sign of,;— X is positive(negative. X1=[Mg(X)]1,1,
Thus 7{M4(x)} equals the sum of this result and the number Y1) =[Mr()]y:
of negative eigenvalues of the square mafixY]X7Y, ! RUALI+1
of ordern—1. The entire process is now repeated for thedefine the header row of the compressed matrix. The trian-
symmetric square matrix of order—1 by defining gular region that includes elements from the 1 rows im-
mediately below the header row is the work space, namely
that region ofZ, over which the subtraction of the elements
in the productY ] XY, occurs. Specifically,

(A10)

X2 Yo

My(X)=Z,— YIXT1Y,= vl 2,

(AB)

and a second application of the theorem is given in analogy [MROOJis1j-i+1=[MrROO i 1j-i+2— X1 Ya(D)Y4(j)
to Eq. (A5): (A11)
To -1 for i, j=1 throughh—1 with j=i.
M oA(X) 1= [ Xol+ 7l Z,= Y X57Y 5] (A7) Header and work space templates are then shifted down
Continuation of the process gives one row in the direction of the arrow and the process re-
peated untiln signs of the first elements each header row

n 71X;] have been accumulated for evaluation of E&B). At
7IMy()]=2 7[Xi] (A8)  stepL:
=t XL=[Mr(X)]L 1,
for the number of negatlvg eigenvalueshdf(x) or, equiva- YL =IMROOTL 1, (A12)
lently, for the number of eigenvalues Hfless tharx, which
is the desired result. IMRO) T Lj—i+1= IMROO T =i+ 1= XCY LD YL().
Storage limitations require thai be handled in com- (A13)

pressed form. Figure 8 shows the mati(x) in the com-  aqgitional rows of zeros may be appended to the array of
pressgd Ig)rma}M r(X) used in the subroutines for matrix Fig. 8 to prevent the triangular work space from entering, in
inversion.” This format actually turns out to be advanta- ihe final steps of the calculation, an undefined region.
geous for coding the negative eigenvalue algorithm. The full
symmetric matrix bandwidth istP—1. Comparison of Egs.
(A2) and Fig. 8 shows that elements of the compressed and

. W. A. Hoppel, J. W. Fitzgerald, G. M. Frick, and R. E. Larson, J. Geophys.
uncompressed matrices are related as
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