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Abstract 

This study compares the capabilities of the conventional and quadrature methods of 

moments to describe condensational growth in a well known laminar flow aerosol reactor 

model. Governing equations for energy, lower order radial moments of the particle size 

distribution, and vapor transport are written for a two dimensional model using both 

approaches. 

By acceptance of this article, the publisher and/or recipient acknowledges the U.S. 
Government’s right to retain a nonexclusive, royalty-free license in and to any copyright covering 
this paper. 

Research by BNL investigators was performed under the auspices of the U.S. Department 
of Energy under Contract No. DE-ACO2-98CHlO886. 



C o n v e n t i o n a l  a n d  q u a d r a t u r e  t e c h n i q u e s  t o  o b t a i n  c l o s u r e  o f  t h e  m o m e n t  e q u a t i o n s  a r e  

a p p l i e d  a n d  c o m p a r e d .  T h e  c o n v e n t i o n a l  m e t h o d  r e q u i r e s  c e r t a i n  a p p r o x i m a t i o n s  t o  t h e  

g r o w t h  l a w .  T h e s e  i n c l u d e  a s s u m p t i o n s  t h a t  t h e  K e l v i n  e f f e c t  i s  n e g l i g i b l e  a n d  t h a t  t h e  

p a r t i c l e  g r o w t h  r a t e  f u n c t i o n  i s  l i n e a r  i n  p a r t i c l e  s i z e .  I n  c o n t r a s t ,  r e s t r i c t i v e  c o n s t r a i n t s  

o f  t h e  c o n v e n t i o n a l  m e t h o d  o f  m o m e n t s  t o  o b t a i n  c l o s u r e  a r e  a v o i d e d  b y  a p p l y i n g  t h e  

q u a d r a t u r e  m e t h o d .  N u m e r i c a l  r e s u l t s  f o r  t h e  l a m i n a r  f l o w  a e r o s o l  r e a c t o r  m o d e l  a r e  

o b t a i n e d  f o r  a  s i x  m o m e n t  f o r m u l a t i o n  o f  t h e  s e e d  p a r t i c l e  d i s t r i b u t i o n  t o  i l l u s t r a t e  

a p p l i c a t i o n  o f  t h e  q u a d r a t u r e  m e t h o d  t o  c o n t i n u o u s  p o l y d i s p e r s e  d i s t r i b u t i o n s .  W e  

p r e s e n t  t h e  f i r s t  c a l c u l a t i o n s  w i t h  t h e  n e w  q u a d r a t u r e  m e t h o d  o f  m o m e n t s  t o  a  t w o  

d i m e n s i o n a l  a e r o s o l  t r a n s p o r t  a n d  g r o w t h  m o d e l .  

I .  I n t r o d u c t i o n  

I n  t h i s  w o r k  w e  a p p l y  t h e  m e t h o d  o f  m o m e n t s  ( H u l b u r t  a n d  K a t z ,  1 9 6 4 ;  R a n d o l p h  a n d  

L a r s o n ,  1 9 8 8 ;  F r i e d l a n d e r ,  1 9 8 3 ;  M c G r a w  a n d  S a u n d e r s ,  1 9 8 4 )  t o  c o n d e n s a t i o n a l  g r o w t h  

i n  a  l a m i n a r  f l o w  a e r o s o l  r e a c t o r  m o d e l  u s i n g  c o n v e n t i o n a l  a n d  q u a d r a t u r e  t e c h n i q u e s .  

W e  b e g i n  w i t h  a  b r i e f  d e s c r i p t i o n  o f  t h e  m e t h o d  a s  u s e d  f o r  a n  a e r o s o l  d y n a m i c  e q u a t i o n  

t o  m o d e l  g r o w t h  a n d  p a r t i c l e  t r a n s p o r t  ( H u l b u r t  a n d  K a t z ,  1 9 6 4 ;  R a n d o l p h  a n d  L a r s o n ,  

1 9 8 8 ) .  C o n v e n t i o n a l  ( H u l b u r t  a n d  K a t z ,  1 9 6 4 )  a n d  q u a d r a t u r e  ( M c G r a w ,  1 9 9 7 )  m e t h o d s  

t o  o b t a i n  c l o s u r e  f o r  a  s e t  o f  m o m e n t  e q u a t i o n s  a r e  d e s c r i b e d .  F i n a l l y ,  w e  p r e s e n t  

n u m e r i c a l  s o l u t i o n s  f o r  c o n t i n u o u s ,  o r  p o l y d i s p e r s e ,  s e e d  p a r t i c l e  d i s t r i b u t i o n s  u s i n g  t h e  

q u a d r a t u r e  m e t h o d  o f  m o m e n t s  w i t h o u t  r e s t r i c t i o n s  o n  p a r t i c l e  g r o w t h .  T h i s  i s  t h e  f i r s t  
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application of the quadrature method to a two dimensional laminar flow reactor model 

with condensation. 

The reactor modeled in this study, the moditied Sinclair-LaMer aerosol generator 

(Sinclair and LaMer, 1949; Nicolaon et al, 1970; Nicolaon et aZ, 1971), consists of 

evaporation and condensation sections, and is similar to reactors that have been used to 

investigate competition among kinetic processes during aerosol formation (Pesthy et aZ, 

1983; Pratsinis, 1988). Early models of laminar flow reactor models have been solved 

analytically for delta function particle size distributions using a Green’s function approach 

(Liao, 1974; Davis and Liao, 1975) and numerically with orthogonal collocation (Barrett 

and Fissan, 1989). Pesthy et al (1983) extended the model to include homogeneous 

nucleation and vapor wall losses. Pratsinis (1988) and Phanse and Pratsinis (1989) 

provided a more complete formulation coupling the aerosol dynamic equation to the heat 

and mass transport equations. Phanse and Pratsinis (1989) discuss the advantages of 

describing the aerosol dynamics using the moments of the size distribution, but also point 

to the difficulty of obtaining closure for the resulting moment equations. All studies, 

except recent papers on multicomponent modal models (Stratmam and Whitby, 1989 and 

Wilck and Stratmann, 1997), assume axially constant laminar flow velocity profiles and 

neglect thermophoresis and axially diffusion. Therefore, the latter two papers are more 

general and more accurate with respect to representation of the flow field and transport 

equations. 



In this paper we use a fully two-dimensional model with an aerosol dynamic equation 

including a Brownian difmsion term. Since the focus of this paper is application of the 

quadrature method of moments, the hydrodynamic model is not as complete as those 

found in Phanse and Pratsinis (1989), Stratmann and Whitby (1989), or Wilck and 

Stratmann (1997). 

The emphasis of this and previous modeling studies cited above is the condensation 

section. For this study the flow is modeled as laminar with sufficiently low particle 

concentrations to avoid coagulation, and supersaturations are kept sufficiently low to 

prevent homogeneous nucleation. The modified Sinclair-LaMer aerosol generator, 

widely used in the laboratory to produce liquid droplets of narrow size distribution (Davis 

and Liao, 1975), is of interest because by carefully controlling conditions in the 

evaporation section, the size distribution of seed particles present in the flow at the 

entrance to the condensation section can be controlled. In addition, the conditions of the 

modified Sinclair-LaMer aerosol generator are very similar to those found in various 

condensation nuclei counters. The modified Sinclair-LaMer aerosol generator is thus a 

simple but practical means for comparing different modeling approaches. 

2. Method of Moments 

The methodology for using lower order moments of the size distribution to describe 

droplet or particulate growth was first developed to address the difficulties of modeling 

4 



growth in nonhomogeneous flow environments (Hulburt and Katz, 1964; Randolph and 

Larson, 1988). Despite its unique advantages for complex flow, the method of moments 

has not received widespread application due to restrictions on the kinds of particle growth 

laws that could be handled previously by the method (McGraw, 1997). Early 

applications (Friedlander, 1983; McGraw and Saunders, 1984) involved growth processes 

that were easily modeled within the restrictions of the conventional method of moments 

(Hulburt and Katz, 1964). Later applications (Pratsinis, 1983; Phanse and Pratsinis, 

1989; Stratmamr and Whitby, 1989; Wilck and Stratma, 1997) typically obtained 

closure of the moment equations by specifying the shape of the aerosol size distribution 

as a log normal mnction requiring CI priori assumptions regarding the shape of the 

distribution. Though by differing approaches, Frenklach and Harris (1987) and McGraw 

(1997) attempt to overcome restrictive cz priori assumptions on either the growth 

processes or the aerosol size distributions. With either of these methods a priori 

assumptions concerning the functional form of the size distribution are unnecessary. 

Here we adopt the quadrature approach. 

2.1 Description Of Moment Equations 

Similar to Hulburt and Katz (1964) and Phanse and Pratsinis (1989), we construct a set of 

moment equations that describes the behavior of the number density distribution function 

A- I h ~,a, t w ere Z represents the position vector, u particle radius, and t time. The 

set of equations is written as follows; 



where we have included terms on the right hand side for Brownian diffusion, and 

heterogeneous ( G ) nucleation, but have not included homogeneous nucleation, 

coagulation, and wall losses. In this set of equations, iJ is the velocity vector of the 

flow, with T the absolute temperature, C the dispersed vapor phase mass 

concentration, and Ddlr the Brownian particle difmsivity. 

The radial moments are defined by 

for n=O, 1, 2, 3, . . . . . Generally a small number of lower order moments are sufficient 

for estimating the important physical properties of an aerosol (Hulburt and Katz, 1964; 

Friedlander, 1977; and McGraw et aZ, 1995). For particles in a carrier gas, the physical 

significance of the lower order moments (Sherwin et aZ, 1967) is as follows. The zero 

moment p,, is the total number of particles per unit volume, or number density. The first 

moment p, is the total particle radii per unit volume. Similarly 3Kp2, proportional to 

the second moment, is the total particle surface area per unit volume, and I&, 



proportional to the third moment, is the total volume fraction. The parameter K is the 

geometric shape factor, which for spherical particles is K = 4~ / 3 . 

Note that the fourth term of Equation (1) depends on the unknown number density 

YC- J d x,a, t an seemingly cannot be evaluated without full knowledge of the distribution. 

However, the main focus below is a discussion of techniques for evaluating this integral 

in terms of the lower order moments [Equation (2)]. 

2.2 Closure of Moment Equations 

Two techniques to implement the method of moments in complex flow environments are 

outlined below. To obtain closure of Equation (1) with the conventional method of 

moments, it is necessary that the growth law be both separable and linear in particle 

radius (Hulburt and Katz, 1964; Randolph and Larson, 1988). Assuming separability of 

the growth function into exterior flow coordinates and internal particle coordinates, we 

write 

(3) 

To obtain closure $(a) must take the restrictive linear form 



For this approach, the set of moment equations above, coupled to the transport equations, 

can be closed using a small number (either three or four) of moment equations. If a 

growth law is not of the quadrature form, it must be approximated as such, or assumed 

distribution functions such as log normal are required to obtain closure (Hulburt and 

Katz, 1964). 

Recently, McGraw (1997) introduced a new approach, the quadrature method of 

moments, through which exact moment equations are replaced by a quadrature based set 

that satisfies closure under a broad range of conditions. Thus the quadrature method of 

moments and the related quadrature inversion virtually eliminate these restrictions on 

particle growth. Furthermore, the quadrature method is a generalization of the 

conventional method to which it reduces for the special form of Equation (4). The 

method can be summarized as follows. Consider an integral aerosol property I as given 

by Equation (5) below, where f(a) is the unknown aerosol size distribution and O(Q) 

is a known kernel function of particle size. Generally for physical properties and 

dynamics we require evaluation of integrals of unknown size distributions; for example, 

the growth integral in Equation (1) is in just this form. In the quadrature method we write 

the integral property I using the quadrature sum 



I= ~o(a)f(a)da z ~cT(aJkvi, 
i=l 

where N is the number of quadrature points. Similarly, if we rewrite the kernel as 

O(Q) = a k P(a), we can write 

I= jD(a)f(a)da = Ia ‘P(a)f(a)da z TaFP(ai)Wi. 
i=l 

Both o and P may be functions of parameters in addition to the radius. For each 

quadrature abscissa ai there is a corresponding weight wi . Notice that the moments 

themselves can be approximated by this quadrature form for P(a) = 1; 

pk = rakf(a&a = ga!Wi. 
, 

i=l 

Equation (7), which is exact for k = 0 thru k = 2N - 1, shows that the first 2N 

moments uniquely determine the N abscissas and N weights, However, the direct 

solution of Equation (7) for these quantities would require a nonlinear search and it is not 

recommended. A superior quadrature inversion algorithm for computing the abscissas 

and weights directly from the moments is described in McGraw (1997). Briefly 

summarized, computation of quadrature abscissas and weights from the moments may be 

accomplished in two steps, which include (1) construction of the Jacobi matrix (Press et 
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uZ, 1992) whose elements are given in terms of the moments, and (2) solution of the 

eigenvalue problem associated with this matrix. The net result is that we have evaluated 

the integral 1 in terms of the moments of f(a) even though this function itself is 

unknown. 

3. Modified Sinclair-LaMer Model 

Efforts to quantitatively model laminar flow reactors began with the modified Sinclair- 

LaMer aerosol generator model (Davis and Liao, 1975). The model includes steady state 

laminar flow of an aerosol-vapor-carrier gas mixture in a cooled pipe, with condensation 

described using a Green’s function approach. Pesthy, et al (1983) extended the model to 

include homogeneous nucleation. The addition of the aerosol dynamic equation to track 

evolution of particle growth was first seen in Hulburt and Katz (1964), and more recently 

in Pratsinis (1988). Pratsinis (1988) and Phanse and Pratsinis (1989) included 

homogeneous nucleation and coagulation, and obtained closure of the aerosol dynamic 

equation using a method of moments with an assumed log normal particle size 

distribution. Recently, studies on single and multicomponent modal models (Stratmann 

and Whitby, 1989 and Wilck and Stratmann, 1997) also obtain closure using an a priori 

assumption that the aerosol size distribution consists of log normal modes. In this section 

we outline a 2-d laminar flow reactor model consisting of coupled partial differential 

equations for energy, vapor, and particle transport without a priori assumptions of the 

aerosol size distribution. 
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3.1 Heat Transport, Mass Transport, and Aerosol Dynamic Equations 

The modified Sinclair-LaMer generator model, written in nondimensional form and 

updated with an aerosol dynamic equation, consists of the energy and vapor transport 

equations (Davis and Liao, 1975) 

for laminar, par 

1964; Pratsinis, 

abolic pipe flow, and the aerosol dynamic equation (Hulburt and Katz, 

1988) 

(l-r*2)g= L?($++$), 

for transport of the condensed phase (See Figure 1 for a schematic of the system 

coordinates). 

11 



In Equations (8), (9), and (10) we use a common nondimensional axial coordinate 

z* = z / r0 peZ and a nondimensional radial coordinate Y* = Y / r0 . The Lewis number 

_Ce is the ratio of the Peclet numbers for vapor and thermal diffusion. The reduced 

temperature and the normalized vapor concentration are defined 

T-T 
e=J 

lpTw’ 

We define the Brownian particle difmsivity Ddfl = KT/(~Yzz~) using the Stokes-Einstein 

equation (Bird et aZ, 1960), where K is Boltzmann’s constant. For additional symbols in 

these equations see Tables 1 and 2. 

The sink/source terms in Equations (9) and (10) are defined 

n ca”-‘G(Q, X,a)f (a)da . (13) 

Following the approach in Davis and Liao (1975), we have assumed the axial heat 

conduction is negligible. Also, the heat release from condensation is considered 

negligible. We have assumed homogeneous nucleation is not active. Additional details 
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on the development of the model can be found in Davis and Liao (1975) and Phanse and 

Pratsinis (1989). 

In addition, we neglect thermophoresis and axial diffusion in formulating the model 

equations. Wilck and Stratmann (1997), in using a more complete hydrodynamic model, 

have shown these processes to be negligible. 

3.2 Growth Law 

The growth law for dibutylphthalate (DBP) in a helium carrier gas (Davis and Liao, 

1975) is written 

In this equation the exponential coefficient exp(20- I plug Ta) accotmts for surface 

curvature when the particles are very small (i. e. Kelvin effect). In addition, 

XL = Ci I C,, is the nondimensional equilibrium vapor concentration at the local 

temperature over a flat surface. At the local reduced temperature 8 the equilibrium 

vapor concentration over a flat surface and the equilibrium vapor pressure are 
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where the parameters A and B (See Table 2) are experimentally determined vapor 

pressure constants (Ray et al, 1979). 

The factor F , included in Equation (14), is the noncontinuum correction for particle 

dimensions comparable to the mean free path of the gas (Fuchs and Sutugin, 1970). This 

is given by 

F = { 1 + [K&.333Cz + 0.71) / (K?z + l)]] -I , 

where the Knudsen number Gz is the ratio of the mean free path to particle radius (i.e. 

Kn=lla). 

3.3 Entrance And Boundary Conditions 

The entrance conditions for the energy and vapor transport equations, respectively, are 

e0 = 1 and X0 = 1. Initial conditions for the moments of the seed particle distribution 

are described in Section 5. Boundary conditions on the energy equation include QW = 0 

at the outer pipe boundary and 86 / k+* = 0 at the centerline. For the vapor transport 
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equation we have Z I a* = 0 at the outer pipe boundary and at the centerline. 

Similarly, for the particle transport moment equations, at the pipe boundary and the 

centerline we have &,, /a* = 0. 

As derived above, Equations (9) and (10) for the vapor and particle transport contain 

singularities at the outer pipe boundary due to the velocity vanishing at the wall for 

parabolic flows. Severe restrictions on particle growth were imposed by Davis and Liao 

(1975) on the auxiliary equations used to model the particle transport. Specifically 

instantaneous condensation at the pipe boundary was assumed, yet no further growth of 

boundary particles by diffusive transport was allowed. Recent papers (Pratsinis, 1988; 

Phanse and Pratsinis, 1989; Wilck and Stratmann, 1997) utilize more realistic boundary 

conditions, accounting for the high likelihood of at least some condensation to the pipe 

boundary. However, we have chosen to stay with the simpler approach of no flux 

through the boundary. While this approach is likely unattainable in practice, with this 

approach it is easier to interpret the exchange of mass between vapor and condensed 

phases. Therefore, at the outer boundary where the singularity exists, we do not impose 

deposition boundary conditions and do not solve for vapor concentration or particle size 

at the boundary. But, there are no restrictions with the quadrature method of moments to 

prevent using a deposition boundary condition. 



4. Development of the Moment Equations 

Comparison of the conventional and quadrature methods of moments amounts to 

comparison of strategies to obtain closure for the set of coupled model equations 

[Equations (S), (9), and (1 O)]. In this section, we outline the approximations needed to 

implement the conventional method in contrast to the much less restrictive approach used 

to obtain closure for the quadrature method of moments. 

For numerical convenience, we define a set of reduced moments in the form 

thus normalizing the distribution function by the total number density NT and 

normalizing the particle radius by a characteristic length scale aO. In terms of the 

original moments we have 

4.7 Implementation of Conventional Method of Moments 
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Following the conventional approach described in Hulburt and Katz (1964), the integral 

in Equation (10) is simplified by assuming the growth law is separable in the form 

G(Q, X+X) = g(Q, X)@(a). T o ac teve this for the growth law of Equation (14) it is h’ 

necessary to assume the Kelvin effect is negligible with exp[2cM / plug Z?z] = 1. The 

consequences of ignoring the Kelvin effect are small except at the smallest particle sizes. 

Also, it is necessary to linearize the particle growth rate function I . With these 

approximations, the growth law becomes 

In Figure 2, nonlinear and approximate forms for the particle growth rate function @(u) 

for dibutylphthalate are compared. For the linearized growth rate, the coefficients ,L$ 

and PI , given in Table 2, were obtained by least squares fit over the range 10e2 to 

5 x loo, and should be considered valid only over this range. 

To couple the moment equations to the vapor transport equation we substitute the 

separable growth law, and apply the defmition of reduced moments to the sink/source 

terms of Equations (12) and (13). The resulting expressions are 
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With these substitutions it is evident a closed set of equations results for the vapor and 

moments fl=Othru n=3. 

4.2 Implementation of Quadrature Method of Moments 

In applying the conventional method of moments to the modified Sinclair-LaMer aerosol 

generator model, approximations to the growth law were made to obtain a closed set of 

equations. McGraw (1997) proposed the quadrature method of moments as a means to 

obtain an approximate set of equations to obtain closure, but with the important 

advantage that the growth law is not restricted in its form. In this subsection we outline 

application of the quadrature method to obtain the equations needed for numerical 

solution. 

Without restrictions on the form of the growth law of Equation (14), we use quadrature 

(McGraw, 1997) to rewrite the sink term of Equation (12) as 
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To rewrite this equation in a form comparable to the reduced moments used in the 

conventional method, we define normalized abscissas and weights using 

where ai and wi are the quadrature points as in Equation (6). After substitution and 

minor manipulation, the sink term has the final form 

where we have also used ,L~ = Nr from Equation (18). 

Similarly, the source terms of the moment equations take the form 

where Equations (lo), (18), and (23) have been used. The growth law appearing in 

Equation (25) is obtained without restriction directly from Equation (14). Given the 

definitions of normalized abscissas and weights from Equation (23), we obtain 
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5. Numerical Results 

To simultaneously solve the energy, vapor, and moment equations we use the method of 

lines and a finite difference formulation of the energy and mass transport equations in the 

radial coordinate, writing separate equations at each radial location for the energy, vapor, 

and aerosol moments. To march along the axial coordinate we use a fourth order Runge- 

Kutta algorithm from Gerald and Wheatley (1989). The solution grid is two dimensional 

with a radial step size of 0.02 and an axial step size of 10V6 in nondimensional 

coordinates. The solution technique simultaneously solves for the vapor and condensate 

phases thereby eliminating the need to iterate the vapor transport and aerosol equations. 

All calculations are performed in double precision. 

The method of moments is equally applicable to discrete and continuous distributions. 

To validate the models, comparisons were made for the discrete monodisperse and 

bidisperse cases of Davis and Liao (1975). For these discrete cases the abscissas and 

weights obtained from inversion of the moments (McGraw, 1997) leads directly to 

particle size. 
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Several comparisons were made for the conventional and quadrature models. First, we 

ran the conventional model as formulated above. Second, we ran the quadrature model 

for the same approximated growth law used in the conventional method. Finally, we ran 

the quadrature model using the full nonlinear growth law. For the monodisperse case, the 

average particle radii from the conventional model and the quadrature model with the 

approximated growth law were virtually identical at 0.273 microns. The value compares 

favorably with Davis and Liao (1975), reported at 0.26 microns. Calculated results from 

the quadrature model using the nonlinear growth law gave an average particle radius of 

0.2749 microns. Having validated the quadrature approach, we proceed to apply the 

model to a continuous polydisperse seed particle distribution representing the gamma 

probability density distribution with six moments. In addition, we discuss special 

solutions for two and four moments. 

5.1 Gamma Probability Density Distribution 

The value of moment methods to describe particle evolution is best realized when the 

initial distribution is polydisperse. In these cases, for example with bin or sectional 

models, the number of equations needed to describe particle evolution becomes large as 

the particle distribution is partitioned into a large number of bins that must be tracked. 

As an example of a polydisperse seed particle distribution, consider a continuous two 

parameter gamma probability density distribution. A plot of this density distribution with 
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a = 5  and p=l.O~lO-~ cm is shown in Figure 3. These parameters were chosen to 

yield a narrow initial distribution with high number densities in the same size region as 

the monodisperse and bidisperse reference cases from Davis and Liao (1975). 

Specifically, we set c+, to the peak of the distribution by using ,8 = aO. The analytic 

expression for the reduced moments of the two parameter gamma distribution is 

(27) 

For the parameters shown in Figure 3, Equation (27) gives the initial conditions for the 

lowest six moments: 

C - J  poo= 1 C J j?I o =5, @Jo =30, @Jo =2107 

(-1 r4 0 z 1680, 
c I & o = 15120. 

5 . 2  S i x  R e d u c e d  M o m e n t  S o l u t i o n  

The expanded set of source terms for the reduced moment equations for six moments 

follows from Equation (25) as 
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L 1 
’ n 

vs n 
= %--[b;-lGy,!l + b;-'Gyf2 + b;-‘Gyf3], 

In 0 

where n goes from 0 to 5, and G represents the growth law. With n = 0 we have 

the solution for the zeroeth moment, PO = 1, reflecting the fact no particles are nucleated 

or lost in the model. The sink function for vapor loss, which is proportional to surface 

area, is obtained from Equation (24): 

(30) 

Results for the evolution of the reduced moments are presented in Figure 4. The zeroeth 

moment, which is constant, is not shown. The results for the first thru fifth reduced 

moments are shown in subplots (a) thru (e). 

Characteristics of vapor diffusion and particle growth are revealed by examining Figure 

4(a). Because the flow is cooled from the outside, in the outermost streamline 

(Y* = 0.98 ), the first reduced moment (proportional to particle radius) rises rapidly. 

Because the flow is also moving slow, the particles have sufficient time to grow large for 

a given axial distance, and exceed the average particle radius calculated below as vapor 

diffuses from the inner to outer regions of the flow. As a consequence a deficit of vapor 

develops at the inner streamlines, and as the inner regions of the flow are cooled, particle 

growth is quenched early by depletion of available vapor. 
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To test numerical accuracy, calculations to verify conservation of mass have been 

performed as shown in Figure 5(a). As seen in the figure, as the amount of condensate 

increases, the amount of vapor decreases. The total, as a summation of the vapor and 

condensate phases, remains constant. We also compute the effective particle radius 

[Figure 5(b)] across the radial dimension of the pipe using the ratio of the third and 

second reduced moments weighted by mass flux as a function of radial position. This 

quantity ranges from about 7 nondimensional units, or 0.07 microns, at the entrance to 

0.2749 microns at mixout. Though a direct comparison is not truly appropriate, these 

results are in good agreement with the monodisperse and bidisperse cases of Davis and 

Liao (1975). Specifically, as mentioned previously, Davis and Liao (1975) reported an 

average particle radius of 0.26 microns for the monodisperse case. 

5.3 Special Two and Four Reduced Moment Solutions 

Special, or restricted, solutions of Equations (29) and (30) are obtained for l- point and 

2 - point quadrature. For 1 -point quadrature (one abscissa and one weight), only the 

zeroeth and first moment are tracked. With 2 - point quadrature we expand Equation 

(30) using two abscissas and weights for n = 0 thru 3. In each of these solutions, as in 

the six moment solution, the zeroeth moment is constant. For l- and 2 - point 

quadrature, in which we calculate p, and ,u, thru p3 respectively, the evolution of the 

reduced moments are similar graphically to the results in Figure 4(a) thru (c). 
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Quantitative comparisons among l- , 2 - , and 3 -point quadrature are given in Table 

3 at five radial positions for the nondimensional axial location x* = 0.020. Of particular 

interest are the results for the tirst reduced moments. Results show convergence is 

achieved with 3 - point quadrature for our numerical example. This conclusion is further 

verified in comparing the second and third reduced moments. For completeness we also 

list the fourth and fifth reduced moments from the 3 -point quadature calculations. 

It is tempting to view the abscissas and weights as having a direct physical correlation to 

the size distribution. However, quadrature abscissas and weights are more appropriate for 

obtaining integral properties of the distribution rather than to provide a representation of 

the distribution itself. Other retrieval techniques are more appropriate for obtaining 

continuous distributions for moments (Yue et d, 1997; Wright, 1998). 

6. Discussion 

The focus of this paper has been to compare the capabilities of the conventional and 

quadrature methods of moments using a well known laminar flow aerosol reactor model. 

We presented formulations of a simple 2-d laminar flow reactor model using both these 

approaches to obtain closure of the coupled aerosol equations. In writing the aerosol 

dynamic equation we eliminated LZ priori assumptions for the particle size distributions of 

earlier models by applying the quadrature method of moments. Subsequently, numerical 

results are presented for a six moment solution of a laminar flow reactor model using the 
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quadrature method. Conclusions are drawn regarding the vapor diffusion processes 

which contribute to excess particle growth in the outer regions of the flow, and retard 

growth in the irmer regions of the flow. 

Significant advantages have been achieved with the quadrature method of moments. 

Restrictive constraints to obtain closure with the conventional method of moments have 

been avoided. In removing these constraints, the quadrature method allows virtually any 

condensation growth/evaporation law to be represented. Earlier applications of the 

quadrature method of moments include diffusion (McGraw, 1997) and coagulation 

(Barrett and Webb, 1998) for zero-dimensional box models. This paper presents the first 

calculations with the new quadrature method of moments for a more realistic aerosol 

transport and growth model. 
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Tables 

Table 1: Fundamental Physical Parameters (Reference Case) 

Parameter 

Centerline Velocity 

Pipe Radius 

Entrance Temperature 

Wall Temperature 

Entrance Vapor Concentration 

Vapor Mass Diffusivity 

Molecular Weight 

Universal Gas Constant 

Value 

21.0 

1.0 

110 

60 

1.12 x lo-6 

0.16 

278.35 

8.3143 x 10’ 

Thermal Diffusivity 1.80 

Liquid DBP Material Density’ 

Seed Particle Radius 

Absolute Viscosity for Helium 

Helium Gas Density 

Surface Tension’ 

1.047 

1.0 x lo-6 

2.281 x lo-4 

0.1875 x lO-3 

34.0 

Units 

cm 

cm 

Deg C 

Deg C 

gmlcm ’ 

cm ’ fsec 

gm/mole 

ergs/mole-K 

cm ’ lsec 

grn/cm ’ 

cm 

gm/cm-set 

grnlcm ’ 

dynes/cm 

a Kemppinen and Gokcen (1956) 

’ Dean (1985) 
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Table 2: Derivative Physical Parameters (Reference Case) 

Symbol 

pe, 

P% 

Le 

Al 

P1 

coz 

PA 

L-l IY I 

A 

B 

V 

Re 

1 

Parameter 

Thermal Peclet Number 

Mass Diffusion Peclet Number 

Lewis Number 

First Growth Rate CoefIicient 

Second Growth Rate Coefficient 

Vapor Concentration at Infinity 

Seed Particle Number Density 

Nominal First Reduced Moment 

First Vapor Pressure Constant ’ 

Second Vapor Pressure Constant ’ 

Kinematic Viscosity for Helium 

Reynolds Number 

Mean Free Path of Vapor Molecule 

’ Ray, Davis, and Ravindran (1979) 

Value Units 

11.6 ---- 

131.25 ---- 

11.25 

2.5 x lo4 

-2.6~ 10’ 

2.2399 x lo-8 

---- 

---- 

---- 

1.2 x 10’ 

27.53518 

gmcm ’ 

particles/cm ’ 

l/cm 

4993.0 Deg K 

12.217 

1.2778 1 

16.43358 

3.015 x lo-5 

---- 

cm2 lsec 

---- 

cm 
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Table 3: Comparison of l-, 2-, and 3-Point Quadrature at z* = 0.020 

Radial Position 

CT*) 
0.0 

0.3 

0.5 

0.8 

0.98 

Radial Position 

Cf-*I 
0.0 

First Reduced Moment 

1 -Point 2-Point 

26.1192153438 26.0537151350 

26.3239771404 26.2593802022 

26.8320390945 26.7694823358 

28.0770486966 28.0192003052 

48.5751978818 48.5365906121 

Second Reduced Moment 

1 -Point 2-Point 

---- 681.542689048 

3-Point 

681.535579824 

0.3 ---- 692.285955298 692.278885220 

0.5 ---- 719.297398766 719.290414546 

0.8 ---- 787.675719112 787.669113662 

0.98 ---- 2375.02933264 2374.95419006 

Radial Position 

CT*) 
0.0 

0.3 

0.5 

0.8 ---- 22219.5005209 22219.5082850 

0.98 ---- 116142.612456 116143.457783 

Third Reduced Moment 

1 -Point 

---- 

2-Point 

17903.9095951 

---- 18326.4602239 

---- 19403.3079744 

3-Point 

26.0534989772 

26.2591668791 

26.7692758632 

28.0190125384 

48.5352864570 

3-Point 

17903.9090288 

18326.4601494 

19403.3082125 
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Table 3 (Continued): Comparison of l-, 2-, and 3-Point Quadrature at z* = 0.020 

Fourth Reduced Moment 

Radial Position 

(r*) 
0.0 

0.3 

05 

0.8 

0.98 

1 -Point 

---- 

---- 

---- 

---- 

---- 

2-Point 

---- 

---- 

---- 

---- 

---- 

Radial Position 

Cr.1 
0.0 

0.3 

0.5 

0.8 

0.98 

Fifth Reduced Moment 

1 -Point 2-Point 

3-Point 

472420.782867 

487254.637484 

525566.930232 

629056.309086 

5680900.82782 

3-Point 

1.252337994 x 10’ 

1.301368638 x IO’ 

1,429690705 x 10’ 

1.787628789 x 10’ 

2.780312806~ 108 
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Figure 1: Schematic of the aerosol generator model showing the system coordinates. 
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Figure 2: Comparison of the nonlinear growth rate function @(a) = F/LI and the linear 
approximation &a) = p0 + flit for /I,, = 2.5 x 104 and PI = -2.6 x 10’ [See discussion 
above Equation (19)]. 
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Figure 3: Two parameter gamma probability densit distribution function with LX = 5.0 
and ,0 = 1.0 x 10m6 for ~~(a) = LI 
function. 

a-le-a’P / [par(a)rwhere l-(a) is the usual gamma 
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Figure 4: Evolution of (a) first, (b) second, (c) third, (d) fourth, and (e) fifth reduced 

moments for two parameter gamma probability density distribution represented by six 

moments ( Tw = 60 deg C, aT = 0.16 cm * /set, Dm = 1.8 cm’ Lsec). 
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Figure 5: Evolution of (a) mass flux and (b) effective particle radius for two parameter 

gamma probability density distribution represented by six moments ( Tw = 60 deg C , 

aT = 0.16 cm * lsec, D,,, = 1.8 cm * Lsec). 
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