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Homogeneous nucleation theory for binary mixtures is developed as a two-component extension of
the classical multistate kinetics rate theory. A matrix formulation, based on the stochastic model of
Shugard and Reiss@J. Chem. Phys.65, 2827 ~1976!#, provides the framework for solving the
strongly coupled two-dimensional flux network associated with tracking the evaporation and growth
kinetics of each component for several thousand binary clusters, of varying composition, throughout
the region of critical size. This approach avoids the assumption of a single nucleation path, e.g.,
through the saddle point of the binary free-energy surface, and considers, instead, all possible paths
whose current density contributes to the nucleation rate. Calculations are presented for the
steady-state nucleation rate and, by a new method based on the negative eigenvalue theorem, for the
distribution of relaxation times in sulfuric acid–water mixtures. At water relative humidities typical
of the atmosphere, quantitative agreement with the predictions of a closed-form rate expression due
to Shugardet al. is found. At high supersaturations, typical of diffusion cloud chamber operation,
the nucleation current is found to bypass the saddle point, due to kinetic forcing, resulting in a
higher-than-expected nucleation rate.
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I. INTRODUCTION

Binary homogeneous nucleation is a mechanism for g
to-particle conversion that can result in significant rates
new particle formation even if both components are und
saturated in the gas phase. An important example is the
mospheric production of sulfuric acid in the presence of a
bient water vapor, which has been indicated as a lead
mechanism for new particle formation in marine aerosols1,2

and Arctic haze.3 New particle formation in the atmospher
inevitably occurs in the presence of background aerosol
competition with particle growth, and is most prominent
clean environments where the surface area of backgro
aerosol is low. The outcome of the competition between n
particle formation and growth, which determines partic
size and number density, depends critically on tim
dependent nucleation kinetics and on the balance of fluxe
steady state.

From the standpoint of the foundations of classic
nucleation theory,4 binary and single-component nucleatio
processes have strong similarities: The description of e
begins with the capillarity approximation,4 to obtain the clus-
ter free-energy surface, and detailed balance, to obtain
cluster evaporation rate. Nevertheless, full implementation
the classical theory, which inherently requires a tw
dimensional flux network for binary mixtures, to represe
the evaporation and growth of each component species,
mains incomplete. Previous treatments of binary syste
have invoked a reduced-dimensionality assumption by
signing a specific path, generally through the saddle poin
the cluster free-energy surface~Sec. IV!, along which nucle-
ation is constrained to take place. Limitations of the sad
path assumption, including the possibility that the bina
nucleation current can be shifted from the saddle po
where the thermodynamic free energy is lowest, we
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pointed out by Stauffer,5 even prior to development of a fully
two-dimensional kinetic theory.

The present work was motivated in part by analogy with
recent molecular-based treatments of single-compone
nucleation.6,7 In the molecular approach, a two-dimensiona
free-energy surface is introduced~even for a one-component
system! and the nucleation rate is given as a sum of contri
butions from all possible paths over this surface. For binar
systems, a two-dimensional surface results even when t
treatment remains classical~as in the present paper! and is
not molecular based. Conversely, the computational tec
niques introduced in the present paper may be expected
contribute to further developments of the molecular-base
theory.

The matrix formulation of Shugard and Reiss8 is ex-
tended in Sec. II to obtain a fully two-dimensional~2D! de-
scription of binary nucleation kinetics. General solutions fo
the steady-state flux distribution and nucleation rate are o
tained. In addition, the matrix formulation is shown to pro-
vide a complete description for time-dependent behavior du
ing the approach to steady state. The extended treatme
provides a powerful framework for solving the strongly
coupled two-dimensional flux network problem associate
with tracking the evaporation and growth kinetics for severa
thousand binary clusters, of varying composition, throughou
the region of critical size. The new approach avoids the re
duced dimensionality assumption of a single nucleation pat
e.g., through the saddle point of the binary free-energy su
face, and considers, instead, all possible paths whose curr
density contributes to the nucleation rate.

The two-dimensional flux network for binary nucleation
in sulfuric acid–water mixtures~including hydrates! is con-
structed in Sec. III. The sulfuric acid–water system was se
lected both for its importance to atmospheric particle
formation1–3 and because of the existence of a number o
well-documented prior studies to which the present resul
2(5)/1/11/$6.00to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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2099Robert McGraw: Kinetics of nucleation in mixtures
can be quantitatively compared. Calculations are descri
in Sec. IV. Steady-state flux distributions and nucleation ra
are obtained for both undersaturated, 50% relative humid
~RH!, and highly supersaturated~200% and 300% RH! water
vapor conditions. The latter conditions, while not observed
the atmosphere, are typical of diffusion cloud chamb
operation.9 The steady-state nucleation rates are compa
with those obtained using the model of Shugardet al.10 and
suggest a quantitative range of validity to this model th
could not have been demonstrated prior to a full 2D analy
of flux contributions to the nucleation rate. The agreemen
quantitative except at the highest water supersaturation c
ditions, typical of diffusion cloud chamber operation, whe
the saddle path flux model underestimates the nuclea
rate. Hydrates are included in the kinetics, following the pr
scription of Heist and Reiss11 as described in Ref. 12. Com
puter codes of Schelling and Reiss12 were used to obtain the
free-energy surface. Results obtained at the highest w
supersaturation examined, 300% RH, illustrate a case wh
steady-state currents are sufficiently controlled by kinet
that the dominant nucleation flux completely bypasses
saddle point.

A new computational approach to time-dependent nuc
ation, based on the negative eigenvalue theorem,13 is also
presented in Sec. IV. A convenient version of the algorith
suitable for direct application to compactly stored band
matrices, is described in the Appendix. Since the negat
eigenvalue theorem can be used to rapidly locate each eig
value~relaxation time! of the rate matrix, it represents a sig
nificant advance over variational methods, which have be
limited in application to determination of an upper bound f
the smallest eigenvalue or, equivalently, a lower bound
the longest relaxation time, or lag time, governing the a
proach to steady state. The method is used to obtain cu
lative relaxation time distributions for the description of no
steady-state behavior in sulfuric acid–water mixture
Section V presents a discussion and summary of results.

While this paper was in its final stages of preparatio
the author received a preprint14 that uses a similar matrix
method to obtain the steady-state flux distribution in tw
dimensions. Calculations for the steady-state nucleation
were carried out for sulfuric acid–water mixtures~30%–
90% RH!, and for the ammonia–water system. Order-o
magnitude agreement between the rates predicted by the
trix method and by the Stauffer theory5 were found for the
sulfuric acid–water mixtures. The present study differs fro
Ref. 14 in its inclusion of hydrates, comparisons with th
binary theory of Ref. 10, and extension of the matrix meth
to the time-dependent domain for calculation of the rela
ation time distribution.

II. MATRIX FORMULATION

Figure 1 shows the basic configuration for fluxes to a
from a binary cluster of size (i , j ) containingi molecules of
component 1 andj molecules of component 2. The equatio
for the net current for conversion of clusters of size (i , j ) to
size (i1 l , j ) takes the form
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J1~ i , j !5b1s~ i , j ! f ~ i , j !2g1~ i11,j !s~ i11,j ! f ~ i11,j !,
~2.1a!

where the subscript 1 refers to thei coordinate~horizontal
flux! from cluster (i , j ). Similarly, for the net current for
conversion of clusters of size (i , j ) to size (i , j11):

J2~ i , j !5b2s~ i , j ! f ~ i , j !2g2~ i , j11!s~ i , j11! f ~ i , j11!,
~2.1b!

where the subscript 2 refers to thej coordinate~vertical flux!
from cluster (i , j ). In these equations,b1~b2! is the accom-
modation rate per unit area of surface for molecules of com
ponent 1~component 2!, s( i , j ) is the surface area, andf ( i , j )
is the concentration of clusters of size (i , j ).

At equilibrium the net flux vanishes and

b1s~ i , j !n~ i , j !5g1~ i11,j !s~ i11,j !n~ i11,j !, ~2.2!

wheren( i , j ) is the cluster concentration at equilibrium. This
expression of principal of detailed balance is used to elimi
nate the size-dependent cluster evaporation rateg1. A similar
equation is formed from the right-hand side of Eq.~2.1b! for
elimination of g2. Then the equations for the net currents
take the form

J1~ i , j !5b1s~ i , j !n~ i , j !F f ~ i , j !n~ i , j !
2

f ~ i11,j !

n~ i11,j !G ~2.3a!

and

J2~ i , j !5b2s~ i , j !n~ i , j !F f ~ i , j !n~ i , j !
2

f ~ i , j11!

n~ i , j11!G . ~2.3b!

Time evolution of the cluster population is given in
terms of the currents specified by Eqs.~2.3!:

d f~ i , j !

dt
5J1~ i21,j !2J1~ i , j !1J2~ i , j21!2J2~ i , j !

~2.4!

together with the boundary conditions for monomer,4 e.g.,
f (1,0)/n(1,0)51, and the Szilard boundary conditions
f ( i , j )50 along a specified outer path having sufficiently

FIG. 1. Fluxes for cluster evaporation and growth. Solid~dashed! arrows
show the positive~negative! contribution to the time evolution of clusters of
size (i , j ).
No. 5, 1 February 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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2100 Robert McGraw: Kinetics of nucleation in mixtures
large values ofi and j ~Fig. 2!. As in the case of one-
component systems, the Szilard boundary should be su
ciently removed from the critical cluster size~saddle point
location! that the steady-state currents and steady-state c
centrations are insensitive to its position. Equations~2.3! and
~2.4! can be combined to express the evolution of the clus
population in vector–matrix form:

df

dt
5Kf1a, ~2.5!

where f is the cluster population vector and thea is a con-
stant vector dependent on source rates at the mono
boundary condition.

Equations~2.3!, extended over a range of cluster siz
describe a system similar to an electrical network with t
various f /n as potentials andJ as currents. This analogy is
explored further in Sec. IV C below. The quantitiesb1,2 and
s are known, or can be estimated, from the physical prop
ties of the system, and the equilibrium concentrationsn( i , j )
are obtained in the usual manner from the free-energy s
face, which is itself derived using the capillarit
approximation.4 This system of equations can be solved f
the concentrationsf ( i , j ), once the boundary conditions o
the potentialsf /n have been specified. When these conce
trations are substituted back into Eqs.~2.3! the horizontal
and vertical currents are obtained.

The elements of the matrixK are determined from Eqs
~2.3! and~2.4! following the positioning of the elements off.
A straightforward way to proceed is to set up a one-to-o
mappingk↔( i , j ), l↔( i 8, j 8) between the components off
and the cluster composition (i , j ). The specific mapping de-
pends on the monomer boundary condition as shown be
in Sec. III. Then the five classes of nonzero entries to co

FIG. 2. Two-dimensional network configuration for describing binary nuc
ation kinetics in sulfuric acid–water mixtures. Each open circle node co
sponds to an (i , j ) cluster whose concentration is to be determined a
contributes to the dimensionality off. The figure also shows the free wate
monomer and Szilard boundary conditions.
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sider with nearest-neighbor transformations~Fig. 1! are
listed in Table I and result in a nonsymmetric banded struc
ture for the matrixK .

Each of the eight terms in Table I corresponds to a vecto
in Fig. 1. Four of these terms, corresponding to the dashe
vectors in Fig. 1, appear in the diagonal elementKkk and
make a negative~loss! contribution to the right-hand side of
Eq. ~2.4!. Certain properties of the elements ofK are evident
from Table I: For each elementk connected in reciprocal
fashion to its neighbors~i.e., not next to the monomer or
Szilard boundary locations! the sum of the elements in col-
umn k of K equals zero. An important additional property,
relatingKkl andKlk through detailed balance, is given by Eq.
~2.12! below. From Eqs.~2.3! and Table I it is seen that the
net current for transformation of clusters of typek↔( i , j ) to
type l↔( i 8, j 8) can be written in the form

J~k→ l !5Klk f k2Kkl f l ~2.6!

which vanishes when the equilibrium cluster concentration
n( i , j ) are substituted forf ( i , j ). Finally, it should be noted
that transformations beyond nearest neighbors, if require
are accommodated within the matrix formulation simply by
adding more nonzero elements toK . In Sec. III it will be
shown that nearest-neighbor transformation is sufficient fo
describing nucleation in sulfuric acid–water mixtures, eve
when collisions with hydrate clusters are included in the
model.

A. Steady-state solution

The steady-state solution to Eq.~2.5! is obtained through
matrix inversion as follows: First, separatef into its transient
and steady-state components. Following the notation o
Schelling and Reiss12:

f5gT1gSS. ~2.7!

Substitution into Eq.~2.5! gives

dgT
dt

5a1KgSS1KgT. ~2.8!

The requirement that the transient solution decay to zero
long time implies thata1KgSS50 or, equivalently,

gSS52K21a. ~2.9!

-
e-
d

TABLE I. Scheme for assigning the nonzero elements ofK .

Kkl5b1s~i,j!
n~i,j!

n~i11,j!

for k↔( i , j ) and
l↔( i11,j )

Kkl5b2s~i,j!
n~i,j!

n~i,j11!

for k↔( i , j ) and
l↔( i , j11)

Kkl5b1s( i21,j ) for k↔( i , j ) and
l↔( i21,j )

Kkl5b2s( i , j21) for k↔( i , j ) and
l↔( i , j21)

Kkk52Fb1s~i21,j!
n~i21,j!

n~i,j!
1b1s~i,j!G for the main diagonal

k↔( i , j )

2Fb2s~i,j21!
n~i,j21!

n~i,j!
1b2s~i,j!G
No. 5, 1 February 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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2101Robert McGraw: Kinetics of nucleation in mixtures
Obtaining the steady-state network solution is, therefor
equivalent to finding the inverse of the matrixK .

B. Transient solution

Substitution of Eq.~2.9! into Eq. ~2.8! gives the funda-
mental equation for the transient component off:

dgT
dt

5KgT. ~2.10!

To proceed further it is useful to convert the rate matrix t
Hermitian form. For a one-dimensional nucleation path, th
matrix K is tridiagonal and readily converted to Hermitian
form by similarity transformation using diagonal matrices8

However, the approach developed in Ref. 8 is not inheren
limited to 1D systems and it is easy to show that the sam
similarity transformation also converts a nontridiagonalK ,
arising from the 2D flux problem, to Hermitian form. This is
shown as follows.

Define the diagonal matrix:

Dkk5exp@w~ i , j !/kT# ~2.11!

whose elements correspond to thek↔( i , j ) mapping.
w( i , j )[wk is the free energy for forming a cluster of type
( i , j ). Since the equilibrium concentrationsn( i , j ) are them-
selves proportional to the Boltzmann factors exp[2w( i , j )/
kT], inspection of Table I reveals that for all pairs (k,l ), the
following identity holds:

Klk5exp@~wk2wl !/kT#Kkl . ~2.12!

Equation~2.12! has its origin in the detailed balance condi
tion. Note that when Eq.~2.12! is substituted into the current
formula @Eq. ~2.6!# for J50, the equilibrium population dis-
tribution is obtained. From Eqs.~2.11! and~2.12!, the trans-
pose ofK is

KT5DKD21. ~2.13!

With K andD, the Hermitian matrixH can be constructed.
Consider

H52D1/2KD21/2, ~2.14!

whereD1/2 is the square root of the diagonal matrixD. Then

HT52~D1/2KD21/2!T52D21/2KTD1/2

52D21/2DKD21D1/252D1/2KD21/25H, ~2.15!

where Eq.~2.13! has been used. This derivation shows th
H is brought to Hermitian form by a similarity transforma
tion with a diagonal matrix whose elements are the squa
root of the Boltzmann factors in terms of which the equilib
rium cluster populations are defined. Note that the key st
in proving the Hermiticity of H lies in demonstrating,
through the entries in Table I, that Eq.~2.12! extends to the
2D flux case. This result is used in Eq.~2.13!. The remaining
steps in the proof are formally identical to the 1D derivatio
of Ref. 8. Note, finally, that since the transformation matrice
are diagonal,H has the same banded structure~Sec. IV! as
doesK , but is in symmetric form.

We can now describe the kinetics in the frame of th
transformed matrixH. Let
J. Chem. Phys., Vol. 102,Downloaded¬14¬Mar¬2005¬to¬130.199.3.2.¬Redistribution¬subject¬to
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cT5D1/2gT ~2.16!

then from Eqs.~2.10! and ~2.14! we obtain

dcT

dt
52HcT . ~2.17!

The formal solution to Eq.~2.17! is

cT~ t!5V exp~2Dlt!V
21cT~0!, ~2.18!

whereV diagonalizesH:

V21HV5Dl ~2.19!

andDl is the resulting diagonal matrix having the eigenval
ues ofH as elements:

~Dl! i i5l i . ~2.20!

Since the columns ofV are the eigenvectors ofH, Eq. ~2.18!
may be put into more explicit form. In Dirac notation:

cT~ t!5(
i

^cT~0!uVi&exp~2l it!uVi& ~2.21!

showing the full dependence on the eigenvalues$l i% and
eigenvectors$Vi% of H. The initial condition used in comput-
ing the inner products~local density of states! of Eq. ~2.21!
follows from ~Eq. 2.16!. For example, if f~0!50 then
cT~0!52D1/2gSS. Equations~2.7!, ~2.9!, ~2.16!, and ~2.21!
provide a complete solution for the time-dependent flux dis
tribution and nucleation rate.

III. TWO-DIMENSIONAL FLUX NETWORK FOR
BINARY NUCLEATION IN SULFURIC ACID–WATER
MIXTURES

In Sec. II, the matrix formulation was developed in a
framework suitable for describing nucleation in general b
nary mixtures. Here we apply the model specifically to su
furic acid–water mixtures. To establish the rates of interclu
ter conversion, which comprise the matrix elements ofK , it
is convenient to make two simplifying approximations fo
the vapor phase, which will be shown to be well satisfied fo
the system under study. These approximations are introduc
specifically for the purpose of treating hydrate cluster
within the framework of the general matrix approach deve
oped in Sec. II, and are not restrictions on that approach. F
binary systems where clustering in the vapor phase in unim
portant, the general model can be immediately applied.

First, most of the vapor-phase acid molecules are in th
form of (h,1)-hydrate clusters consisting ofh molecules of
water ~component 1! and a single molecule of acid~compo-
nent 2!. At 298 K, Jaecker-Voirol and Mirabel estimate tha
at 200% RH, 99.8% of the acids are bound into these h
drates, at 50% RH the percentage is still 98.8%.9 For setting
up the flux network, with appropriate monomer boundar
conditions, we will therefore neglect free-acid molecules an
acid clusters and consider only monoacid hydrates and fre
water molecules in the vapor phase. This is the first approx
mation.

The second approximation is that sulfuric acid, in any o
its hydrate forms, is present in only trace amounts, compar
to the amount of water vapor present, since only trac
No. 5, 1 February 1995¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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2102 Robert McGraw: Kinetics of nucleation in mixtures
amounts of sulfuric acid are required in the presence of wa
to obtain high nucleation rates. To see where this approxim
tion enters, we return to the flux description of Fig. 1: Equ
tions~2.1a! give the flux for conversion of clusters of sizei , j
to clusters of sizei11,j through the addition of water
monomer, which is the dominant species. Equations~2.1b!
give the conversion of clusters of sizei , j to clusters of size
i , j11, nominally through the addition of a single molecu
of acid. However, as noted above, most acid molecules
bound with water in hydrate form. Since most hydrates co
tain a single acid, the addition of the hydrate will indee
change the indexj of the cluster by unity. However, we stil
need to examine changes in the indexi that occur with hy-
drate addition. From the preceding discussion it is clear t
hydrate additions will appear in Fig. 1 as fluxes with bo
horizontal and vertical components, depending on the wa
content of the colliding hydrate species. This apparent di
culty is easily circumvented by invoking the second appro
mation above, namely, that for all cases of practical intere
water is the greatly dominant species and the number of fr
water molecules far exceeds the number of hydrates. C
sider, e.g., that the fluxes due to hydrate addition have b
resolved into their horizontal (i ) and vertical (j ) compo-
nents. Since water collisions dominate, any contribution
the horizontal flux from hydrate collisions will be insignifi
cant compared to the horizontal fluxes due to the conden
tion and evaporation of water itself. Thus we can neglect
horizontal component of the fluxes due to hydrate additio
The vertical fluxes, on the other hand, result largely from t
addition of monoacid hydrates, which change the cluster
dex j by unity. These are included in Eq.~2.1b!.

To incorporate hydrates in the elements ofK , the prod-
uct b2s( i , j ) is replaced by an average over hydrate spec
and is identical to the quantityn( i , j ) defined in Ref. 12:

b2s~ i , j !5~8pkT!1/2(
h

sh
2mh

21/2n~h,1!. ~3.1!

In this equation,sh is the sum of the radii of the colliding
species,mh is the corresponding reduced mass, andn(h,1) is
the equilibrium number density of hydrates containingh wa-
ter molecules. The accommodation rate of the remaining
por species, single water molecules, on a cluster of surf
areas( i , j ) is given in the usual manner:

b1s~ i , j !5S kT

2pm1
D 1/2s~ i , j !n~1,0!, ~3.2!

wherem1 is the water monomer mass and an accomodat
coefficient of unity is assumed.

The second approximation, above, is equivalent to
condition.

b1s~ i , j !@b2s~ i , j !. ~3.3!

Note that if Eq.~3.3! were not satisfied for the hydrate clus
ters, the general matrix formulation could still be applied, b
would require the introduction of non-nearest-neighb
transformations in the flux network of Fig. 2.
J. Chem. Phys., Vol. 102,Downloaded¬14¬Mar¬2005¬to¬130.199.3.2.¬Redistribution¬subject¬t
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In the absence of free acids, the network shown in Fig
results. The small cluster~monomer! boundary conditions
are simplified in that water is the only free species who
concentration is explicitly fixed.~The fixed activity of acid is
implicit in b2.! Thus from Eq.~2.3!:

J1~1,0!5b1s~1,0!n~1,0!F12
f ~2,0!

n~2,0!G , ~3.4a!

J2~1,0!5b2s~1,0!n~1,0!F12
f ~1,1!

n~1,1!G , ~3.4b!

where the monomer boundary conditionf (1,0)/n(1,0)51
has been used. Note that the elementf (1,0), corresponding
to the concentration of water monomer, will not appear inf
as this is held constant by the boundary condition. Thus
ordering of the elements off begins with~1,1! and is carried
out so as to minimize the bandwidth of theK matrix. Let the
network extend to a maximum ofn1 max water molecules
per cluster andn2 max acids. Thenf will be a vector of
lengthn1 max ~n2 max11!21 with elements:

fT5@ f ~1,1!, f ~1,2!,...,f ~1,n2 max!, f ~2,0!,...,

f ~n1 max,n2 max!#, ~3.5!

wherefT denotes the transpose off. All but two elements of
the constant source vectora @Eq. ~2.5!# are zero and these
nonzero elements are determined from the terms in Eqs.~3.4!
corresponding to the flux to~1,1! from hydrate combination
with water monomer, and the flux to~2,0! from water–water
collisions. Comparison with Eq.~3.5!, for the positions of
these elements, shows that the nonzero elements ofa are

a15b2s~1,0! f ~1,0!,
~3.6!

an2 max115b1s~1,0! f ~1,0!.

The dimensionality of the square matrixK matches the
length of the vectorf. The matrix is five-banded with no
nonzero elements at a distance greater thann2 max11 from
the main diagonal. The network of Fig. 2 determines t
one-to-one mappingk↔( i , j ) of Sec. II with

k5~n2 max11!~ i21!1 j . ~3.7!

IV. CALCULATIONS

All parameters needed for the following calculation
e.g., surface tension of the solution, partial molar volum
chemical potentials, etc., are as assigned in the comp
codes of Schelling and Reiss;12 except for the equilibrium
vapor pressure of pure sulfuric acid for which the more r
cent measurement of Chu and Morrison is used.15 This as-
signment, 3.131025 Torr at 298 K, is in the range of the
measurements of Ayerset al.16 advocated in Ref. 9. The free
energy surfaces at 50% RH and 200% RH obtained for th
parameters are shown in Fig. 3. The corresponding a
activities11 of 1.031023 at 50% RH and 1.231026 at 200%
RH were selected to yield test conditions similar to those
Ref. 12.

Results of the full 2D nucleation kinetics calculations a
presented for the preceding two sets of conditions and a
for a 300% RH condition. In the examples treated below, w
No. 5, 1 February 1995o¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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2103Robert McGraw: Kinetics of nucleation in mixtures
consider clusters from 0 to 20 or 25 acids, and from 1 to 20
water molecules in size. This corresponds to aK -matrix di-
mensionality in the 4000 range.

A. Steady-state flux distribution

Solutions for the steady-state cluster population and fl
distribution require inversion of the matrixK used in Eq.
~2.9!. Elements of the source vectora follow Eq. ~3.4! and
the monomer boundary conditionf (1,0)/n(1,0)51. Be-
cause of its large size, and sparse banded structure,K is
stored in compressed form. Matrix inversion was accom
plished using compressed banded matrix subroutines.17 Cal-
culations were carried out in double precision~19 decimal
places!. Steady-state fluxes were computed from Eqs.~2.6!

FIG. 3. Free-energy surfaces for sulfuric acid–water clusters in the cap
larity approximation. The vertical and horizontal coordinates give the num
ber of acid molecules and water molecules, respectively, in the binary cl
ter. ~Top! water RH550%; acid activity51.0e203. ~Bottom! water RH
5200%; acid activity51.2e206. Contour spacing510 kT. Outer contours
are more closely spaced for reference at 100 and 102 kT.
J. Chem. Phys., Vol. 102,Downloaded¬14¬Mar¬2005¬to¬130.199.3.2.¬Redistribution¬subject¬t
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upon substitution of the steady-state cluster concentratio
obtained from the solution vectorgSS. The recovery ofa,
upon multiplication of the solution vector by2K @Eq. ~2.9!#,
was used as a check on the matrix inversion calculation.

Steady-state currents in the vicinity of the saddle poin
region are shown in Figs. 4 and 5. Note that, while thes
currents are defined and computed only for integersi and j ,
the vector plot routine interpolates for fractionali and j val-
ues. Figure 4~50% RH! shows the flux stream passing
through the saddle region and continuing to follow the nar
row valley of the free-energy surface. This trend continues
with a slight broadening of the current stream as more acid
are added, corresponding to a similar broadening of the fre
energy valley, until the horizontal portion of the Szilard
boundary~Fig. 2! is reached at thej -range limit of the cal-
culation. At 200% RH the free-energy surface@Fig. 3~b!#
acquires a more complex shape. The flux stream, shown
Fig. 5, traverses the saddle region and subsequently procee
in the direction of water growth. This trend continues untiil-
-
s-

FIG. 4. Steady-state currents in the saddle point region for water RH550%
and acid activity51.0e203.

FIG. 5. Steady-state currents in the saddle point region for water RH5200%
and acid activity51.2e206.
No. 5, 1 February 1995o¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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2104 Robert McGraw: Kinetics of nucleation in mixtures
the vertical portion,i -range limit, of the Szilard boundar
shown in Fig. 2 is reached; at which point approximate
93% of the total current is along thej58 path.

The nucleation rate consists of contributions from
possible paths throughout the network and is evaluated
sum over all currents reaching the Szilard boundary. Tabl
shows results from the present 2D network calculations
the steady-state nucleation rate together with a compar
with the rate computed using the Shugard–Heist–Reiss S
model.10 At 300% RH, more than 99% of the total current
along thej52 path, and continues to follow this path, un
the Szilard boundary is reached.~Since a vector plot on the
scale of Figs. 4 and 5 indicates only thej52 flux path, no
separate figure for this case is shown.! At 300% RH, the
saddle point, corresponding to a critical cluster containin
acid and 32 water molecules and a barrier height of 49.1kT,
is not reached by the current stream. Instead, the predo
nant nucleation flux is found to skirt over a higher pass in
direction of the water coordinate, which peaks at a clus
size of 2 acid and 106 water molecules and a barrier he
of 53.2kT. Under these conditions the model of Ref. 10, f
which the nucleation current is constrained to pass thro
the saddle point, gives a three order of magnitude under
mate of the nucleation rate. This interesting case confirms
Stauffer prediction,5 mentioned in Sec. I, and would seem
require a rexamination of the definition of critical clust
size, perhaps to include the kinetic as well as thermodyna
forcing properties of the system. The conventional 1D p
approaches, which constrain the flux to pass through the t
modynamic saddle point, may in general be expected to
derestimate the nucleation rate by neglecting the more fa
able kinetic forcing mechanism. Nonetheless, even at 20
RH, the SHR model underestimates the rate by less t
10%, and a comparison of Figs. 3~b! and 5 shows that mos
of the current still passes through the saddle region.

Two independent checks were made on the pres
method of analysis. First, the diagonal elements ofK , for
those nodes adjacent to the Szilard boundary, were e
modified to remove the boundary sink term~Table I! and the
steady-state solution vector obtained as before. As requ
for this case, the steady-state currents were found to va
and the steady-state and equilibrium cluster concentrat
were found to be identical. As a second test,b2 was set equa
to zero, forcing the nucleation to occur along the sing
component water path. In this case the computed nuclea
rate was found to agree with the result obtained indep
dently from the Becker–Doring rate formula for singl
component~water! nucleation.4

TABLE II. Results for sulfuric acid–water mixtures. The SHR nucleati
rate was computed using Eq.~4.1!.

Relative
humidity

Acid
activity

Nucleation
rate ~2D!

~cm23 s21!

Nucleation
rate ~SHR!
~cm23 s21!

50% 1.0~23! 76.91 76.94
200% 1.2~26! 1.96 1.84
300% 1.0~28! 2.1~3! 0.5
J. Chem. Phys., Vol. 102,Downloaded¬14¬Mar¬2005¬to¬130.199.3.2.¬Redistribution¬subject¬
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B. Relaxation time distribution

Equation ~2.21! shows that the description of time-
dependent nucleation is complete once the solution to
eigensystem associated with the rate matrixH has been ob-
tained. However, matrix diagonalization is generally not fe
sible for application to binary nucleation due to the larg
matrix size. Here we present a new computational approa
to time-dependent nucleation based on the negative eig
value theorem~Appendix!. The theorem allows the distribu-
tion and/or localization of the eigenvalues ofH to be effi-
ciently determined without diagonalization. Since eigenvalu
localization can be carried out rapidly, to whatever degree
accuracy is required,13 the negative eigenvalue theorem of
fers a significant improvement over variational method
which have been limited in application to the determinatio
of an upper bound for the lowest eigenvalue or, correspon
ingly, a lower bound for the longest relaxation time~time
lag! for the system to approach steady state.12

Figures 6 and 7 show cumulative distributions for th
eigenvalues ofH obtained through repeated applications o
the negative eigenvalue theorem as described in the App
dix. Figure 6 ~distribution a! shows a clear separation of
eigenvalues ofH for the 2D network, implying a correspond-
ing separation in time scales for relaxation of the time
dependent cluster population given by Eq.~2.21!. Here the
number of small eigenvalues, 25, is equal ton2 max, sug-
gesting that the long time behavior in Eq.~2.21! is controlled
by relaxation in the acid coordinate direction. Further ev
dence for this interpretation can be obtained by settingb250
to obtain distribution b of the figure. Here the total numbe
of eigenvalues is greatly reduced since only pure water clu
ters, corresponding to the lower row of nodes in Fig. 2, r
main connected to the monomer source. In this case rel
ation is to the equilibrium water cluster distribution, sinc
the nucleation rate for pure water is zero at 50% RH. Com
parison of the a and b cumulative eigenvalue distributio
suggests that the large eigenvalues of the full 2D netwo
~distribution a!, which govern the short time behavior in Eq

n

FIG. 6. Cumulative eigenvalue distribution for water RH550% and acid
activity51.0e203 ~curve a!. Plots showh(x) for 1000 values ofx equally
spaced over the logarithmic scale of the figure whereh(x) gives the number
of eigenvalues less thanx. Units of x are s21. Curve b gives the cumulative
eigenvalue distribution for pure water at 50% RH, corresponding to rela
ation of the water cluster (j50) population.
No. 5, 1 February 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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2105Robert McGraw: Kinetics of nucleation in mixtures
~2.21!, result from rapid relaxation in the water coordinat
direction. This wide separation of time scales underlies t
quantitative agreement found between the SHR model a
the present 2D calculations seen at 50% RH in Table
Indeed the postulate of time scale separation is fundamen
to the SHR model~Sec. IV C!. Figure 7 shows similar results
for the 200% RH calculation. Here the number of small e
genvalues is less thann2 max and there is somewhat les
time scale separation.

The negative eigenvalue theorem, through its ability
localize the eigenvalues ofH, can also be used for accurate
determination of the corresponding eigenvectors through t
technique of inverse iteration.13 Although eigenvector calcu-
lations are beyond the scope of the present study, it should
noted that inverse iteration is expected to be especially w
suited to the determination of long time behavior in Eq
~2.21! due to the wide separation of the smallest eigenvalu
seen in Figs. 6 and 7.

The smallest eigenvalues are located at 11 s21 for 50%
RH ~Fig. 6! and 4.8 s21 for 200% RH~Fig. 7!—as indicated
by the smallest values ofx for which h(x)51. The recipro-
cals of these values give the corresponding nucleation tim
lags. Interestingly, the time lags estimated in Ref. 12 usin
the variation method are of the same order of magnitude
those obtained here, despite use of the full 2D kinetics mod
and a different equilibrium vapor pressure for sulfuric acid i
the present calculations.

C. Comparison with the Shugard–Heist–Reiss model

In the preceding sections, the general 2D kinetics mod
of Sec. II was applied to a specific binary system, sulfur
acid–water, with strong asymmetry in the physical properti
of its two components. This asymmetry, while not require
in the general model can, when justified, be used to derive
convenient, closed form, expression for the steady-sta
nucleation rate.10 The result is similar in structure to the

FIG. 7. Cumulative eigenvalue distribution for water RH5200% and acid
activity51.2e206 ~curve a!. Plots showh(x) for 1000 point sampling of
Fig. 6. Units ofx are s21. Curve b gives the cumulative eigenvalue distri
bution for pure water at 200% RH, corresponding to relaxation of the wa
cluster (j50) population.
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Becker–Doring rate formula,4 but with double summation
over the two-component indices~i and j ! characterizing the
binary cluster state:

J5S f 1n12 f s
nsD H (

j
F(

i

b2s~ i , j !n~ i , j !G21J 21

. ~4.1!

Equation~4.1! contains the same parameters that occur in t
elements ofK ~Table I! and is compared with the present 2D
model predictions for the steady-state nucleation rate
Table II. Equation~4.1! is identical to Eq.~18! of Ref. 10 for
potentialsf 1/n151, and f s/ns50 along the Szilard bound-
ary for sufficiently largej .

The results of Secs. IV A and IV B suggest a quantitativ
range of validity to the physical assumptions behind E
~4.1! that could not have been demonstrated prior to carryi
out the full 2D rate calculations. This success warrants fu
ther investigation. Returning to the resistor network analo
introduced in Sec. II, the term in curly brackets in Eq.~4.1!
approximates the overall resistance of the network as

R5(
j

F(
i

b2s~ i , j !n~ i , j !G21

. ~4.2!

With the definitions

1

Rj
5(

i

b2s~ i , j !n~ i , j ! ~4.3!

and

1

Ri , j
5b2s~ i , j !n~ i , j ! ~4.4!

the double summation is equivalent to a series/parallel res
tor model of the network. This is shown as follows. Refe
ring to Fig. 2, the resistanceRi , j is assigned to the network
segment emanating in the vertical direction from nodei , j .
These are summed in parallel over indexi in Eq. ~4.3! to
obtainRj . The latter is the aggregate resistance from rowj
to row j11 in Fig. 2. TheRj are, in turn, summed in series
in Eq. ~4.2! to obtain the overall network resistanceR. The
approximation requires that all nodes along a row~constant
j ! be at the same potential (f /n), which in general will be a
function of j . A necessary, but not sufficient, requirement fo
this to hold is that the inequality, Eq.~3.3!, be satisfied. Only
then will the horizontal resistance links, connecting nodesi , j
and i11,j in Fig. 2 and defined withb1 replacingb2 in Eq.
~4.4!, be small enough, relative to the vertical resistan
links, for the equipotential condition to hold.~This same in-
equality was used in Sec. III as a convenient way to hand
hydrates in sulfuric acid–water mixtures, but is otherwise n
required in a 2D kinetics model.! The equipotential condi-
tion, implying zero net current along network rows of con
stant j , is equivalent to the assumption of local equilibrium
with respect to the addition of water molecules used in t
derivation of Eq.~4.1! in Ref. 10. Under conditions of local
equilibrium, the summation over the water indexi @Eq. ~4.1!#
provides an effective accounting for the width of the curre
distribution passing through the saddle.

er
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2106 Robert McGraw: Kinetics of nucleation in mixtures
As noted above, the inequality, Eq.~3.3!, is not sufficient
for Eq. ~4.1! to hold. Since the Szilard boundary conditio
setsf /n50 for sufficiently largei ~Fig. 2!, the potential will,
in fact, not be constant along a row of network nodes and
assumption of local equilibrium cannot strictly be met. Fa
ure of the local equilibrium assumption is most pronounc
at high water RH, where the nucleation flux is found to
predominantly in thei -coordinate direction for sufficiently
large j . Under these conditions, as seen in Table II, Eq.~4.1!
underestimates the nucleation rate. At low water RH, on
other hand, the vertical Szilard boundary~Fig. 2! lies in an
inaccessible region of cluster space due to the high fr
energy barrier~Fig. 3!; a feature that permits local equilib
rium independent of thef /n value maintained along that seg
ment of the Szilard boundary. Then, as found above, E
~4.1! is an excellent approximation to the full 2D kinetic
result. Further insight into the local equilibrium assumptio
based on the required separation in the time scales for re
ation in thei - and j -coordinate directions,10 can be found in
the cumulative eigenvalue distributions.

V. DISCUSSION

Classical nucleation theory has been extended to obta
consistent, fully two-dimensional treatment of nucleation k
netics in binary vapor mixtures. The extended, 2D mod
includes a generalization of the Szilard boundary conditio
which now applies to a one-dimensional boundary set
clusters all of which exceed the thermodynamically defin
critical cluster size. The nucleation rate consists of contrib
tions from all possible paths throughout the cluster netwo
and is evaluated as a sum of contributions over all curre
reaching the Szilard boundary. The 2D kinetics model p
vides a quantitative method for testing the reduced dim
sionality assumption invoked in conventional 1D models
binary nucleation that prescribe a fixed, usually thermod
namically derived, nucleation path. The model has been p
sented here for nearest-neighbor cluster transformations~D i
561, D j561!, but is easily adapted to the more gener
case.

For time-dependent studies, a new method, based on
negative eigenvalue theorem, was developed to obtain
distribution of relaxation times governing the approach
steady state. Specifically, the relaxation times were obtai
as reciprocals of the eigenvalues of the Hermitian rate ma
H, which was shown in Sec. II B to provide a comple
solution for the time-dependent current distribution a
nucleation rate. The new method affords a highly efficie
means of eigenvalue localization, that can be used for sin
component as well as for binary nucleation studies and
therefore, a significant improvement over variational me
ods, which have been limited to the determination of an u
per bound on the lowest eigenvalue, corresponding to
lower bound on the time lag for approach to steady state

Calculations were presented for the steady-state cur
distribution and relaxation time distribution for binary nucle
ation in sulfuric acid–water mixtures. Here the model w
applied to a system whose individual components have v
different physical properties, including hydrate clustering
the minority~acid! component in the vapor phase. Compa
J. Chem. Phys., Vol. 102Downloaded¬14¬Mar¬2005¬to¬130.199.3.2.¬Redistribution¬subject¬
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sons for the steady-state nucleation rate suggest a quant
tive range of validity to the model of Shugardet al.10 that
could not have been demonstrated prior to a full 2D analys
of flux contributions to the nucleation rate. Side-by-side
comparisons with the flux distributions and relaxation time
obtained by the full 2D kinetics model, and from an analysi
based on the resistor network model, indicate that the close
form rate expression of Ref. 10@Eq. ~4.1!# can be used with
confidence under conditions important for atmospheric ne
particle formation.

At high supersaturation~300% RH!, in the realm of dif-
fusion cloud chamber operation, the nucleation flux wa
found to bypass the saddle point, thereby violating a ke
assumption made in the conventional 1D saddle path mode
Under these conditions, the full 2D kinetics model is re
quired to obtain accurate assessments of the flux distributio
and nucleation rate, which are shaped by a combination
kinetic and thermodynamic forcing.
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APPENDIX: APPLICATION OF THE NEGATIVE
EIGENVALUE THEOREM

Presented below is a description of the negative eigen
value theorem, followed by a convenient reformulation o
the algorithm recommended for banded symmetric matrice
stored in compressed form. Proof of the theorem and its u
in the determination of eigenvectors through inverse iteratio
can be found in Ref. 13.

The negative eigenvalue theorem provides an efficien
method for computing the eigenvalues of a real symmetri
matrix. The particular form of the theorem that we will apply
rest upon partitioningH into four submatrices:A1, A2, B1,
andB1

T, with A1 of order unity~i.e., scalar!:

H5FA1 B1

B1
T A2

G , ~A1!

where

A15a11,

B15~a12,a13,...,a1n!, ~A2!

A25F a22 a23 . . a2n
a32 a33 . . a3n
. . .

. . .

an2 . . . ann

G ,
and B1

T is the transpose ofB1. Next consider the matrix
M1(x)5H2xI wherex is a positive real number andI is the
, No. 5, 1 February 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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2107Robert McGraw: Kinetics of nucleation in mixtures
identity matrix, also of ordern. Now H will have precisely
h$M1(x)% of its eigenvalues less thanx, whereh$M1(x)% is
defined as the number of negative eigenvalues ofM1(x). By
choosing different values forx, and evaluatingh$M1(x)% for
each, the distribution, and/or localization, of the eigenvalue
of H is determined. The negative eigenvalue theorem pr
vides the means to determineh$M1(x)%.

Dean13 introduces the following notation:

X15A12xI1,

Z15A22xI2, ~A3!

Y15B1,

where the matrices on the right-hand side are as defined
Eq. ~A2!. In this new notation the partitioning ofH2xI takes
the form

M1~x!5FX1 Y1

Y1
T Z1

G ~A4!

and the negative eigenvalue theorem gives the result

h@M1~x!#5h@X1#1h@Z12Y1
TX1

21Y1#. ~A5!

SinceX1 is a scalar, the first term on the right-hand side o
Eq. ~A5! is simply determined from the sign ofX1. It is
equal to 0~1! when the sign ofa112x is positive~negative!.
Thush$M1(x)% equals the sum of this result and the numbe
of negative eigenvalues of the square matrixZ12Y1

TX1
21Y1

of order n21. The entire process is now repeated for th
symmetric square matrix of ordern21 by defining

M2~x!5Z12Y1
TX1

21Y15FX2 Y2

Y2
T Z2

G ~A6!

and a second application of the theorem is given in analog
to Eq. ~A5!:

h@M2~x!#5h@X2#1h@Z22Y2
TX2

21Y2#. ~A7!

Continuation of the process gives

h@M1~x!#5(
i51

n

h@Xi# ~A8!

for the number of negative eigenvalues ofM1(x) or, equiva-
lently, for the number of eigenvalues ofH less thanx, which
is the desired result.

Storage limitations require thatH be handled in com-
pressed form. Figure 8 shows the matrixM1(x) in the com-
pressed formatMR(x) used in the subroutines for matrix
inversion.17 This format actually turns out to be advanta-
geous for coding the negative eigenvalue algorithm. The fu
symmetric matrix bandwidth is 2h21. Comparison of Eqs.
~A2! and Fig. 8 shows that elements of the compressed a
uncompressed matrices are related as

@M1~x!# i,j5@MR~x!# i,j2 i11 , ~A9!

where the subscriptR labels the compressed form. The quan
tities
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X15@MR~x!#1,1 ,
~A10!Y1~ j !5@MR~x!#1,j11

define the header row of the compressed matrix. The trian
gular region that includes elements from theh21 rows im-
mediately below the header row is the work space, namel
that region ofZ1 over which the subtraction of the elements
in the productY1

TX1
21Y1 occurs. Specifically,

@MR~x!# i11,j2 i115@MR~x!# i11,j2 i112X1
21Y1~ i!Y1~ j !

~A11!

for i , j51 throughh21 with j> i .
Header and work space templates are then shifted dow

one row in the direction of the arrow and the process re
peated untiln signs of the first elements each header row
h@Xi# have been accumulated for evaluation of Eq.~A8!. At
stepL:

XL5@MR~x!#L ,1 ,
~A12!YL~ j !5@MR~x!#L ,j11 ,

@MR~x!# i1L ,j2 i115@MR~x!# i1L ,j2 i112XL
21YL~ i!YL~ j !.

~A13!

Additional rows of zeros may be appended to the array o
Fig. 8 to prevent the triangular work space from entering, in
the final steps of the calculation, an undefined region.
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