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This study compares the capabilities of the conventional and
quadrature methods ofmoments todescribe condensationalgrowth
in a well-known laminar � ow aerosol reactor model. Governing
equations for energy, lower order radial moments of the parti-
cle size distribution, and vapor transport are written for a two-
dimensional model using both approaches.

Conventional and quadrature techniques to obtain closure of
the moment equations are applied and compared. The conventional
method requires certain approximations to the growth law. These
include assumptions that the Kelvin effect is negligible and that the
particle growth rate function is linear in particle size. In contrast,
restrictive constraints of the conventional method of moments to
obtain closure are avoided by applying the quadrature method.
Numerical results for the laminar � ow aerosol reactor model are
obtained for a six moment formulation of the seed particle distribu-
tion to illustrate application of the quadrature method to contin-
uous polydisperse distributions. We present the � rst calculations
with the new quadrature method of moments to a two-dimensional
aerosol transport and growth model.

INTRODUCTION
In this work we apply the method of moments (Hulburt

and Katz 1964; Randolph and Larson 1988; Friedlander 1983;
McGraw and Saunders 1984) to condensational growth in a lam-
inar � ow aerosol reactor model using conventional and quadra-
ture techniques. We begin with a brief description of the method
as used for an aerosol dynamic equation to model growth and
particle transport (Hulburt and Katz 1964; Randolph and Larson
1988). Conventional (Hulburt and Katz 1964) and quadrature
(McGraw 1997) methods to obtain closure for a set of moment
equations are described. Finally, we present numerical solutions
for continuous, or polydisperse, seed particle distributions us-
ing the quadrature method of moments without restrictions on
particle growth. This is the � rst application of the quadrature
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method to a two-dimensional laminar � ow reactor model with
condensation.

The reactor modeled in this study, the modi� ed Sinclair-
LaMer aerosol generator (Sinclair and LaMer 1949; Nicolaon
et al. 1970; Nicolaon et al. 1971), consists of evaporation and
condensation sections and is similar to reactors that have been
used to investigate competition among kinetic processes dur-
ing aerosol formation (Pesthy et al. 1983; Pratsinis 1988). Early
models of laminar � ow reactor models have been solved an-
alytically for delta function particle size distributions using a
Green’s function approach (Liao 1974; Davis and Liao 1975)
and numerically with orthogonal collocation (Barrett and Fissan
1989). Pesthy et al. (1983) extended the model to include homo-
geneous nucleation and vapor wall losses. Pratsinis (1988) and
Phanse and Pratsinis (1989) provided a more complete formula-
tion coupling the aerosol dynamic equation to the heat and mass
transport equations. Phanse and Pratsinis (1989) discuss the ad-
vantages of describing the aerosol dynamics using the moments
of the size distribution, but also point to the dif� culty of obtaining
closure for the resulting moment equations. All studies, except
recent papers on multicomponent modal models (Stratmann and
Whitby 1989; Wilck and Stratmann 1997), assume axially con-
stant laminar � ow velocity pro� les and neglect thermophoresis
and axially diffusion. Therefore the latter two papers are more
general and more accurate with respect to representation of the
� ow � eld and transport equations.

In this paper we use a fully two-dimensional model with an
aerosol dynamic equation including a Brownian diffusion term.
Since the focus of this paper is application of the quadrature
method of moments, the hydrodynamic model is not as complete
as those found in Phanse and Pratsinis (1989), Stratmann and
Whitby (1989), or Wilck and Stratmann (1997).

The emphasis of this and previous modeling studies cited
above is the condensation section. For this study the � ow is
modeled as laminar with suf� ciently low particle concentra-
tions to avoid coagulation, and supersaturations are kept suf-
� ciently low to prevent homogeneous nucleation. The modi� ed
Sinclair-LaMer aerosol generator, widely used in the laboratory
to produce liquid droplets of narrow size distribution (Davis and
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Liao 1975), is of interest because by carefully controlling con-
ditions in the evaporation section, the size distribution of seed
particles present in the � ow at the entrance to the condensation
section can be controlled. In addition, the conditions of the mod-
i� ed Sinclair-LaMer aerosol generator are very similar to those
found in various condensation nuclei counters. The modi� ed
Sinclair-LaMer aerosol generator is thus a simple but practical
means for comparing different modeling approaches.

METHOD OF MOMENTS
The methodology for using lower order moments of the size

distribution to describe droplet or particulate growth was � rst
developed to address the dif� culties of modeling growth in
nonhomogeneous � ow environments (Hulburt and Katz 1964;
Randolph and Larson 1988). Despite its unique advantages for
complex � ow, the method of moments has not received wide-
spread application due to restrictions on the kinds of particle
growth laws that could be handled previously by the method
(McGraw 1997). Early applications (Friedlander 1983; McGraw
and Saunders 1984) involved growth processes that were easily
modeled within the restrictions of the conventional method of
moments (Hulburt and Katz 1964). Later applications (Pratsinis
1983; Phanse and Pratsinis 1989; Stratmann and Whitby 1989;
Wilck and Stratmann 1997) typically obtained closure of the
moment equations by specifying the shape of the aerosol size
distribution as a log normal function requiring a priori assump-
tions regarding the shape of the distribution. By differing ap-
proaches, Frenklach and Harris (1987) and McGraw (1997) at-
tempt to overcome restrictive a priori assumptions on either the
growth processes or the aerosol size distributions. With either of
these methods, a priori assumptions concerning the functional
form of the size distribution are unnecessary. Here we adopt the
quadrature approach.

Description of Moment Equations
Similar to Hulburt and Katz (1964) and Phanse and Pratsinis

(1989), we construct a set of moment equations that describes the
behavior of the number density distribution function f (

*

x ; a; t ),
where

*

x represents the position vector, a particle radius, and t
time. The set of equations is written as follows:

@¹n

@ t
C r ¢ (¹n

*

v)

D Ddiffr2¹n C n
Z 1

0
an¡1G(T ; C; a) f (

*

x; a; t ) da; [1]

where we have included terms on the right-hand side for
Brownian diffusion, and heterogeneous (G ) nucleation, but have
not included homogeneous nucleation, coagulation, and wall
losses. In this set of equations,

*

v is the velocity vector of the � ow,
with T the absolute temperature, C the dispersed vapor phase
mass concentration, and Ddiff the Brownian particle diffusivity.

The radial moments are de� ned by

¹n(
*

x; t ) D
Z 1

0
an f (

*

x ; t; a) da [2]

for n D 0; 1; 2; 3; : : : . Generally a small number of lower order
moments are suf� cient for estimating the important physical
properties of an aerosol (Hulburt and Katz 1964; Friedlander
1977; McGraw et al. 1995). For particles in a carrier gas, the
physical signi� cance of the lower order moments (Sherwin et al.
1967) is as follows. The zero moment ¹0 is the total number of
particles per unit volume or number density. The � rst moment
¹1 is the total particle radii per unit volume. Similarly, 3K¹2,
proportional to the second moment, is the total particle surface
area per unit volume, and K ¹3, proportional to the thirdmoment,
is the total volume fraction. The parameter K is the geometric
shape factor, which for spherical particles is K D 4¼=3.

Note that the fourth term of Equation (1) depends on the
unknown number density f (

*

x; a; t ) and seemingly cannot be
evaluated without full knowledge of the distribution. However,
the main focus below is a discussion of techniques for evaluating
this integral in terms of the lower order moments (Equation (2)).

Closure of Moment Equations
Two techniques to implement the method of moments in com-

plex � ow environments are outlined below. To obtain closure of
Equation (1) with the conventional method of moments, it is
necessary that the growth law be both separable and linear in
particle radius (Hulburt and Katz 1964; Randolph and Larson
1988). Assuming separability of the growth function into exte-
rior � ow coordinates and internal particle coordinates, we write

G(C; T ; a) D g(C; T )Á (a): [3]

To obtain closure Á(a) must take the restrictive linear form

Á(a) D ¯0 C ¯1a: [4]

For this approach, the set of moment equations above, coupled
with the transport equations, can be closed using a small number
(either three or four) of moment equations. If a growth law is
not of the quadrature form, it must be approximated as such or
assumed distribution functions such as log normal are required
to obtain closure (Hulburt and Katz 1964).

Recently, McGraw (1997) introduced a new approach, the
quadrature method of moments, through which exact moment
equations are replaced by a quadrature based set that satis� es
closure under a broad range of conditions. Thus the quadrature
method of moments and the related quadrature inversion virtu-
ally eliminate these restrictions on particle growth. Furthermore,
the quadrature method is a generalization of the conventional
method to which it reduces for the special form of Equation (4).
The method can be summarized as follows. Consider an integral
aerosol property I as given by Equation (5) below, where f (a) is
the unknown aerosol size distribution and ¾ (a) is a known kernel
function of particle size. Generally for physical properties and
dynamics we require evaluation of integrals of unknown size
distributions; for example, the growth integral in Equation (1) is
in just this form. In the quadrature method we write the integral
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property I using the quadrature sum

I D
Z

¾ (a) f (a) da »D
NX

iD1

¾ (ai ) wi ; [5]

where N is the number of quadrature points. Similarly, if we
rewrite the kernel as ¾ (a) D ak P(a), we can write

I D
Z

¾ (a) f (a) da D
Z

ak P(a) f (a)da »D
NX

iD1

ak
i P(ai ) wi :

[6]
Both ¾ and P may be functions of parameters in addition to the
radius. For each quadrature abscissa ai there is a corresponding
weight wi . Notice that the moments themselves can be approx-
imated by this quadrature form for P(a) D 1:

¹k D
Z 1

0
ak f (a) da D

NX

iD1

ak
i wi : [7]

Equation (7), which is exact for k D 0 through k D 2N ¡ 1,
shows that the � rst 2N moments uniquely determine the N ab-
scissas and N weights. However, the direct solution of Equa-
tion (7) for these quantities would require a nonlinear search
and is not recommended. A superior quadrature inversion al-
gorithm for computing the abscissas and weights directly from
the moments is described in McGraw (1997). Brie� y summa-
rized, computation of quadrature abscissas and weights from
the moments may be accomplished in two steps, which include
(1) construction of the Jacobi matrix (Press et al. (1992), whose
elements are given in terms of the moments), and (2) solution
of the eigenvalue problem associated with this matrix. The net
result is that we have evaluated the integral I in terms of the
moments of f (a) even though this function itself is unknown.

MODIFIED SINCLAIR-LAMER MODEL
Efforts to quantitatively model laminar � ow reactors began

with the modi� ed Sinclair-LaMer aerosol generator model
(Davis and Liao 1975). The model includes steady state lam-
inar � ow of an aerosol-vapor-carrier gas mixture in a cooled
pipe with condensation described using a Green’s function ap-
proach. Pesthy et al. (1983) extended the model to include ho-
mogeneous nucleation. The addition of the aerosol dynamic
equation to track evolution of particle growth was � rst seen in
Hulburt and Katz (1964) and more recently in Pratsinis (1988).
Pratsinis (1988) and Phanse and Pratsinis (1989) included ho-
mogeneous nucleation and coagulation and obtained closure of
the aerosol dynamic equation using a method of moments with
an assumed log normal particle size distribution. Recently, stud-
ies on single and multicomponent modal models (Stratmann
and Whitby 1989; Wilck and Stratmann 1997) also obtain clo-
sure using an a priori assumption that the aerosol size distribu-
tion consists of log normal modes. In this section, we outline a
two-dimensional laminar � ow reactor model consisting of cou-
pled partial differential equations for energy, vapor, and parti-

cle transport without a priori assumptions of the aerosol size
distribution.

Heat Transport, Mass Transport, and Aerosol
Dynamic Equations

The modi� ed Sinclair-LaMer generator model, written in
nondimensional form and updated with an aerosol dynamic
equation, consists of the energy and vapor transport equations
(Davis and Liao 1975)

(1 ¡ r ¤2)
@µ

@z¤ D Le

³
@2µ

@r ¤2
C

1
r ¤

@µ

@r ¤

´
; [8]

(1 ¡ r ¤2)
@ X

@z¤ D
@2 X

@r¤2
C

1
r¤

@ X

@r¤ ¡ Ás [9]

for laminar, parabolic pipe � ow, and the aerosol dynamic equa-
tion (Hulburt and Katz 1964; Pratsinis 1988)

(1 ¡ r ¤2)
@¹n

@ z¤ D
Ddiff

Dm

³
@2¹n

@r ¤2
C

1

r ¤
@¹n

@r¤

´
C [Ãs]n [10]

for transport of the condensed phase (see Figure 1 for a schematic
of the system coordinates).

In Equations (8), (9), and (10), we use a common nondi-
mensional axial coordinate z¤ D z=r0Pe2 and a nondimensional
radial coordinate r ¤ D r=r0. The Lewis number Le is the ratio of
the Peclet numbers for vapor and thermal diffusion. The reduced
temperature and the normalized vapor concentration are de� ned
as

µ D
T ¡ Tw

T0 ¡ Tw

; X D
C

C0
: [11]

We de� ne the Brownian particle diffusivity Ddiff D ·T=

(6¼a¹) using the Stokes-Einstein equation (Bird et al. 1960),

Figure 1. Schematic of the aerosol generator model showing
the system coordinates.
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Table 1
Fundamental physical parameters (reference case)

Symbol Parameter Value Units

v0 Centerline velocity 21.0 cm
r0 Pipe radius 1.0 cm
T0 Entrance temperature 110 Deg C
Tw Wall temperature 60 Deg C
C0 Entrance vapor 1.12 £ 10¡6 gm/cm3

concentration
Dm Vapor mass diffusivity 0.16 cm2/sec
M Molecular weight 278.35 gm/mole
RG Universal gas constant 8.3143 £ 107 ergs/mole-K
®T Thermal diffusivity 1.80 cm2/sec
½L Liquid DBP material 1.047 gm/cm3

densitya

a0 Seed particle radius 1.0 £ 10¡6 cm
¹ Absolute viscosity for 2.281 £ 10¡4 gm/cm-sec

Helium
½G Helium gas density 0.1875 £ 10¡3 gm/cm3

¾ Surface tensionb 34.0 dynes/cm

aKemppinen and Gokcen (1956).
bDean (1985).

where · isBoltzmann’s constant. For additional symbols in these
equations see Tables 1 and 2.

The sink/source terms in Equations (9) and (10) are de� ned
as

Ás(a) D
r0

C0Dm

Z 1

0
4¼a2 f (a)½LG(µ; X; a) da; [12]

[Ãs(a)]n D
r2

0

Dm
n

Z 1

0
an¡1G(µ; X; a) f (a) da: [13]

Table 2
Derivative physical parameters (reference case)

Symbol Parameter Value Units

Pe1 Thermal Peclet number 11.6 —
Pe2 Mass diffusion Peclet number 131.25 —
Le Lewis number 11.25 —
¯0 First growth rate coef� cient 2.5 £ 104 —
¯1 Second growth rate coef� cient ¡2.6 £ 108 —
C1 Vapor concentration at in� nity 2.2399 £ 10¡8 gm/cm3

¹A Seed particle number density 1.2 £ 107 Particles/cm3

[¹̃1]¤ Nominal � rst reduced moment 27.53518 1/cm
A First vapor pressure constanta 4993.0 Deg K
B Second vapor pressure constanta 12.217 —
v Kinematic viscosity for Helium 1.27781 cm2/sec
Re Reynolds number 16.43358 —
l Mean free path of vapor molecule 3.015 £ 10¡5 cm

aRay et al. (1979).

Following the approach in Davis and Liao (1975), we have
assumed the axial heat conduction is negligible. Also, the heat
release from condensation is considered negligible. We have
assumed homogeneous nucleation is not active. Additional de-
tails on the development of the model can be found in Davis and
Liao (1975) and Phanse and Pratsinis (1989).

In addition, we neglect thermophoresis and axial diffusion in
formulating the model equations. Wilck and Stratmann (1997),
in using a more complete hydrodynamic model, have shown
these processes to be negligible.

Growth Law
The growth law for dibutylphthalate (DBP) in a helium carrier

gas (Davis and Liao 1975) is written

G(µ; X; a) D C0
Dm

½L

£
X ¡ X f

e exp(2¾ M=½L RG T a)
¤ F

a
:

[14]

In this equation, the exponential coef� cient exp (2¾ M=

½L RG T a) accounts for surface curvature when the particles are
very small (i.e., Kelvin effect). In addition, X f

e D C f
e =C0 is the

nondimensional equilibrium vapor concentration at the local
temperature over a � at surface. At the local reduced temper-
ature µ the equilibrium vapor concentration over a � at surface
and the equilibrium vapor pressure are

C f
e D

(p2)e
RG[(T0 ¡ Tw)µ C Tw]

M;

[15]
(p2)e D 10¡A=[(T0¡Tw )µCTw ]10B ;

where the parameters A and B (see Table 2) are experimentally
determined vapor pressure constants (Ray et al. 1979).

The factor F , included in Equation (14), is the noncontinuum
correction for particle dimensions comparable to the mean free
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path of the gas (Fuchs and Sutugin 1970). This is given by

F D f1 C [Kn(1:333Kn C 0:71)=(Kn C 1)]g¡1; [16]

where the Knudsen number Kn is the ratio of the mean free path
to particle radius (i.e., Kn D l=a).

Entrance and Boundary Conditions
The entrance conditions for the energy and vapor transport

equations, respectively, are µ0 D 1 and X0 D 1. Initial conditions
for the moments of the seed particle distribution are described in
Numerical Results. Boundary conditions on the energy equation
include µw D 0 at the outer pipe boundary and @µ=@r¤ D 0 at the
centerline. For the vapor transport equation we have @ X=@r¤ D 0
at the outer pipe boundary and at the centerline. Similarly, for
the particle transport moment equations at the pipe boundary
and the centerline we have @¹n=@r¤ D 0.

As derived above, Equations (9) and (10) for the vapor and
particle transport contain singularities at the outer pipe boundary
due to the velocity vanishing at the wall for parabolic � ows. Se-
vere restrictions on particle growth were imposed by Davis and
Liao (1975) on the auxiliary equations used to model the par-
ticle transport. Speci� cally, instantaneous condensation at the
pipe boundary was assumed, yet no further growth of bound-
ary particles by diffusive transport was allowed. Recent papers
(Pratsinis 1988; Phanse and Pratsinis 1989; Wilck and Stratmann
1997) utilize more realistic boundary conditions, accounting for
the high likelihood of at least some condensation on the pipe
boundary. However, we have chosen to stay with the simpler
approach of no � ux through the boundary. While this approach
is likely unattainable in practice, with this approach it is easier
to interpret the exchange of mass between vapor and condensed
phases. Therefore, at the outer boundary where the singularity
exists, we do not impose deposition boundary conditions and do
not solve for vapor concentration or particle size at the bound-
ary. But there are no restrictions with the quadrature method of
moments to prevent the use of a deposition boundary condition.

DEVELOPMENT OF THE MOMENT EQUATIONS
Comparison of the conventional and quadrature methods of

moments amounts to comparison of strategies to obtain closure
for the set of coupled model equations (Equations (8), (9), and
(10)). In this section, we outline the approximations needed to
implement the conventional method in contrast to the much less
restrictive approach used to obtain closure for the quadrature
method of moments.

For numerical convenience, we de� ne a set of reduced mo-
ments in the form

¹̃n D
Z 1

0

(a=a0)n f (a)

NT
da; [17]

thus normalizing the distribution function by the total number
density NT and the particle radius by a characteristic length scale

a0. In terms of the original moments, we have

¹̃n D
1

an
0 NT

¹n : [18]

Implementation of the Conventional Method of Moments
Following the conventional approach described in Hulburt

and Katz (1964), the integral in Equation (10) is simpli� ed by
assuming the growth law is separable in the form G(µ; X; a) D
g(µ; X )Á(a). To achieve this for the growth law of Equation
(14) it is necessary to assume the Kelvin effect is negligible
with exp[2¾ M=½L RGTa] ¼ 1. The consequences of ignoring
the Kelvin effect are small except at the smallest particle sizes.
Also, it is necessary to linearize the particle growth rate function
Á(a). With these approximations, the growth law becomes

g(µ; X ) D C0
Dm

½L

£
X ¡ X f

e

¤
; Á(a) D

F

a
»D ¯0 C¯1a: [19]

In Figure 2, nonlinear and approximate forms for the particle
growth rate function Á(a) for DBP are compared. For the lin-
earized growth rate, the coef� cients ¯0 and ¯1, given in Table 2,
were obtained by least squares � t over the range 10¡2 to 5 £
100 and should be considered valid only over this range.

To couple the moment equations to the vapor transport equa-
tion we substitute the separable growth law and apply the def-
inition of reduced moments to the sink/source terms of Equa-
tions (12) and (13). The resulting expressions are

ÁS D
4¼r2

0

C0

½L

Dm
g(µ; X ) a2

0 NT [¯0¹̃2 C a0¯1¹̃3]; [20]

[ÃS]n D
r2

0

Dm
ng(µ; X )

1

a0
(¯0¹̃n¡1 C a0¯1¹̃n ): [21]

Figure 2. Comparison of the nonlinear growth rate function
Á(a) D F=a and the linear approximations Á(a) D ¯0 C ¯1a
for ¯0 D 2:5 £ 104 and ¯1 D ¡2:6 £ 108 (see discussion above
Equation (19)).
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With these substitutions it is evident a closed set of equations
results for the vapor and moments n D 0 through n D 3.

Implementation of the Quadrature Method of Moments
In applying the conventional method of moments to the mod-

i� ed Sinclair-LaMer aerosol generator model, approximations
to the growth law were made to obtain a closed set of equations.
McGraw (1997) proposed the quadrature method of moments
as a means to obtain an approximate set of equations to obtain
closure, but with the important advantage that the growth law
is not restricted in its form. In this subsection, we outline appli-
cation of the quadrature method to obtain the equations needed
for numerical solution.

Without restrictions on the form of the growth law of Equation
(14), we use quadrature (McGraw 1997) to rewrite the sink term
of Equation (12) as

ÁS D
r 2

0

C0

½L

Dm
4¼

NX

iD1

a2
i G(µ; X; ai )wi : [22]

To rewrite this equation in a form comparable to the reduced
moments used in the conventional method, we de� ne normalized
abscissas and weights using

bi D
ai

a0
; ° 2

1i D
wi

¹0
; [23]

where ai and wi are the quadrature points as in Equation (6).
After substitution and minor manipulation, the sink term has the
� nal form

ÁS D
r2

0

C0

½L

Dm
a2

0 NT 4¼

NX

iD1

b2
i G(µ; X; a0bi )°

2
1i ; [24]

where we have also used ¹0 D NT from Equation (18).
Similarly, the source terms of the moment equations take the

form

[ÃS]n D
r2

0

Dm
n

1

a0

NX

iD1

bn¡1
i G(µ; X; a0bi )°

2
1i ; [25]

where Equations (10), (18), and (23) have been used. The growth
law appearing in Equation (25) is obtained, without restriction,
directly from Equation (14). Given the de� nitions of normalized
abscissas and weights from Equation (23), we obtain

G(µ; X; a0bi )

D C0
Dm

½L

£
X ¡ X f

e exp(2¾ M=½L RG T a0bi )
¤ F

a0bi
: [26]

NUMERICAL RESULTS
To simultaneously solve the energy, vapor, and moment equa-

tions we use the method of lines and a � nite difference formu-
lation of the energy and mass transport equations in the radial

coordinate, writing separate equations at each radial location
for the energy, vapor, and aerosol moments. To march along
the axial coordinate, we use a fourth-order Runge-Kutta algo-
rithm from Gerald and Wheatley (1989). The solution grid is
two dimensional with a radial step size of 0.02 and an axial
step size of 10¡6 in nondimensional coordinates. The solution
technique simultaneously solves for the vapor and condensate
phases, therebyeliminating the need to iterate the vapor transport
and aerosol equations. All calculations are performed in double
precision.

The method of moments is equally applicable to discrete
and continuous distributions. To validate the models, compar-
isons were made for the discrete monodisperse and bidisperse
cases of Davis and Liao (1975). For these discrete cases, the
abscissas and weights obtained from inversion of the moments
(McGraw 1997) leads directly to particle size.

Several comparisons were made for the conventional and
quadrature models. First, we ran the conventional model as for-
mulated above. Second, we ran the quadrature model for the
same approximated growth law used in the conventional method.
Finally, we ran the quadrature model using the full nonlinear
growth law. For the monodisperse case, the average particle radii
from the conventional model and the quadrature model with the
approximated growth law were virtually identical at 0.273 ¹m.
This value compares favorably with Davis and Liao (1975), re-
ported at 0.26 ¹m. Calculated results from the quadrature model
using the nonlinear growth law gave an average particle radius
of 0.2749 ¹m. Having validated the quadrature approach, we
proceed to apply the model to a continuous polydisperse seed
particle distribution representing the gamma probability density
distribution with six moments. In addition, we discuss special
solutions for two and four moments.

Figure 3. Two parameter gamma probability density dis-
tribution function with ® D 5:0 and ¯ D 1:0 £ 10¡6 for
pX (a) D a®¡1e¡®=¯=[¯®0(®)], where 0(®) is the usual gamma
function.
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Gamma Probability Density Distribution
The value of moment methods to describe particle evolution

is best realized when the initial distribution is polydisperse. In
these cases, for example with bin or sectional models, the num-
ber of equations needed to describe particle evolution becomes
large as the particle distribution is partitioned into a large number
of bins that must be tracked.

As an example of a polydisperse seed particle distribution,
consider a continuous two parameter gamma probability density
distribution. A plot of this density distribution with ® D 5 and

Figure 4. Evolution of (a) � rst, (b) second, (c) third, (d) fourth, and (e) � fth reduced moments for two parameter gamma
probability density distribution represented by six moments (Tw D 60±C; ®T D 0:16 cm2/s, Dm D 1:8 cm2/s).

¯ D 1:0£10¡6 cm is shown in Figure 3. These parameters were
chosen to yield a narrow initial distribution with high number
densities in the same size region as the monodisperse and bidis-
perse reference cases from Davis and Liao (1975). Speci� cally,
we set a0 to the peak of the distribution by using ¯ D a0. The an-
alytic expression for the reduced moments of the two parameter
gamma distribution is

(¹̃k )0 D
¯k

ak
0

0(® C k)

0(®)
: [27]
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For the parameters shown in Figure 3, Equation (27) gives
the initial conditions for the lowest six moments:

(¹̃0)0 D 1; (¹̃1)0 D 5; (¹̃2)0 D 30; (¹̃3)0 D 210;

(¹̃4)0 D 1680; (¹̃5)0 D 15120: [28]

Six Reduced Moment Solution
The expanded set of source terms for the reduced moment

equations for six moments follows from Equation (25) as

[ÃS]n D
r2

0

Dm

n

a0

£
bn¡1

1 G° 2
11 C bn¡1

2 G° 2
12 C bn¡1

3 G° 2
13

¤
; [29]

where n goes from 0 to 5 and G represents the growth law. With
n D 0 we have the solution for the zeroeth moment, ¹̃0 D 1,
re� ecting the fact that no particles are nucleated or lost in the
model. The sink function for vapor loss, which is proportional
to surface area, is obtained from Equation (24):
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Results for the evolution of the reduced moments are pre-
sented in Figure 4. The zeroeth moment, which is constant, is
not shown. The results for the � rst through � fth reduced mo-
ments are shown in subplots (a)–(e).

Characteristics of vapor diffusion and particle growth are re-
vealed by examining Figure 4a. Because the � ow is cooled from
the outside, in the outermost streamline (r¤ D 0:98) the � rst
reduced moment (proportional to particle radius) rises rapidly.
Because the � ow is also moving slowly, the particles have suf-
� cient time to grow large for a given axial distance and exceed
the average particle radius calculated below as vapor diffuses
from the inner to outer regions of the � ow. As a consequence,
a de� cit of vapor develops at the inner streamlines, and as the
inner regions of the � ow are cooled, particle growth is quenched
early by depletion of available vapor.

To test numerical accuracy, calculations to verify conserva-
tion of mass have been performed as shown in Figure 5a. As
seen in the � gure, as the amount of condensate increases, the
amount of vapor decreases. The total, as a summation of the va-
por and condensate phases, remains constant. We also compute
the effective particle radius (Figure 5b) across the radial dimen-
sion of the pipe using the ratio of the third and second reduced
moments weighted by mass � ux as a function of radial posi-
tion. This quantity ranges from about 7 nondimensional units,
or 0.07 ¹m, at the entrance to 0.2749 ¹m at mixout. Though a
direct comparison is not truly appropriate, these results are in
good agreement with the monodisperse and bidisperse cases of
Davis and Liao (1975). Speci� cally, as mentioned previously,
Davis and Liao (1975) reported an average particle radius of
0.26 ¹m for the monodisperse case.

Figure 5. Evolution of (a) mass � ux and (b) effective particle
radius for two parameter gamma probability density distribution
represented by six moments (Tw D 60±C; ®T D 0:16 cm2/s,
Dm D 1:8 cm2/s).

Special Two and Four Reduced Moment Solutions
Special, or restricted, solutions of Equations (29) and (30) are

obtained for 1-point and 2-point quadrature. For 1-point quadra-
ture (one abscissa and one weight), only the zeroeth and � rst
moment are tracked. With 2-point quadrature we expand Equa-
tion (30) using two abscissas and weights for n D 0 through
3. In each of these solutions, as in the six moment solution, the
zeroeth moment is constant. For 1- and 2-point quadrature, in
which we calculate ¹1 and ¹1–¹3, respectively, the evolution
of the reduced moments are similar graphically to the results in
Figures 4a–c.

Quantitative comparisons among 1-, 2-, and 3-point quadra-
ture are given in Table 3 at � ve radial positions for the nondimen-
sional axial location x¤ D 0:020. Of particular interest are the
results for the � rst reduced moments. Results show convergence
is achieved with 3-point quadrature for our numerical exam-
ple. This conclusion is further veri� ed by comparing the second
and third reduced moments. For completeness we also list the
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Table 3
Comparison of 1-, 2-, and 3-point quadrature at z¤ D 0:020

Radial position
(r ¤) 1-point 2-point 3-point

First reduced moment
0.0 26.1192153438 26.0537151350 26.0534989772
0.3 26.3239771404 26.2593802022 26.2591668791
0.5 26.8320390945 26.7694823358 26.7692758632
0.8 28.0770486966 28.0192003052 28.0190125384
0.98 48.5751978818 48.5365906121 48.5352864570

Second reduced moment
0.0 — 681.542689048 681.535579824
0.3 — 692.285955298 692.278885220
0.5 — 719.297398766 719.290414546
0.8 — 787.675719112 787.669113662
0.98 — 2375.02933264 2374.95419006

Third reduced moment
0.0 — 17903.9095951 17903.9090288
0.3 — 18326.4602239 18326.4601494
0.5 — 19403.3079744 19403.3082125
0.8 — 22219.5005209 22219.5082850
0.98 — 116142.612456 116143.457783

Fourth reduced moment
0.0 — — 472420.782867
0.3 — — 487254.637484
0.5 — — 525566.930232
0.8 — — 629056.309086
0.98 — — 5680900.82782

Fifth reduced moment
0.0 — — 1.252337994 £ 107

0.3 — — 1.301368638 £ 107

0.5 — — 1.429690705 £ 107

0.8 — — 1.787628789 £ 107

0.98 — — 2.780312806 £ 108

fourth and � fth reduced moments from the 3-point quadature
calculations.

It is tempting to view the abscissas and weights as hav-
ing a direct physical correlation to the size distribution. How-
ever, quadrature abscissas and weights are more appropriate
for obtaining integral properties of the distribution rather than
providing a representation of the distribution itself. Other re-
trieval techniques are more appropriate for obtaining continuous
distributions for moments (Yue et al. 1997; Wright 2000).

DISCUSSION
The focus of this paper has been to compare the capabilities

of the conventional and quadrature methods of moments using
a well-known laminar � ow aerosol reactor model. We presented
formulations of a simple two-dimensional laminar � ow reactor
model using both of these approaches to obtain closure of the

coupled aerosol equations. In writing the aerosol dynamic equa-
tion we eliminated a priori assumptions for the particle size dis-
tributions of earlier models by applying the quadrature method
of moments. Subsequently, numerical results are presented for
a six moment solution of a laminar � ow reactor model using the
quadrature method. Conclusions are drawn regarding the vapor
diffusion processes which contribute to excess particle growth
in the outer regions of the � ow and retard growth in the inner
regions of the � ow.

Signi� cant advantages have been achieved with the quadra-
ture method of moments. Restrictive constraints to obtain clo-
sure with the conventional method of moments have been
avoided. In removing these constraints, the quadrature method
allows virtually any condensation growth/evaporation law to
be represented. Earlier applications of the quadrature method
of moments include diffusion (McGraw 1997) and coagulation
(Barrett and Webb 1998) for zero-dimensional box models. This
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paper presents the � rst calculations with the new quadrature
method of moments for a more realistic aerosol transport and
growth model.
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