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ABSTRACT. The method of moments (MOM) may be used to determine the 
evolution of the lower-order moments of an unknown aerosol distribution. Previous 
applications of the method have been limited by the requirement that the equations 
governing the evolution of the lower-order moments be in closed form. Here a new 
approach, the quadrature method of moments (QMOM), is described. The dynarni- 
cal equations for moment evolution are replaced by a quadrature-based approxi- 
mate set that satisfies closure under a much broader range of conditions without 
requiring that the size distribution or growth law maintain any special mathematical 
form. The conventional MOM is recovered as a special case of the QMOM under 
those conditions, e.g., free-molecular growth, for which conventional closure is 
satisfied. The QMOM is illustrated for the growth of sulfuric acid-water aerosols 
and simulations of diffusion-controlled cloud droplet growth are presented. 
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ation for Aerosol Research 

INTRODUCTION 
The method of moments (MOM) is a pow- 
erful approach with unique advantages for 
describing aerosol dynamics under condi- 
tions that can include new particle forma- 
tion, evaporation, growth by condensation 
and coagulation, and complex mixing flows 
(Hulburt and Katz, 1964; McGraw and 
Saunders, 1984; Pratsinis, 1988; Jurcik and 

, Brock, 1993; LaViolette et al., 1996). The 
MOM solves the problem by tracking the 
time dependence of just the lower-order . radial moments of the size distribution. 
These lower-order moments are often suf- 
ficient for estimating the physical proper- 
ties (Friedlander, 1977) and optical proper- 
ties (McGraw et al., 1995) of the simulated 
aerosol, whereas the full aerosol size distri- 
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bution generally contains much more infor- 
mation than is required for many applica- 
tions. Conversely, the lower-order moments 
of an aerosol distribution may be inferred 
from measurement, e.g., from multiwave- 
length particulate extinction measurements 
(Livingston and Russell, 1989) and com- 
pared with the moments obtained from 
simulations using the MOM. 

The kth radial moment of an aerosol 
size distribution is defined as 

where f(r) is the distribution function for 
the number density of particles having radii 
in the range r to r + dr. The key to the 
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MOM is that the lower-order moments can 
be tracked directly without requiring addi- 
tional knowledge of the distribution. The 
conventional MOM accomplishes this feat 
by formulating equations for evolution of 
the moments in closed form, i.e., involving 
only functions of the moments themselves. 
However, the closure requirement is a se- 
vere restriction on the method, which is 
probably the main reason for the method 
not having received more widespread appli- 
cation. Necessary and sufficient conditions 
for closure are described in the following 
text. 

-in! this paper, a new approach, the 
quadrature method of moments (QMOM), 
is introduced through which the moments 
of f are tracked in time directly, just as in 
the conventional case, but for which the 
requirement of exact closure is replaced by 
an approximate closure condition that al- 
lows the method to be applied under a 
much broader range of conditions. In addi- 
tion, the QMOM is shown to include the 
ordinary MOM as a special case that is 
recovered for those special growth-law con- 
ditions (Eq. 3) for which exact closure is 
obtained. 

MOMENT EVOLUTION EQUATIONS 
A coupled set of general dynamic equations 
(GDEs) suitable for describing aerosol for- 
mation in complex flow fields may be writ- 
ten as (Hulburt and Katz, 1964) 

nucl 

and 

for moment index k 1. Here R and S are 
source and sink rates respectively, for 
monomer (fl) production, D is the eddy 
diffusion constant for turbulent mixing, v is 
the local flow velocity, J(r)  is the nucle- 
ation rate, and +(r) is the particle growth 
law, +(r) = dr/dt. The last two terms in 
Eq. 2a represent monomer loss to new par- 
ticle formation and to growth where, in the 
growth term, u l  is the molecular volume. 

Equations 2 cannot be solved in their 
present form because the growth-law terms 
appearing in Eqs. 2a and 2c each involve 
integration over a distribution function f(r) 
that is unknown. Much of the success of 
the conventional MOM has been due to 
the fact that there are special cases of 
practical importance where the growth 
function +(r) is such that a closed set of 
equations in terms of the moments of f(r)  
is obtained. Hulburt and Katz (1964) have 
shown that the necessary and sufficient 
conditions for exact closure of Eq. 2 is a 
growth law of the form 

<b(r) = a  + br, (3) 
where a and b are independent of r. For 
b = 0, Eq. 3 describes particle growth in the 
free-molecular size regime, a well known 
result treated in previous applications of 
the MOM (e.g., McGraw and Saunders, 
1984) that will not be discussed further 
here. The case a = 0 applies under certain 
quasi-equilibrium conditions to describe the 
growth of solution droplets as subsequently 
discussed for sulfuric acid-water droplets. 
When Eq. 3 pertains, the growth term in 
Eq. 2c becomes 
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The same substitution solves the integral in 
Eq. 2a, which describes monomer loss from 
the vapor due to particle growth. Reduction 
of the growth-law integrals in this fashion 
results in a closed set of five coupled non- 
linear equations for the evolution of fi and 
moments p o - ~  and is the basis for the 
conventional MOM. (For b = 0 only the 
four equations through are required for 
closure.) As noted previously, Eq. 3 is a 
severe restriction on the types of growth 
laws that can be handled by the method. 
For example, the important cases of diffu- 
sion-controlled growth (subsequently dis- 
cussed and size-dependent evaporation 
rates of small particles (Kelvin effect) are 

? 

described by growth-evaporation laws that 
are not of the form of Eq. 3. To circumvent 
this limitation, the QMOM obtains closure 
through approximation of the growth inte- 
grals, using a much less restrictive quadra- 
ture method that will now be described. 

QUADRATURE-BASED CLOSURE 
The focus of the quadrature approximation 
is again the growth-law integrals of Eqs. 2 
because these involve the unknown particle 
size distribution. Approximating these inte- 
grals by means of n-point Gaussian quadra- 
ture (Lanczos, 1988) we obtain 

for k 1. The essence of quadrature-based 
closure lies in the fact that the abscissas ri 
and weights w may be completely specified 
in terms of the lower-order moments of the 
unknown distribution function f(r). Specif- 
ically, the abscissas and weights are inde- 
pendent of 4(r )  and f(r)  [beyond the de- 
pendence on f(r)  through its lower-order 
moments]. For example, the moments 
themselves may be written in the form of 
Eq. 5. For n-point quadrature these are 

for k = 0 through 2n - 1. Inspection of Eq. 
6 shows that the first 2n moments ( {JL ,̂ for 

k = 0 through 2n - 1) determine the n ab- 
scissas and n weights. However, the direct 
solution of Eq. 6 for these quantities would 
require a nonlinear search and is not rec- 
ommended. A much better approach is to 
use the moment sequence to construct a 
tridiagonal Jacobi matrix from which the 
quadrature abscissas and weights can be 
obtained. An algorithm that contains both 
these steps is described in Appendix A. 

Substitution of the right-hand side of Eq. 
5 into Eqs. 2, in place of the integrals, 
results in an approximate closure condition 
(because the equality of Eq. 5 is approxi- 
mate) that does not contain the unknown 
distribution function f(r). The transformed 
equations are in closed form because evo- 
lution of the pk is given in terms of the 
abscissas and weights, which, as previously 
described, are themselves given in terms of 
the lower-order moments of f(r). This clo- 
sure is the basis for the QMOM. In sum- 
mary, the basic idea of the QMOM is to 
evaluate the growth contribution to the 
moment derivatives in Eqs. 2 using the 
quadrature approximation of Eq. 5. This 
gives a prescription for updating the mo- 
ment sequence, which can then be inverted 
to obtain new abscissas and weights, and so 
on, until the time evolution of the system 
(Eqs. 2) has been obtained. Inspection of 
Eqs. 4-6 reveals that the QMOM reduces 
to the conventional MOM when the growth 
law of Eq. 3 pertains. Thus any simulation 
of moment evolution that can be per- 
formed using the conventional MOM can 
be performed using the QMOM, whereas 
the latter can also handle more general 
cases that as we will shown, are beyond the 
capability of the conventional approach. All 
that remains to implement the QMOM is a 
numerical means for rapid conversion from 
moments to quadrature abscissas and 
weights and this is provided in Appendix A. 

CALCULATIONS 
The QMOM is best demonstrated by 
choosing conditions that focus on handling 
the growth law and that are also amenable 
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to exact calculation by other methods for 
comparison. Both these features are pre- 
sent in spatially homogeneous box models 
for which complex flow field considerations 
can be set aside, whereas all of the essen- 
tial difficulties associated with closure of 
the moment evolution equations remain. 
Returning to the moment evolution equa- 
tions, we note that in the absence of new 
particle formation the right-hand side of 
Eq. 2b vanishes for the box model ( po is 
constant), but the full growth-law term re- 
mains in Eq. 2c for the higher-order mo- 
ments. Two cases with widely different 
growth laws will now be considered. The 
first of these (growth of sulfuric acid-water 
aerosols) we only mention as an example of 
a situation, which differs from the well- 
known case of free-molecular growth, for 
which the growth law follows Eq. 3 and 
closure in both the QMOM and the usual 
MOM is exact. The second example (diffu- 
sion-controlled growth) can only be han- 
dled by the QMOM and the more detailed 
calculations presented in subsequent text 
will be limited to this case. 

Growth of Sulfuric Acid-Water Aerosols 

In this example we consider the size change 
in sulfuric acid-water droplets as the rela- 
tive humidity of water is changed. Ex- 
change of water vapor is fast compared 
with exchange of sulfuric acid, which is 
generally present in the vapor in only trace 
amounts. As a result, droplets are in local 
equilibrium with respect to evaporation and 
condensation of water vapor. To further 
simplify the example, we will assume that 
the amount of sulfuric acid present in the 
droplets is unchanged over the time inter- 
val of interest and that water equilibration 
is sufficiently rapid that the size of each 
droplet is dependent only on its initial size 
and on the relative humidity (RH) of water. 
This dependence has been studied for labo- 
ratory-generated sulfuric acid aerosols (Mc- 
Murry and Stolzenburg, 1989). At any given 
RH, each particle has a radius proportional 

to its initial radius. The corresponding 
growth law is therefore 

where k1 is a function of time that depends 
on the rate of change in RH, but is inde- 
pendent of r.  This growth law is of the type 
described by Eq. 3. Consequently, results 
from both the QMOM and the conven- 
tional MOM satisfy closure for this case. 

Diffusion-Controlled Growth 

Diffusion-controlled growth applies under 
conditions that the particle size is greater 
than the mean-free path of the gas, about 
0.1 pm in the lower atmosphere. As a 
result, most processes in clouds, where par- 
ticle radii typically exceed 1 pm, involve 
diffusion-controlled growth. The growth law 
is (Pruppacher and Klett, 1980) 

which, as this is not of the form of Eq. 3, 
implies that the conventional MOM equa- 
tions cannot be closed. Here k2 is a func- 
tion that depends on a number of variables, 
including vapor concentration f but like 
kl is independent of r.  

Failure of the conventional MOM for 
the growth law of Eq. 8 can be seen by 
inspecting the moment evolution equations, 
which in this simplified box model are 

This system of equations cannot be closed 
off at any value of the moment index k 
because the equation for pl involves p-,, 
which depends on the entire particle size 
distribution. Until now, the only way of 
applying the MOM to this problem has 
been to assume that the size distribution 
f(r) maintains a special mathematical form 
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parameterized by its moments. For exam- 
ple, to obtain closure of Eqs. 9, Hulburt 
and Katz (1964) use the leading term of a 
Laguerre series expansion based on the 
gamma distribution to represent f(r). This 
function is parameterized by its first three 
moments, in terms of which all of the other 
moments can be expressed. For functions 
in this Laguerre class (Hulburt and Katz, 
1964), 

Upon substitution of this expression into 
Eqs. 9, a closed system of equations is 
obtained. 

To demonstrate the new approach of the 
QMOM, we consider an initial distribution 
having the Khrgian-Mazin (KM) cloud drop 
size distribution form (Pruppacher and 
Klett, 1980), 
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neglected here for ease of illustrating the 
method. 

Figure 1 shows the initial distribution 
(dotted curve) and two final distributions at 
time t = 20 s. The solid curve results from 
analytical propagation of the initial distri- 
bution under the growth law to obtain the 
exact final distribution (Eq. B3 of Appendix 
B). The dashed-dotted curve describes the 
Laguerre distribution parameterized in 
terms of the moments at t = 20 s. The 
latter were obtained by integrating Eqs. 9, 
with p-, from Eq. 10, using the moments 
of the t = 0 distribution (Ea. 11) as initial 
conditions. The Laguerre model fails to 
adequately represent the exact distribution 
at the later time, even though the initial 
distribution was selected to have the La- 
guerre form. 

Figure 2 show the time evolution of the 
first five moments through 20 s for the 
exact distribution, for the Laguerre model, 
and for a QMOM simulation using three- 
point quadrature. Moment integrals over 

(I1) the exact distribution of Eq. B3 (cf. Eq. 1) 

where r is particle radius ( /^m) and a and 
b are parameters in the distribution. In this 
example we set a = 0.108 p n 3  c m 3  and 
b = 0.6 p m '  in order to obtain a normal- 
ized distribution with an initial mean parti- 
cle radius of 5 pm. The lead term in the 
Laguerre series is satisfied by the KM dis- 
tribution as a special case. Thus, in this 
example the initial distribution function 
( t  = 0) satisfies Eq. 10 exactly and follows 
the Laguerre form. It is important to em- 
phasize, however, that this special initial 
distribution is not a requirement for the 
QMOM. For r in units of pm, k2 = 0.78 
pm2/s in air at T = 278 K and fixed water 
supersaturation of 101% (5' = 1.01). The 
numerical value of k2 follows the equations 
of Pmppacher and Klett (1980) and in- 
cludes both heat and mass transfer to the 
water drop, but neglects departure from 
Eq. 8 to include corrections to the r depen- 
dence of the growth law for the transition 
size regime. Such corrections are readily 
handled in the QMOM, but are negligible 
for particle radius exceeding 1 pm and 

were evaluated as a function of t by nurner- 
ical integration (Wolfram, 1991). [Note that 
since the first and third of Eqs. 9 are them- 
selves closed in this simplified model, all 
three approaches (QMOM, MOM, and La- 
guerre closure) trivially give the correct 
second moment, which varies linearly with 
time.] The QMOM simulation results are 
in excellent agreement with the numerical 
integrations over the exact evolved distribu- 
tion. However, the moments obtained from 
Eqs. 9 and 10 for the parameterized 
Laguerre distribution, particularly the 
higher-order moments ( p3-p5), depart 
substantially from the exact distribution re- 
sults. 

Figure 3 amplifies the differences be- 
tween the QMOM and exact calculations, 
which are unresolved in Fig. 2. The com- 
parison is given only for the odd moments 
because, as previously noted, the QMOM 
and exact calculations are in agreement for 
the second moment. That they are also in 
agreement for the fourth moment, again a 
consequence of the simplified equations of 
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FIGURE 1. Particle size distributions. Diffusion-controlled growth of water drops at T=278 K and fixed 
supersaturation of 101% ( S  = 1.01). Dotted curve, initial normalized KM distribution (Eq. 11) with mean particle 
radius of 5 pm. Solid curve, exact distribution after 20 s from Eq. B3. Dashed-dotted curve, Laguerre distribution 
parameterized by the moments 0-2 after propagation to t = 20 s using the Laguerre closure method (Eqs. 9 and 10). 

the model, can be seen as follows. From 
Eq. 6, 

and 

Differentiating gives 

and 

where Eq. 8 has been used and the weights 
are unchanged because no particle loss 
mechanisms or sources of new particles are 
present in the model. Thus the evolution of 
the fourth moment is given by the quadratic 
equation in time, 

in both the exact and QMOM descriptions. 
Figure 3 shows that the remaining mo- 
ments obtained by the QMOM (p, ,  p3, 
and p,) do differ, on a small percentage 
error basis, from the exact result. The dif- 
ferences, which are much smaller than the 
errors encountered with the Laguerre clo- 
sure method, evident in Fig. 2, are seen to 
not necessarily increase with time. For ex- 
ample, in the case of pi a maximum error 
of just two parts per thousand is reached 
within the first 5 s of growth, followed by 
decreasing error with time for the remain- 
der of the calculation period-a possible 
result of quadrature accuracy being favored 
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FIGURE 2. Moment evolution for diffusion-controlled growth. Conditions are the same as in Fig. 1. The kth 
moment has units of ( Solid curves denote moments obtained from exact propagation of the initial test 
distribution shown in Fig. 1. Heavy dashed curves denote moments obtained using the QMOM. Dashed-dotted 
curves denote moments obtained from integration of Eqs. 9 and 10 using the Laguerre closure method. Note that 
both the QMOM and Laguerre closure methods are exact for the second moment, which varies linearly with time as 
a consequence of the simplified equations of the box model (Eqs. 9). 
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FIGURE 3. Percent error in the QMOM calculations of Fig. 2 for diffusion-controlledgrowth. Results for only the 
odd order moments are shown. The QMOM and exact calculations are in full agreement for the zeroth, second, and 
fourth order moments as a consequence or the simplified equations of the box model (Eqs. 9). 

by the narrowing of the particle size distri- method of moments, no explicit form for 
bution with time seen in Fig. 1. the distribution function f ( r ) ,  present in 

the growth-law terms in Eqs. 2, is required 
to construct a closed set of equations for 

SUMMARY evolution of the radial moments of f(r). 
The advantages of the QMOM can be sum- Unlike the conventional method of mo- 
marized as follows: As in the conventional ments, the QMOM does not require that 
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the growth law be in the restricted form of 
Eq. 3 for this closure of the moment evolu- 
tion equations to be obtained, nor is it 
necessary for closure to assume that the 
particle size distribution maintain any spe- 
cial mathematical form. Finally, the con- 
ventional MOM is recovered as a special 
case of the QMOM under those conditions, 
e.g., free-molecular growth, for which Eq. 3 
is satisfied. 

The preceding calculations clearly show 
the drawback of using an assumed particle 
size distribution to represent f ( r )  in achiev- 
ing moment closure. Even if the assumed 
distribution is known to be accurate at a 
given time, it may not be accurate at subse- 
quent times during the evolution of the 
aerosol. Moreover, apart from special cases 
where exact solution is possible by other 
methods, the accuracy of such assumed 
model distributions is not easily assessed. 
Higher-order functions parameterized us- 
ing more moments, including higher order 
Laguerre functions, can be incorporated 
into a conventional MOM description, but 
these are subject to the same problem of 
assuming a distribution form. Furthermore, 
a different procedure must be employed to 
achieve closure whenever there is any 
change in either the model distribution or 
the growth law (e.g., new analogs of Eq. 10 
must be derived). In contrast, the QMOM 
is easily implemented numerically because 
the method does not require an assumed 
model distribution and because the algo- 
rithm, governing the conversion between 
moments and quadrature abscissas and 
weights, is independent of the mechanism 
of aerosol growth. 

APPENDIX A: INVERSION OF 
MOMENT SEQUENCES 
Inversion of the lower-order radial moment 
sequence (here applied to the six moments 
p O - k )  to generate the quadrature abscis- 
sas and weights for use in Eq. 5 proceeds in 
two steps. First, a 3 X 3 symmetric tridiago- 
nal matrix is constructed whose diagonal 
elements {a,, a2,  a,] and off-diagonal ele- 
ments {b, ,  by )  are derived from the mo- 

ments using the product-difference (PD) 
algorithm (Gordon, 1968). In the second 
step the 3 x 3 symmetric tridiagonal matrix 
is diagonalized by conventional methods 
to obtain the three abscissas and the 
three weights. Each of these steps is now 
described. 

The PD algorithm proceeds in a se- 
quence of steps beginning with setting up a 
triangular array of elements P(i, j). Ele- 
ments of the first column are 

where 5, = 0 for i # 1 and 5,  = 1 for 
i = 1. The second column contains the mo- 
ments with alternating sign: 

Without loss of generality, since the final 
distributions (or weights) can always be 
multiplied by the correct value of pn, we 
will set P(l,2) = pg = 1. Remaining ele- 
ments of the array are obtained via the 
recursion 

Only the table elements along the first row 
are required for moment inversion. These 
are given by Eqs. A4, which follow. First 
row table elements P(1,l) and P(l, 2) fol- 
lows Eqs. A1 and A2. For the remaining 
elements in the first table row we use Eqs. 
A1-A3 to obtain 
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The equations for P(1,l) through P(l,6) 
containing the moments po through p,, are 
as given in Gordon. We include the next 
term P(l,7) in Eq. A4, which is necessary 
for inversion of moments po through p5 in 
the following text. From Eq. A4 a new 
vector ( a )  is generated beginning with the 
assignment of a(1) = 0 and continuing with 

for n 2. The first few members of the 
series are 

The expressions for a(5) and a(6) are more 
complicated and will not be given here be- 
cause they are easily generated from Eqs. 
A5 and A4. [The recursive algebra associ- 
ated with evaluations of Eqs. A3 and A5, 
and generation of Eq. A8 in the following 
text, is most easily handled using a symbolic 
computation program such as Mathematica 
(Wolfram, 19901 Finally, the matrix ele- 
ments are obtained as sums and products 
of the a h ) ,  

an = a(2n)  + a(2n  - l ) ,  

and bn is obtained as the positive square 
root of b:. The first members of the series 
are 

The expression for a3 is more complicated, 
but because it is easily generated from Eqs. 
A5 and A7, we omit it here. This completes 
the PD algorithm and construction of the 
symmetric tridiagonal matrix, 

which is also known as the Jacobi matrix 
(Press and Teukolsky, 1990). We now de- 
scribe the second step, computation of the 
quadrature abscissas and weights. 

Once the Jacobi matrix has been deter- 
mined, generation of the abscissas and 
weights for a quadrature formula such as 
Eq. 5 is straightforward (Press and Teukol- 
sky, 1990). All that is required is solution of 
the eigenvalue problem associated with the 
Jacobi matrix (J). The abscissas rj are sim- 
ply the eigenvalues of J and the weights are 
obtained in terms of the corresponding 
eigenvectors vj using the Christoffel- 
Darboux identity (Press and Teukolsky, 
1990), 

where vjl is first component of eigenvector 
v.. For a normalized distribution pn = 1. 
Table 1 shows the results of applying mo- 
ment inversion to the moments of the ini- 
tial distribution of Figs. 1 and 2. As a 
check, the moments (column 2) are recov- 
ered upon substitution of the abscissas and 
weights (columns 5 and 6, respectively) into 

TABLE 1. Inversion of Moments from the Initial 
(t = 0) Distribution of Figs. 1 and 2 
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Eq. 6. Columns 3 and 4 contain the an  and 
b (positive root of bi) calculated using 
Eqs. A4, A5, and A7. 

APPENDIX B: EXACT SIZE 
DISTRIBUTION EVOLUTION FOR 
DIFFUSION-CONTROLLED GROWTH 
Integration of the diffusion-controlled 
growth law of Eq. 8 gives 

where r is the initial particle radius and r '  
is the particle radius after time t. Let fo(r) 
be the distribution at t = 0 and f(r) denote 

* the corresponding distribution at time t .  
Conservation of particle number implies 

f ( r f )  dr' = f,,(r) dr. (B2) 

Combining Eqs. B l  and B2, and expressing 
results in terms of the original radius vari- 
able r ,  we obtain 

for the particle size distribution at time t .  
Note that f(r)  is set to zero for negative 
argument of the square root. 
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