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The interfacial curvature free energy is shown to cause a significant barrier height correction to the
classical nucleation rate. This correction is found to be temperature dependent, but independent of
nucleus size. Density functionéDF) calculations are presented for a nonuniform spherical droplet
model of the nucleus. Calculations for the surface tension, as a function of nucleus size, and for the
interfacial curvature free energy support theoretical predictions and provide an explanation for
systematic discrepancies between classical and DF nucleation theories and between the classical
theory and experiment. @997 American Institute of Physids$§0021-9606(97)51912-X]

Measurements of vapor-liquid nucleation rate havevature free energy and use density functional calculations to
shown systematic departure from predictions of classicatonfirm the predicted results. These authors obtained the fol-
nucleation theoryCNT). In particular, it has been observed lowing result for the surface free enerdy, of a spherical
that although the CNT accurately describes the slope whedrop#
the logarithm of the nucleation rate is plotted vs supersatu-
ration (S) at fixed temperature, a temperature dependent cor-
rection to the classical rate is needed to bring theory in line
with experiment Recent theoretical results vyield a
molecular-based approach to interpretation of the slope meavhere vy, is the bulk surface tension for a flat interface and
surements in terms of the number of molecules in the criticaks is the rigidity coefficient (4rks is the interfacial curvature
nucleus’ Thus the departure from CNT shows up largely asfree energy). The last term contains corrections on the order
a shift in nucleation rate and less as a deviation in nucleusf the width¢, of the interfacial profile divided by the radius
size. Although this partial success has been considered quif of the drop. We will show that Eq1) itself follows from
remarkable given the crude approximations of CNT, the reathe Kelvin relation and that the latter provides a nonpertuba-
sons for it have remained a mystery. tive model for the higher order terms. Thus the independent

The molecular-based approach has been used to obtaioundation for Eq(1) described in Ref. 4 is shown here to be
general free-energy scaling properties of a critical nucleugsonsistent with the Kelvin relation and indicative of the va-
under the assumption that the critical nucleus size is given biidity of its extension to nucleation theory beyond the clas-
the Kelvin relation, as in the classical thedrit was found  sical capillary drop model.
that the nucleation barrier height can differ from the CNT  Consider, as two models of the critical nucleus, a classi-
prediction by a temperature-dependent amdnf) that is  cal capillary drop and a diffuse drop held in unstable equi-
independent of nucleus size. These results are supported bigrium with a supersaturated vapor at temperaflirén the
density functionalDF) calculations and are consistent with capillary model of CNT the nucleus is represented as a
the systematic discrepancies observed between CNT and espherical drop having properties of a bulk sample of the
periment mentioned abovée. However, the molecular basis nucleated phase, including a curvature-independent surface
for persistence of the Kelvin relation beyond the capillarytensiony.. and uniform density,.®> For the diffuse nucleus
drop model of CNT has not been determined, nor has anwe allow the more general case of a nonuniform spherical
physical basis been given for the barrier height displacemerdrop whose density profile is shown schematically in Fig. 1.
D(T). Analytic results for the diffuse nucleus will be obtained us-

In the present communication we address these issuésg Gibbs dividing surface method$.The dividing surface
using a nonuniform spherical droplet model of the nucleusis a mathematical construct that can be placed at any radius
Motivated by a recent study of liquid-vapor states of inho-R and does not affect the physical properties of the drop.
mogeneous fluids by Romero-Rochin and Pefcws, iden-  Thus the pressure difference given by the generalized
tify the barrier height displacement with the interfacial cur- Laplace relatior,

ks
yot g2 | +O(w/R), @

Q.=4mR?
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whereR* is the radius of the critical nucleus in the capillary
drop model of CNT,y.=y(R,), and bothR, andRq refer to

the diffuse nucleus of critical size. The first equality of Egs.
(4) is the classical Laplace relation. The second and third
equalities result on settin@=R, and R=R in Eq. (2).
Equation (4) is based solely on the assumption that the
nucleus has an incompressible core of density equal to that
of the bulk phase. The Kelvin relation f&* follows from

Eq. (3) and the classical Laplace relation:

R*=2v./[pAu—(P,—P.)]. (5)

We now investigate the assumptipBg. (6a)] that Eq.
0 Ve VOLUME (5) can be used to predict the critical radiRg of the diffuse
droplet model. The following equalities are equivalent

FIG. 1. Schematic density profile in the diffuse droplet model. The dashedhrough Eqs(4):
vertical line marks the equimolecular dividing surface defined such that

o
Y

DENSITY

(p1— p,)Ve=4m(R)3(p1—p,)/3 is equal to the integrated excess density. Re=R*, (6a)
Re dve
b _Zy(R)+ dy X ?’e+?(9—Re=7m, (6b)
| v R ﬁ ’ ( )
) Yo Vs
whereP, andP,, are the pressures at the center and exterior R_e_ ﬁs : (6¢c)

to the drop, respectively, is independentRf ¥(R) is the

surface tension for the dividing surface located at the radiu¥Ve emphasize that Eq&a)-(6¢) satisfy, but are not conse-

R [see also Eq(7) below], and the square-bracketed termquences of Eq(4). However, if any member from the set,

gives the derivative ofy with respect to a mathematical dis- Egs. (6a)~(6c), holds, the others hold likewise by virtue of

placement of the dividing surface. The bracketed term vantheir equivalence through E¢4). For example, Eq6a)is a

ishes for placement of the dividing surface at the surface ofestatement of the homogeneity ansatz of Ref. 3. Equations

tension R=R,) where ¥(R) assumes its minimum value, (6b) and (6¢c) are, therefore, equivalent expressions of the

¥s. In addition to the surface of tension we will require homogeneity ansatz through E@), as are Eqs(6d) and

properties at the equimolecular dividing surfaé=R,) de-  (6€). Integration of Eq(6b) at constant temperature gives

fined by the equal areas construction of Fig. 1 and character- Ry, = R2y.,+k(T)

ized by the property that the formal derivative in E4) eYe™ NeYeT Kl 1):

equalsdy./dR., the partial derivative for the actual radius [Herek, is simply a constant of integration; it is shown be-

dependence at constant temperafure. low that kg is the rigidity coefficient of Eq(1).] Thus we
The generalized Kelvin relation for an incompressibleobtain an explicit form for the curvature dependenceygf

nucleus follows from Eq(2) upon equating the chemical which is also equivalent to Ed6a):

potentials of the vapor and the bulk liquid at the center of the K

drop? 28
R’

P|_PV:p|AIU“_(PV_ Poo)a (3)
Th ir of iti = Yu IR= i
whereP., is the equilibrium vapor pressure of the condensedc,\le.l.ng)ail;r (s)egr(: nt(il Iggsge spyeciaaTdc(;?s/Z/ of eE c%)a:%sruvr\r;heigr:n

phasebfot:Na platrrllar Srl: rface Iandf:'? VI_ "]f“th's the d|ffetr— [&=0- Before discussing, we show that Eqs(6) imply a
ence between the chemical potential of the Supersaturaléice once in the nucleation barrier heights predicted using

vapor and the bulk condensed phase driyjng the phast"ﬁe classical and diffuse droplet models that is independent
change. Thé®,— P, term corrects for nonequilibrium vapor of R
-

density. .Returnlng to the two drop models, we see from Eq. The dependence of(R) on dividing surface location is
(3) that if the values ofp;, w,, andP, are specified, the _; )

. . ; given by Ono and Kondb:
value of P, is determined. We will assume that the core
region of the diffuse drop remains characterized by the bulk Rﬁys 2vR
phase density, . Then for fixed vapor pressur®, must not Y(R)=3pz T 3R (7
only be independent of the choice of dividing surface used in . s _ o
Eq. (2), but independent as well of which modelassical ~ Evaluating Eq(7) at R=R. and using Eq(6c) to eliminate
capillary or diffuse interfaceis used to represent the drop. Ys 9IVES!
Thus we obtain the important equalities:

Ye= VYoo T (6d)

3')’eR2 ®)
2y, 2 R, ¢ 2 Y= 03 3 -
pl_pvzl*:_ Ye"‘_eﬁ :ﬁ, (4) Rs+2Rg
R Re 2 IR, Rs
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The nucleation barrier height in the diffuse droplet model is
most simply expressed in terms of conditions at the surface

1.6 -

of tension®
47RZy, , R3
= 3 —47TRe’ye mﬁ , (9) 1.4
(@)
which we have rewrittefisecond equality in Eq9)] using T=0.6¢/k

Egs.(6c) and(8). Similarly for the barrier height in the clas-

sical theory we obtain 127

471'R§)/Oo
_ _ 2
CNT— 3 =47RGYe

—Rg 10
RI+2R3) (10) 104
The first equality is the Gibbs expression for the classical
barrier height, after substituting, for R* using Eq.(6a),

and the second equality uses E§). Subtracting Eq(9) 0.6

from Eg. (10) and using Eq(8) we obtain: T=0.8¢/k
Went—W* =47RE(7..— 7o) (11)

/

From Eqgs.(11) and(6d) we obtain, as an important corollary 0.6
of assumingR.=R*, that the difference between the classi-

cal and diffuse droplet model nucleation barrier heights is
independent oR,:

Wy~ W* = — 47k =D(T). (6e)

/

T=1.0¢/k

0.4 -

T=1.1¢/k

/

s T T T
Note that the converse also applies: Since Hyl), and 0.00 0.05 010 015 0.20

therefore Eq(6a), follows from Egs(11) and (6e), a con- Re.z
stant barrier height shift implieR.=R*.

Density functional calculations both for a flat interface
(A,u=0) and for finite size drops were carried out using theFIG. 2. Density functional results foy, (markers)and comparison with Eq.

. (6d) (ines). Temperatures are given in unitsedk wheree is the charac-
Lennard-Jones argon model of Zeng and Oxfodw previ- teristic energy for the Lennard-Jones system of Ref. 7 lamlthe Boltz-

ously described. The results shown in Fig. 2 confirm Ed. mann constanR, is in units of o, which is the characteristic Lennard-Jones
(6d) and yield the temperature dependent valuekfajiven  distance, andy, is in units of e/o?. From the linear fits we obtain

in the caption. Figure 2 was constructed Ry equal toR*  ks=—1.366e=-2.276kT at T=0.6,k;=—1.261e=—1.576kT at T=0.8,
from Eq. (5), and y, values from Eq.(11) with calculated _'?5:1_11'085 €=—1.085kT at T=10, andk,=-0.901 e=-0.819KkT at
values forw* from the DF model. o

The rate of nucleation is generally expressed in
exponent-prefactor form ad=Kexp(—W/kT). Thus Eq. Finally, we derive the surface free-enerf); from the
(6e) yields a change in nucleation rate of the Kelvin radius assumptiofEq. (6a)and its equivalentsand
form  J/Jcnr= (KK enr) Xl (W W) /KT = (K/ K enr) identify kg with the rigidity coefficient. We obtain:
X exp(—4rks/KT). To illustrate the size of the effect that we _ _ 2 2
are considering, assume for the moment that the prefactor is Q= 3W* =47R{ys= 4m(RG+ 2ks)
unchanged from its classical valu&cyy. Then for
ke=—KkT the rate correction ig/Jcyr= exp(4m)~3x10° =47R;
(see Fig. 2 for the range of values kaf computed in the DF
model). Temperature dependent corrections measured bhhe first two equalities are from Ref. 5, the third equality
Adamset al.! albeit for a different materialnonane), are in  follows Egs.(6e),(9), and(10), and the last equality uses Eq.
the range 19<J/Jcn=<10% Our results suggest that nucle- (6d). From the third equality of Eq(12) and settingé,
ation rate measurements can provide experimental determi=Re—Rs, Which is the Tolman lengthwe obtain a cubic
nation of the interfacial curvature free energymik4 — equation ing,:
=—D(T). Accurate determination of this quantity, through
comparison between experimental rate measurements and Qg =47R2 yw-l-R—;
the capillary drop model of classical theory, will require a e
consistent treatment of the prefactor correctidfi o\7. Re- & &2 1(&)\3
cent estimates oK/Kcyr, including the 15 factof and a —8mR%y.. (R_) - (ﬁ> +§ (R—)
revised estimate for the replacement free energy faetor © € ©
proximately 10),° when combined suggest values for as an explicit, nonpertubative, result fr, including correc-
K/Kcnr Of order 16. tion for the finite thickness of the interface. EquatitB)

+8mks. (12)

Ks
Yot =2
Re

(13)
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