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Abstract

Phenomenological nucleation theories are considered from the viewpoint of Gibbs' surface
thermodynamics. We point out in defining the critical nucleus that it is important to make a
distinetion between the number of molecules enclosed by the surface of tension and the excess
number of molecules aver the uniform vapor phase. We show that the Kelvin equation should
be employed in determining the size of the critical nucleus even if the nucleus free energy
contains a size-dependent surface energy term. Furthermore, we derive a new equation for
the size-dependent surface tension that differs from the Tolman relation, Density functional
calculations support the new formula.
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Introduction
Phenomenological nucleation theories have become increasingly popular in the recent years. Mod-
els incorporating size dependent surface tensions and/or parameters that are determined using
critical properties of the fluids in question sometimes succeed in predicting the nucleation behav-
ior more accurately than the classical nucleation theory (CNT) does. However, in spite of the
original enthusiasm inspired by the Dillmann-Meier (DM) theory [1], it has become evident that
overall the phenomenological theories do not perform much better than the CNT (2], and when
they do, the success is more or less accidental [3]. Our aim is to take a critical look at the phe-
nomenclogical theories starting from fundamental thermodynamical principles. We will show that
certain assumptions that are often made in these theories are thermodynamically inconsistent.
We will also make use of the fact that the classical form of Kelvin equation {containing the surface
tension of a fat interface) predicts the equimolar radius of the critical nucleus well down to nuclei
of about 40 molecules [4], and derive a new equation for the size-dependence of surface tension.
Gibbs® thermodynamics
We consider a spherical cluster with a volume V and excess number of molecules g over the uniform
vapor phase. At this point we do not fix the volume in any way, i.e. V and g are independent
variables, We can then write g = n; — n, + n,,where n; = Vp; and n, = Vp, with p; and p,
densities of the uniform liquid and vapor phases, respectively, and n, is the surface excess number
of molecules that corrects for the difference between the step profile and the actual interfacial
density profile.

The free-energy change to create the cluster can now be expressed as [5]

AG = (P~ PV + (1 — po) + (e — pto)ns + ¥{g, V). (1)

Here the P’s are the pressures and the u's the chemical potentials of the uniform liquid and vapor
phases, and ® is an excess energy term dependent on both V and g that includes the surface
free energy and all other possible energetical contributions. The critical nucleus, denoted by an
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asterisk, is in unstable equilibrium with the environment. Thus we can set the partial derivatives
of AG with respect to V, ny, and n, zero and obtain the following conditions:

W= = (2)
ad*
AP = - P,= —
Pr-P=o (3)
The work of nucleus formation is then
W*=AG' = ~AP'V* + &° {4)

The above development is completely general. We now proceed to a somewhat more specialized
direction by assuming that the excess {ree energy can be divided into two parts:

$'(g"\ V") = A% (g, V') + F(g"), (8)

where A* is the surface area, ¢*(g*, V*) is the surface tension, and F is an arbitrary function that
is assumed to depend on g* only and not on the location of the dividing surface (as an example,
we refer to the rln{g")-term of the Fisher droplet model [6] present in several phenomenological
nucleation theories.) We fix the dividing surface to be the surface of tension (85°(g", Ve}/ov: =
0), and denote the corresponding volume, surface area, and radius with a subscript s. The surface
tension is now a function of g* only, and Eqs. 3 and 4 become

apr = o) (6)
W* = —APV* 4+ Flg') + Alol(g"). (7)

Equation {6) is the Laplace relation and R denotes the nucleus radius at the surface of ten-
sion. Assuming incompressibility of the liquid phase (AP*V* = nfAp® = nj(u.(P.) - pi(Py)) =~
nf(pto{ Ps) — Heoez)) these become
. _ 2(g)
Ap*t = R (8)
W* = ~Ap'nf + F(g") + Aja(g"). (9)

Here the first equality is the Kelvin relation and v denotes the liquid phase molecular volume. The
classical nucleation theory is obtained by assuming that F = 0, and that the surface of tension is
located at the equimolar surface, whence g* becomes equal to n], and the surface tension becomes
equal to the bulk surface tension (o = ¥ ) (7]

Two points are worth noting. First, the number of molecules n appearing in Eqgs. {8) and
(9) is not the same (unless the surface of tension happens to coincide with the equimolar surface)
as the number given by the nucleation theorem, g*, which is accessible to measurement. Thus,
experimental determinations of g* should not without reservation be compared with estimates of
the molecular content of the critical nucleus derived from phenomenological nucleation theories
that assume size-dependent surface tension. Secondly, the correct theoretical equation to deter-
mine the radius of the critical nucleus is the Kelvin relation even if the theory contains a nonzero
F(g") and a size-dependent . The cubic equation for determining the critical nucleus size that
appears in some phenomenological theories (e.g. [1]) results from confused treatment of V*, g%,
and nj, and it is not thermodynamically correct.

Next, we note that Egs. {B) and (9) can be combined to give

W = %Ap'n(‘ + P (10)
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On the other hand, following Rowlinson and Widom (7], we have
W'-Zarme’[P (R)-PJdR=2x [ B[ = Leap
= A ~n(1) ~ P, =amf [J—Pv}dR=§n;Au, (11}

where Py(R) is the normal component of the pressure tensor. Note that while “path” ambiguities
associated with certain molecular definitions of the pressure tensor have been reported [8], these
do not alter the Gibbs’ thermadynamics. DF expressions for the pressure tensor components [9],
on the other hand, appear to be sufficiently well average that path ambiguities associated with the
molecular definitions do not arise. Comparison of Eqs. (10) and (11} suggest that F(g*) =0 in
general. Thus we obtain the important result that no corrections in the form of F'(g*) are required
if the surface free energy is evaluated at the surface of tension.

Surface tension

The phenomenological theory developed above (Egs. 8 and 11) is not complete without a form for
the size dependence of the surface tension. The usual procedure is to apply an expansion based
on Tolman’s famous formula [10]

",
a(R,) RRCY-nrys (12)

Equation (12) derives from an integration over R assuming a constant value for the Tolman length
§ = R. — R,. However, it has been shown in DF calculations [3] that in the size range of critical
nuclei § is a strong function of radius, which makes the use of the Tolman equation in nucleation
studies questionable (even though it is accurate at the planar limit)., We note that an alternative
expression can be derived using the classical form of Kelvin equation:

2Yeuv

A[J = W. (13)

This equation has been shown both experimentally [4] and in DF calculations [3] to produce 2
surprisingly accurate estimate of R, down to very small nucleus sizes. Egs. (8) and {13) together
yield a simple result which should hold as long as the latter equation produces a correct R, and
the liquid phase can be considered incompressible:

olg) R B ”

Yo He H,+56

We have tested Eqs. (12) and (14) with density functional calculations of the nucleation prop-

erties of an Argon-like Lennard-Jones fluid. The DF code computes density profiles of critical
nuclei at given supersaturations and temperatures, as well as coexistence densities, chemical po-
tentials, and surface tensions. The size dependent surface tension #°(g*) and the radius to the
surface of tension R? were extracted from the DF data using the methods described by Talanquer
and Oxtoby [3]. Figure 1 shows the result of the calculation at T = 0.8¢/k where ¢ is the LJ
energy parameter. Note that we have corrected.both the current theory and the Tolman formula
for the finite compressibility and for the nonzero vapor density of the LJ fluid [11]. The surface
tension size dependence is clearly better represented with the new theory than with the Tolman
formula. We believe that this will be the case also with incompressible molecules.
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Figure 1 Comparison of surface tension size dependences calculated from density functional results
using Eqs. (6) and (7) with F = 0 (squares), from the Tolman formula {crosses); and from the

new theory (diamonds).





