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Abstract

Aerosol properties such as the number of particles that activate to form cloud drops and the mass
contained within speci8ed size ranges (as in the PM 2.5 and PM 10 regulatory standards) require
integration over only part of the full size range of the particle distribution function (PDF) and may
be formally expressed as integrals over kernels involving the Heaviside step function. Determination of
these properties requires essentially that the size spectrum be partitioned into two (or more) portions,
and poses a special challenge for aerosol modeling with the method of moments. To assess the ability
of moment-based methods to treat kernels involving step functions, several algorithms for the estimation
of aerosol properties associated with cloud activation have been evaluated. For 240 measured continental
distributions employed here as test cases, the full size spectrum of the PDF was partitioned into three
distinct portions based upon characteristic critical radii for activation in cumulus and stratiform clouds,
and mass- and number-concentration metrics were evaluated for each portion. The 8rst six radial moments
yielded results accurate to within about 10% or better, on average, and the numbers of particles activated
as cloud drops and the aerosol mass taken into cloud water were estimated to an accuracy of 5% or
better. Of the moment-based approaches evaluated, the multiple isomomental distribution aerosol surrogate
(MIDAS) (Wright, J. Aerosol Sci. 31 (2000) 1) technique performed best. Accurate results were also
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obtained with the randomized minimization search technique (RMST) (Yue et al., Geophys. Res. Lett.
24 (1997) 651; Heintzenberg et al., Appl. Opt. 20 (1981) 1308). Published by Elsevier Science Ltd.
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1. Introduction

There are important aerosol properties requiring integration over part of the size spectrum
of the particle distribution function (PDF). Mathematically, these properties can be expressed
using kernels involving the Heaviside step function:

�(x − a)=

{
1; x¿ a;

0; x¡a:

For example, a step function arises with the PM 2.5 and PM 10 air-quality standards, where
the aerosol mass loadings must be determined for particles having diameters less than or equal
to 2.5 and 10 �m, respectively. Conventionally, the mass (M) per unit volume contained in
particles having radii less than or equal to R is represented as

M (r6R)=
4
d
3

∫ R

0
r3f(r) dr; (1a)

where d is the density of the aerosol (assumed for simplicity to be size-independent in this
example), and f(r) is the PDF, which gives the number of particles per unit volume within
the radius range r to r + dr. Using the Heaviside function, the expression is

M (r6R)=
4
d
3

∫ ∞

0
�(R− r)r3f(r) dr: (1b)

The latter form explicitly expresses M (r6R) as an integral over the entire PDF.
Another example is that of cloud droplet activation for a speci8ed supersaturation, where

only those aerosol particles having radius greater than (or equal to) a critical radius (rc), which
depends on supersaturation, activate to form cloud drops. The number of cloud drops per unit
volume (Nc) formed upon activation is conventionally expressed as

Nc =
∫ ∞

rc
f(r) dr (2a)

and with the Heaviside function

Nc =
∫ ∞

0
�(r − rc)f(r) dr: (2b)
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In a real cloud, such factors as variable updraft velocities in diKerent air parcels, diKering particle
compositions, and other heterogeneities will all act, on average, to smooth the step discontinuity
in the kernel to a more manageable continuous form. Nevertheless, the Heaviside function has
validity for modeling cloud activation in box models when the seed particles are of uniform
composition, as is done here, and in any event represents the extreme case that is expected to
be the greatest challenge for cloud activation modeling with the method of moments.

Step function kernels also arise during the comparison of measurements of particle num-
ber using size-restricted instrumentation with values of particle number computed from models
employing moment-based surrogates to the PDF (see below). To permit comparison of modeled
particle number counts with measured values from optical particle counters and condensation-type
detectors over their respective sensitivity ranges, moment-based surrogates to the PDF must be
integrated only over a portion of the full size spectrum of the PDF obtained with the use of
such instruments. In such cases, the number of particles (N ) per unit volume in the radius range
R16 r6R2 is conventionally expressed as

N =
∫ R2

R1

f(r) dr: (3a)

Alternately, such an expression may be written in terms of two step functions in the Heaviside
notation:

N =
∫ ∞

0
�(r − R1)�(R2 − r)f(r) dr: (3b)

The foregoing examples show that Heaviside step functions can generate three distinct types of
regions of (non-zero) integration: (1) regions with right-side steps (e.g., PM 2.5=10 standards),
(2) regions with left-side steps (e.g., number of cloud drops activated) and (3) regions with
steps at both ends of the integration (e.g., comparisons with particle-counter measurements).
In this work, moment-based methods will be evaluated for determination of aerosol properties
(such as those cited above) for all three types of regions.

1.1. Moments and aerosol properties

The kth radial moment radial is de8ned as

�k =
∫ ∞

0
rkf(r) dr: (4)

It is assumed that only the low-order (k =0–5) moments are known, and the underlying PDF is
unknown. Aerosol properties (�) can be derived from the moments by quadrature methods as

�=
∑
i

’(ri)wi; (5)

where the sum is taken at radii ri with weights wi, and where both the ri and wi can be
determined from the moments alone. Alternatively, more accurate methods for determining
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aerosol properties from the moments employ integrals of the form

�=
∫

’(r)g(r) dr; (6)

where g(r) is a surrogate for the true PDF derived from the low-order moments. From three
moments, the parameters of a single-mode lognormal distribution can be derived, but surro-
gates obtained from longer moment sequences can be expected to yield more accurate results
(Yue et al., 1997). The present study shows that this result holds also for integrals involving
Heaviside-type kernels.

Several recent studies have addressed the retrieval of aerosol optical properties from moment
sequences, these properties involving the full spectrum of particle size. Optical properties have
been computed from the 8rst six radial moments using 3-point quadrature [Eq. (5)] (McGraw,
Huang, & Schwartz, 1995), the randomized minimization search technique (RMST) (Yue
et al., 1997) and by the multiple isomomental distribution aerosol surrogate (MIDAS) method
(Wright, 2000). The latter two methods derive surrogates g(r) to the unknown PDF for use in
Eq. (6), and are especially valuable when the quadrature approximation suKers from inadequate
sampling of the kernels evaluated. Accuracy is typically within 1–2% when compared to the
values of the same optical properties computed directly from the PDF.

1.2. Scope of this study

This work extends previous studies investigating the retrieval of aerosol properties from
moment sequences to cases in which the properties of interest are determined from the size
distribution by integrations over only part of the full size spectrum.

For properties involving step-function kernels, the computational task requires partitioning
the aerosol into two (or more) portions based upon some pre-determined particle size(s). With
a moment-based approach for retrieving aerosol properties from moments, portion i of the
underlying PDF will then be characterized by its own moment set {�i

k} such that �i
i�k

=�k .
This partitioning is an especially challenging task for the method of moments (MOM), as

the (standard) moments de8ned in Eq. (4) are integrals over the entire size spectrum of the
PDF, and as such do not contain information about speci8c portions of the PDF. From another
point of view, it is known that the MOM works well for polynomial kernels, even yielding
the exact results, depending on the degree of the polynomial and the number of moments used
in the evaluation (McGraw et al., 1995). Also, the use of surrogates for the PDF derived
from the moments has substantially improved the accuracy of integrals even over much more
complex functions, albeit in work thus far, functions that are analytical and more or less well
behaved (Yue et al., 1997; Wright, 2000). The Heaviside function, however, is markedly not
of polynomial form and is not even analytical.

Even though these considerations may seem at 8rst to preclude the use of the MOM for
such applications, there are reasons for anticipating that a moment-based approach will have
some degree of success. Although the algorithms evaluated in this work for partitioning the PDF
require only a sequence of moments as input, most contain implicit assumptions about the PDF:
that it is positive-de8nite, that it typically has internal (rather than endpoint) maxima, and some
degree of smoothness. That these assumptions are reasonable for aerosol size distributions, and
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are utilized in deriving surrogates to the PDF from its moments, probably accounts for much
of the previous success of techniques for retrieving aerosol properties from moments, and oKers
hope for success in evaluating integrals over such extremely non-polynomial kernels as those
involving the step function.

In anticipation of developing a moment-based module for use in CTMs that includes repre-
sentation of aerosol evolution in clouds (Wright, Kasibhatla, McGraw, & Schwartz, 2001), this
study explores moment-based algorithms for partitioning the size spectrum of the PDF in the
context of cloud droplet activation. For 240 measured continental distributions employed here
as test cases, the full size spectrum of the PDF was partitioned into three distinct portions based
upon characteristic critical radii for activation in cumulus and stratiform clouds, and mass- and
number-concentration metrics were evaluated for each portion. The results presented here should
provide reliable indications of the performance of these moment-based methods in the evaluation
of other aerosol properties involving step-function kernels. With appropriate rescaling of the test
distributions and the assumed critical radii for cloud activation, the test distributions and the radii
at which the step function yields an on–oK switch could be brought close to those appropriate for
evaluations in the context of the PM 2.5 and PM 10 mass concentration standards noted above.

In this investigation, for 240 measured continental distributions employed here as test cases,
the full size spectrum of the PDF was partitioned into three distinct portions based upon char-
acteristic critical radii for activation in cumulus and stratiform clouds. Mass- and number-
concentration metrics were then evaluated for each portion in order to assess the accuracy and
computational requirements of several moment-based algorithms for partitioning the size-spectrum
of the PDF. This assessment focuses on the RMST and MIDAS methods, although a few simpler
approaches using fewer than six moments are also examined, mainly as points of comparison
for the techniques based on six moments. Metrics computed using the moment-based approaches
are evaluated by comparison with benchmark values computed by direct integration over the
240 test distributions.

In Section 2 we describe the moment-based approaches to be investigated. In Section 3 we
describe the test distributions and de8ne the metrics to be evaluated. In Section 4 we present
the results and discuss the sensitivities of the RMST and MIDAS performances to various
parameters in these algorithms. In Section 5 we summarize the 8ndings of this study.

2. Description of methods

The methods for evaluating integrals of a kernel function over a PDF using only the moments
of the distribution consist of taking integrals over surrogate distributions that are derived from
the moments. Here we brieDy describe the types of surrogates investigated in this study.

2.1. 1-Modi8ed gamma

This is a simple 2-moment approach. The modi8ed gamma distribution is the surrogate

g(r)=fMG(r)=
Nsb(n−1)=srn

�[(n+ 1)=s]
exp(−brs); (7)
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where N is the number of particles. The parameters n and s are set to unity, permitting evalu-
ation of aerosol properties via Eq. (6) by analytical integration of the required kernels and the
avoidance of computationally expensive numerical integration. The volume moment was used
to determine b through �3 =24N=b3 with N =�0.

2.2. 1-Lognormal

This is a simple 3-moment approach. The lognormal distribution is the surrogate

g(r)=fLN(r)=
N

r ln(�)
√
2


exp
{
−1
2
[ln(r=Rg)=ln(�)]2

}
; (8)

where N; Rg, and � are the number of particles, geometric mean radius, and geometric stan-
dard deviation, respectively. These parameters are determined algebraically from �0; �3 and �5.
Numerical integration is required to obtain aerosol properties from Eq. (6).

2.3. 3-Point quadrature

For the evaluation of integral aerosol properties using quadrature, an N -point Gaussian quadra-
ture (with unknown weight functions) using the lowest 2N moments yields N abscissas (particle
radii) and N weights (particle numbers), which may be considered an N -disperse surrogate for
the unknown PDF. The routine ORTHOG of Press, Teukolsky, Vetterling, and Flannery (1992)
eOciently yields the N abscissas and weights from the moments. These quadrature points yield
rapid estimates of aerosol properties, and this approach has been evaluated for the computation
of aerosol optical properties, as previously described. Here we use six moments and obtain three
quadrature points from which the required integrations are obtained from Eq. (5).

2.4. Multiple isomomental distribution aerosol surrogate (MIDAS)

The MIDAS technique is presented in Wright (2000). MIDAS retrieves smooth multi-modal
surrogates to the unknown PDF, which are composed of lognormal or modi8ed-gamma distribu-
tions. The 8nal surrogate PDF will have M modes, for M=3 retrievals of trimodal distributions.
Desired aerosol properties are then obtained by numerical integration over the distribution surro-
gates using Eq. (6). The QSIMP routine of Numerical Recipes (Press et al., 1992) was used for
the numerical integrations, where the degree of convergence was regulated using the parameter
EPS, discussed below.

2.5. Randomized minimization search technique (RMST)

A detailed description of the RMST method may be found in Heintzenberg, Muller, Quenzel,
and Thomalla (1981), Lin and Saxena (1992), and Saxena, Anderson, and Lin (1995), and
its extension to moments in Yue et al. (1997). The RMST approach obtains a bin-section type
surrogate to the PDF. In the moment-based applications contemplated here, the size range of the
underlying distribution will not be precisely known, and the bin structure must be determined
with the aid of the moments themselves. In this work, the mean radius of each moment set
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Fig. 1. Twenty-four of the 240 (dry) test distributions derived from DMPS measurements plotted as equal-area plots,
dN=d log10(r) vs. r. Dotted vertical lines are drawn at r1 = 0:022 �m and r2 = 0:10 �m to indicate the partitioning
of the distributions into three portions.

(Rmean =�1=�0) was used to set the 8rst and last bin radii according to r1 =0:06Rmean and
rL =6:0Rmean, with the number of bins then determining all bin radii between these limits,
which are geometrically spaced. For each speci8ed set of moments, several retrievals are done,
and averaging over all retrieved distributions further smoothes the 8nal surrogate, from which
aerosol properties are computed using Eq. (6).

3. Test distributions and metrics

3.1. Test distributions

The aerosol size distributions used as test cases were derived from 8eld observations with a
diKerential mobility particle sizer (DMPS) at ambient relative humidity (RH) on Black Moun-
tain, North Carolina (Wenny et al., 1998; Yu et al., 2000). The measurements yielded number of
particles as a function of radius for radii ranging from 0.008 to 0:3 �m (at ambient RH), in 50
size-bins. Size distributions were measured every 15 min and relative humidity was measured
every hour during the daytime. The selected dataset is comprised of 240 distributions from
six days of measurements, with the 8rst 142 distributions measured in August 1995, and the
remainder measured in September 1995. For this methodological study, the measured ambient
size distributions were converted to dry distributions using the measured RH. For this conver-
sion, the solute was taken to be pure ammonium sulfate, and the data of Tang and Munkelwitz
(1994) were used to obtain the ratio of ambient (“wet”) particle radius to dry radius; here,
dry radius is the radius of the sphere of equal volume. This ratio was taken as dependent on
RH but independent of particle size; thus the small reduction in water uptake at the smallest
particle sizes due to the Kelvin eKect was neglected. The moments of the dry distributions were
calculated for input to the moment-based methods.

Fig. 1 shows selected (dry) test distributions as equal-area plots, dN=d log10(r) vs. r. Due
to the instrumental detection limits, the measured distributions do not always include the full
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ambient size spectrum, with the result that some of the observed shapes are truncated and
therefore are not physically realistic or characteristic of those that arise in aerosol modeling.
Those cases in which detection limits play a role in shaping the test PDFs are likely to be
more diOcult to treat as the abrupt onset or termination of the PDF with particle size is not
easily captured by a modal approach to the surrogate, or by a bin-sectional approach when the
precise range of particles sizes is not speci8ed. In the case of modeling with the MOM, the full
size spectrum of the underlying PDF is implicitly present as there are no a priori restrictions
on particle size and growth. The selected cases encompass a wide range of distributions and
provide a relatively comprehensive dataset for method evaluation.

3.2. Metrics

For the purpose of these evaluations, cumulus and stratiform cloud types were assigned
characteristic peak supersaturations of 0.5% (cumulus) and 0.05% (stratiform) (Seinfeld &
Pandis, 1998). The minimum particle dry radius that can activate was estimated using
rdry;min(�m)=1:40 × 10−2S−2=3 (Gong, Barrie, & Blanchet, 1997; Schwartz, 1996) where S
is the supersaturation (in percent), yielding rdry;min values of r1 =0:022 and r2 =0:10 �m for
cumulus and stratiform clouds, respectively. These two particle radii were used to partition
the PDF into three portions: r6 r1; r1 ¡r6 r2, and r¿r2. This partitioning is indicated with
dashed vertical lines in Fig. 1.

To evaluate and compare the several moment-based approaches, we de8ned several metrics.
Speci8cally, metrics M1; M2, and M3 are de8ned as the aerosol solute mass concentrations
in portions 1, 2 and 3, respectively, and metrics N1; N2; N3 are de8ned as the aerosol particle
number concentrations in portions 1, 2 and 3, respectively:

M1 =
4
d
3

∫ r1

0
r3f(r) dr=

4
d
3

∫ ∞

0
�(r1 − r)r3f(r) dr; (9a)

M2 =
4
d
3

∫ r2

r1
r3f(r) dr=

4
d
3

∫ ∞

0
�(r − r1)�(r2 − r)r3f(r) dr; (9b)

M3 =
4
d
3

∫ ∞

r2
r3f(r) dr=

4
d
3

∫ ∞

0
�(r − r2)r3f(r) dr; (9c)

N1 =
∫ r1

0
f(r) dr=

∫ ∞

0
�(r1 − r)f(r) dr; (9d)

N2 =
∫ r2

r1
f(r) dr=

∫ ∞

0
�(r − r1)�(r2 − r)f(r) dr; (9e)

N3 =
∫ ∞

r2
f(r) dr=

∫ ∞

0
�(r − r2)f(r) dr; (9f)
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Fig. 2. (a) Metrics M1; M2 and M3 obtained directly from the test distributions as a function of test distribution
number, used as benchmarks to evaluate the moment-based approaches. These metrics are based on aerosol mass
concentrations. (b) Metrics N1, N2 and N3 obtained directly from the test distributions as a function of test distribution
number, used as benchmarks to evaluate the moment-based approaches. These metrics are based on aerosol number
concentrations.

where d is the density of dry ammonium sulfate (1:77 × 10−12 g=�m3), and r the radius of
the equivalent sphere. We examined both the accuracy and computational expense of each
moment-based method for computing these integrals. For comparisons of eOciency, the CPU
time required for each method to compute the six integrals for all 240 test distributions from
their moments was obtained on the same Sun Spark Enterprise.

Fig. 2 shows the values of the metrics obtained from each test distribution. Mass concen-
trations in the three portions of the size spectrum (M1; M2; M3) range from about 10−15 to
10−11 g=cm3; number concentrations (N1; N2; N3) range from about 0.01 to 2000 cm−3. A few
of the test cases have very little aerosol present.
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4. Results

4.1. Overall performance of the moment-based approaches

The percent error in a metric for a moment-based method is de8ned as %e(Pi)= {100% ×
[Pi(moment-based) − Pi(exact)]=Pi(exact)}, where Pi is either Mi or Ni. We summarize the
performance of each method by computing the average magnitude of percent error, de8ned as

〈%e(Pi)〉=(1=Nd)�n[|%e(Pi)|]n (10)

for the Nd =240 test distributions. Here and throughout the rest of the paper we use the term
“average percent error” to refer to the average of the magnitude (absolute value) of the percent
error; averaging the magnitude of the percent error provides a better test of accuracy as it does
not allow for compensating positive and negative errors.

Although a moment-derived surrogate to a PDF may be expected to provide a good repre-
sentation of its key attributes—its integral, mean value, width—it cannot be expected to closely
match the amplitude of the PDF at each point along the size spectrum. Speci8cally, as the
region of (non-zero) integration narrows (for example for integration from a Heaviside “step”
at radius R to in8nity is done, and R is moved out to larger and larger radius and onto the
tail of the PDF), the fraction of the total aerosol present in that region is reduced. As the
moment-derived surrogate may not match the actual PDF amplitude in this (or any other) small
region, one would expect, on the whole, for the relative errors to increase as the fraction of the
PDF included in the range of integration is reduced. Larger errors in the metrics will thus tend
to be correlated with integrations over regions containing a small fraction of the total particle
number, and thus tend to be correlated with small values of those metrics. This will be discussed
later in Section 4.4. To examine this expectation, and to better assess the overall performance
of the moment-based algorithms, we also evaluate the metric-weighted average magnitude of
percent error, de8ned as

〈%e(Pi)〉W =�n[|%e(Pi)|Pi]n=�n[Pi]n (11)

over the Nd test distributions.
The results shown in Tables 1 and 2 are taken from 36 evaluations of these errors in the met-

rics for several variants of the moment-based algorithms described above. The metric-weighted
average errors are, as anticipated, almost always smaller than the corresponding unweighted
average errors, indicating that larger errors tend to be associated with smaller values of the
metrics, which often correspond in our dataset to insigni8cant aerosol concentrations. We take
the metric-weighted average errors as most representative of the errors to be expected when
signi8cant amounts of aerosol are present.

It can be seen (from Evaluation 6; MIDAS with 12 modi8ed-gamma modes) that on average
mass and number concentrations in each of these portions of the size spectrum are estimated
to within 3–13% using a moment-based approach. The number concentration that activates to
form cloud drops in stratiform clouds (N3) is estimated on average to within about 5%. The
number concentration that does not activate to form cloud drops in cumulus clouds (N1), and
thus remains as interstitial aerosol, is also estimated on average to within 5% (Evaluation 6).
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Table 1
Average magnitude of percent error and metric-weighted average magnitude of percent errors for metrics M1, M2,
and M3, the mass concentrations in portions r6 0:022 �m; 0:022 �m¡r6 0:10 �m, and r¿ 0:10 �m, respectively,
for the moment-based techniquesa

Unweighted Metric-weighted

No. Description M1 M2 M3 M1 M2 M3 CPU (s)

1 1-MG 57.6 62.1 14.5 30.7 61.1 15.6 0.13
2 1-LN 19.6 29.3 28.3 18.7 29.1 7.4 0.84

MIDAS
3 MIDAS-3MG 42.1 8.5 13.9 13.8 21.7 3.7 10.26
4 MIDAS-6MG 36.0 8.3 12.7 12.5 19.3 3.3 18.77
5 MIDAS-12MG-a 20.5 9.6 8.3 13.4 10.1 2.6 36.24
6 MIDAS-12MG-c 20.5 9.7 8.4 13.4 10.1 2.6 15.14
7 MIDAS-12LN-c 36.3 10.3 9.9 19.2 12.1 3.1 5.95

RMST
8 RMST-10-5-1 19.7 9.9 12.5 15.8 10.8 3.0 23.48
9 RMST-20-5-1 20.1 15.0 14.1 13.6 15.1 3.8 77.82

10 RMST-20-1-1 30.6 17.4 15.3 22.4 17.7 4.6 17.23
11 RMST-20-10-1 16.8 14.1 14.2 11.6 14.0 3.6 155.38
12 RMST-20-20-1 14.8 14.7 14.1 10.7 14.7 3.7 297.44

aFor the MIDAS results, MG indicates modi8ed gammas, LN lognormals; 3; 6; 12 indicates the number of modes
averaged to form the 8nal surrogates, and a; b; c indicate convergence requirements in the numerical integration
(Section 4.2). For the RMST results, the numbers X–Y–Z indicate the number of bins, the number of solutions
averaged to form the 8nal surrogates, and the convergence tolerance (%) during the retrieval process (Section 4.3),
respectively.

Evaluations 1 and 2 summarize results with the 1-modi8ed gamma and 1-lognormal ap-
proaches. Although these simpler methods required signi8cantly less CPU time than the other
algorithms, they were markedly less accurate. This decrease in accuracy illustrates the impor-
tance of utilizing all six moments (when available) for computing these aerosol properties. The
errors obtained with the more general 3-point quadrature (not shown here) were almost always
the largest of the methods evaluated in this work, illustrating the limitations of 3-point Gaussian
quadrature for evaluated step-function kernels. If extremely rapid estimates are essential, RMST
or MIDAS can deliver more accurate results than these simpler techniques in nearly comparable
CPU time with the appropriate choice of algorithm parameters.

4.2. Sensitivity study for MIDAS

Evaluations 3–7 in Table 1 show part of a sensitivity study for the MIDAS method. We have
explored the sensitivity of the MIDAS metrics to: (1) the number of retrievals averaged to form
the distribution surrogates (M=3 in Section 2.3), and (2) the accuracy demanded in numerical
integrations over the surrogates in evaluating the metrics.



330 D.L. Wright et al. / Aerosol Science 33 (2002) 319–337

Table 2
Average magnitude of percent error and metric-weighted average magnitude of percent error for metrics N1; N2, and
N3, the number concentrations in portions r6 0:022 �m, 0:022 �m¡r6 0:10 �m, and r¿ 0:10 �m, respectively,
for the moment-based techniquesa

Unweighted Metric-weighted

No. Description N1 N2 N3 N1 N2 N3

1 1-MG 62.7 37.5 17.0 39.4 30.5 10.1
2 1-LN 29.6 24.7 29.1 22.5 20.1 19.0

MIDAS
3 MIDAS-3MG 18.6 13.9 7.4 9.1 11.3 8.3
4 MIDAS-6MG 12.7 12.6 5.4 6.4 8.2 6.9
5 MIDAS-12MG-a 7.8 4.1 11.1 5.1 3.5 5.0
6 MIDAS-12MG-c 7.9 4.3 11.2 5.1 3.6 5.3
7 MIDAS-12LN-c 14.6 6.3 16.7 8.2 5.6 9.8

RMST
8 RMST-10-5-1 18.1 12.0 21.7 9.0 8.7 15.7
9 RMST-20-5-1 15.0 12.2 25.6 8.1 8.7 20.3

10 RMST-20-1-1 22.3 15.1 27.1 13.1 12.0 19.4
11 RMST-20-10-1 14.5 11.7 25.3 7.5 8.2 19.4
12 RMST-20-20-1 13.8 11.7 25.7 7.3 8.3 20.3

aNotation is the same as in Table 1.

Evaluations 3–5 show that the MIDAS results do improve as the number of retrievals is
increased from 1 to 4, but also that the time required to compute these metrics is essentially
proportional to M .

To examine the sensitivity of the MIDAS CPU time to the convergence required of the
numerical integrations over the surrogates, integrations were done with convergence tolerances
(the parameter EPS in the QSIMP routine) set to 0.0001, 0.001 and 0.005, with the results using
EPS= (0:0001; 0:005) indicated as (−a;−c) in Tables 1 and 2. Increasing EPS from 0.0001 to
0.001 resulted no signi8cant change in the error statistics, and increasing EPS to 0.005 gave
little change.

On the basis of these sensitivity analyses, it would appear that the 12-mode modi8ed gamma
version of MIDAS (Evaluation 6) best represents the capabilities of this technique for these
applications.

4.3. Sensitivity study for RMST

Evaluations 8–12 show part of a sensitivity study for RMST, where the bin structure, number
of bins, number of solutions, and convergence tolerance are the most important parameters.
The sensitivity of the RMST results to: (1) the number of bins, (2) the number of solutions
averaged, and (3) the convergence tolerance was explored.

Increasing the number of bins does not necessarily result in increased accuracy of the com-
puted metrics, as can be seen from comparison of Evaluations 8 and 9. The surrogates can



D.L. Wright et al. / Aerosol Science 33 (2002) 319–337 331

become “noisy” (strong bin-to-bin variation) if too many bins are used, and the loss of smooth-
ness probably tends to decrease accuracy.

Increasing the number of solutions used to form the 8nal surrogates would be expected to
increase accuracy, as is borne out by comparison of Evaluations 10–12, where the number of
solutions is set at 1, 10 and 20, respectively. Increasing the number of solutions from 1 to 10
resulted in increased accuracy, but there was almost no further improvement when going on
to 20 solutions. As CPU time is nearly proportional to the number of solutions obtained, 10
solutions or less is probably a good choice.

Increasing the convergence tolerance used to obtain each solution, thereby decreasing solu-
tion accuracy, has a slight impact on accuracy but a large impact on the CPU time required.
If the accuracy is too low, numerical problems can potentially arise in the context of the
method-of-moments algorithm in which this method would be embedded, so a tolerance of 1%
is perhaps a good choice.

On the basis of this sensitivity analysis, results using perhaps 10 bins, 5 solutions, and 1%
convergence tolerance appear to be representative of the capabilities of RMST for applications
such as those contemplated here.

4.4. Comparison of representative MIDAS and RMST results

Evaluations 6 and 8 were selected for more detailed comparison of these algorithms. For
the MIDAS results with 12 modi8ed-gamma modes and EPS=0:005 (MIDAS-12MG-c), the
metric-weighted average errors for M1, M2, M3, N1, N2, N3 were 13.4%, 10.1%, 2.6%, 5.1%,
3.6%, 5.3% and the computations required 15.14 CPU s. For the RMST results with 10 bins, 5
solutions and 1% convergence tolerance (RMST-10-5-1) those errors were 15.8%, 10.8%, 3.0%,
9.0%, 8.7%, 15.7% and the required CPU time was 23:48 s.

The overall performance of these two algorithms is similar for distributions 143–240
(September 8eld data), whereas MIDAS performs better for distributions 1–142 (August 8eld
data). Both methods perform better for the September distributions, as both capture the PDF
shape quite well during this period (see Sections 4.5 below regarding distribution 169). The
better performance on metrics M1, M2, N1, and N2 of both RMST and MIDAS for distributions
143–240 compared to that for distributions 1–142 is associated with the larger metrics values
for the September distributions. This association is also apparent when the metric-weighted and
unweighted average errors are compared.

Fig. 3 shows the errors in the MIDAS-12MG-c and RMST-10-5-1 metrics M3 and N3 as
a function of test distribution number, and shows a daily periodicity in the errors in these
metrics for the September distributions for both algorithms. There are three data subsets,
consisting of distributions 143–177 (September 3), distributions 178–212 (September 4), and
distributions 213–240 (September 5), and the errors in these metrics within each subset tend
to vary roughly from their most negative to their most positive values over the course of
each day. This can most immediately be correlated with a slow shift in the location of the PDF
from smaller to larger dry radius over the course of each of these days, observable in
Fig. 1. These daily shifts in the PDFs correspond to daily variations in relative humidity,
as the distributions used in this study were measured at ambient RH, but the distributions
used in the calculations correspond to a dry aerosol; the particle radii were decreased from
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Fig. 3. Left panels: Percent errors in the mass (M3) and number (N3) concentration metrics for the size range
r¿ 0:10 �m for MIDAS-12MG-c and RMST-10-5-1, as a function of test distribution number. Right panels: Metrics
M3 and N3 from MIDAS-12MG-c and RMST-10-5-1 plotted against those metrics computed directly from the test
distributions.

the measured values to those for a dry aerosol, for an assumed RH dependence equal to that
of ammonium sulfate. The ambient RH on each of these days began with a high (≈ 100%)
value at the beginning of each day and decreased throughout the remainder of the day. Thus
the water uptake ratio used to scale ambient particle radius to dry radius was at its maximum
at the beginning of each daily subset, and thus the earlier distributions in each day were shifted
to smaller dry radii to a greater degree than the distributions measured later in the day. These
metrics (M3 and N3) showing daily periodicity are derived from the portion of the PDFs at
r¿ 0:10 �m, and when the ambient PDFs are dried according to high RH values, often an
especially small portion of the PDF extends into this size range. [The RMST errors in metrics
M3 and N3—100% for distributions 143–146 resulted from the fact that none of the RMST
bins remained within this right-hand portion after drying the aerosol; this can be remedied by
enlarging the size-spectrum spanned by the bin structure.] A small fraction of the PDF being
present in the region of integration results both in small values for these quantities, and in
greater errors in moment-derived estimates, as it is unlikely that moment-derived surrogates
will accurately match the PDF over such a small portion of the PDF, as discussed above. As
explored further below, some of the largest errors for both algorithms are associated with very
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small values of the metrics, as can be seen by comparison of the errors with the metrics in
Fig. 2, and as are reDected in the diKerences in the metric-weighted and unweighted average
errors.

Also shown in Fig. 3 are the MIDAS-12MG-c and RMST-10-5-1 values of M3 and N3
plotted against those metrics computed directly from the test distributions. Both methods (and
especially RMST) overestimate N3 when its value exceeds 150 cm−3 and a larger fraction of the
total particle number has r¿ 0:10 �m. Most of this overestimation occurs at particle sizes just
greater than r=0:10 �m (see the MIDAS and RMST surrogates discussed in Section 4.5 below)
and is therefore less important for mass (M3), mass being dominated by the largest particles.
This accounts for the fact that on the whole mass is not overestimated for r¿ 0:10 �m by these
methods.

To further investigate the association of large errors in moment-derived metrics with small
metric values, Fig. 4 shows percent errors in the mass concentration metrics M1; M2, and M3 as
a function of the fractions M1=M; M2=M , and M3=M , respectively, with M =M1 +M2 +M3, the
total mass concentration over the full size spectrum of the PDF, for the MIDAS-12MG-c and
RMST-10-5-1 results. Also shown are results for the number concentration metrics N1; N2, and
N3 as a function of the fractions N1=N; N2=N , and N3=N , respectively, with N =N1 + N2 + N3,
the total number concentration over the full size spectrum of the PDF. These results con8rm the
discussion in Section 4.1 concluding that larger errors in the moment-derived metrics are likely
to be associated with smaller fractions of the mass=number concentrations within the regions
of integration. As these mass=number fractions tend to unity, the errors in these metrics must
tend to zero as integration over the full PDF corresponds to the moments, which are known
quantities. These results may be useful in estimation of the accuracy of moment-derived aerosol
properties when integration over only a portion of the PDF is required. For example, if one
were to compute an aerosol property over half of the PDF; and the property can be computed
accurately when the integration is extended over the full PDF, the MIDAS results for both
mass- and number-concentrations in this 8gure suggest that perhaps an accuracy of 10–20%
could be expected.

Although not explicitly represented in the metrics of this study, the number of particles
that activate as cloud drops and the aerosol mass per unit volume taken into cloud water in
cumulus clouds, given by Mcumulus =M2+M3 and Ncumulus =N2+N3, respectively, are important
in the applications of interest in this work. The average errors in Mcumulus and Ncumulus were
0.18% and 3.6%, respectively, for MIDAS-12MG-c and 0.35% and 5.3%, respectively, for
RMST-10-5-1. These mass-concentration errors are especially small as almost all of the aerosol
mass is contained in particles with r¿ 0:022 �m, the portion of the distribution assumed in
this study to activate in cumulus clouds, and hence the moment-based integrations are quite
accurate.

4.5. Moment-derived surrogates for selected test distributions

A few test distributions were selected for examination for which all moment-based algo-
rithms performed relatively poorly on at least one metric (No. 11, 16, 26, 36, 55, 57, 61, 91,
113, 119, 135) and one test distribution for which most algorithms performed well (No. 169).
These distributions are plotted in Fig. 5, along with the MIDAS 12MG-c and the RMST-10-5-1
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Fig. 4. Upper panels: Percent errors in the mass concentration metrics M1; M2, and M3 as a function of the fractions
M1=M; M2=M; and M3=M , respectively, with M =M1 + M2 + M3, the total mass concentration over the full size
spectrum of the PDF, for the MIDAS-12MG-c and RMST-10-5-1 results. Lower panels: Analogous results for the
number concentration metrics N1; N2, and N3 as a function of the fractions N1=N; N2=N , and N3=N; respectively,
with N =N1 + N2 + N3, the total number concentration over the full size spectrum of the PDF.

surrogates. The close agreement of the actual PDF and its surrogates in distribution 169 is
characteristic of the agreement for many of the September distributions.

For distributions 11 and 16 the MIDAS-12MG-c errors in Metric 1 are −36% and −42%,
respectively, which can be seen in Fig. 5 to result from a strong dip in the MIDAS surrogate
just before the partition at r=0:022 �m, and especially as this is a mass concentration metric
and thus derived from the integral over r3. Similar behavior is also seen in the MIDAS-12MG-c
results for Metric 1 for distributions 55, 57 and 61. For distribution 135, this MIDAS variant
overestimates Metric 1 by 53%, a result of a component mode in the surrogate peaking just
before r=0:022 �m. The lognormal MIDAS surrogates show similar features, with more pro-
nounced multi-modality than with the modi8ed gamma surrogates. These observations seem to
be characteristic of those distributions where the MIDAS errors are largest, and illustrate how
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Fig. 5. Retrieved surrogates for the test distributions derived from the moments for 12 selected cases, plotted as
equal-area plots, dN=d log10(r) vs. r. Black lines are the test distributions derived from DMPS measurements, dotted
lines the MIDAS 12MG-c and the RMST-10-5-1 surrogates. Dotted vertical lines are drawn at r1 = 0:022 �m and
r2 = 0:10 �m to indicate the partitioning of the distributions into three portions.

excessive multi-modality can lead to weaker performance with MIDAS. The MIDAS perfor-
mance in such cases can be improved by averaging a larger number of retrievals over a wider
range of distributions parameters in forming the 8nal surrogate PDF, but with an attendant
increase in computational expense.
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For the RMST-10-5-1 results shown in Fig. 5, it is more diOcult to associate the greater
errors (M1 for distributions 26 and 91 and N1 for distributions 57 and 135, for example) with
speci8c characteristic features in the RMST surrogates. Despite the overall larger errors in
the RMST-10-5-1 metrics compared to those of MIDAS-12MG-c for these distributions, the
RMST-10-5-1 surrogates perhaps better capture the shapes of the test distributions than the
MIDAS surrogates.

5. Summary and conclusions

We have evaluated several algorithms for computing aerosol properties from moments when
the associated kernels involve the step function. Based on these evaluations, moment-based
algorithms can be expected to provide estimates of properties such as cloud drop number
and the mass loadings associated with size-speci8c regulatory standards to within about 10%
or less, based on the metric-weighted average magnitude of errors shown in Tables 1 and
2. The number of particles activated as cloud drops and the aerosol mass taken into cloud
water can be estimated from six moments to within 5% or less for both cumulus and strat-
iform clouds. The MIDAS technique gave better overall performance than the RMST
approach.

The test distributions in this work yielded the exact moments for use by the moment-based
methods. In modeling with the method of moments (MOM) however, error will accrue in the
moments due to approximations in the dynamics, and this is expected to reduce the accuracy
of computed aerosol properties. Wright et al. (2001) evaluates the accuracy of MOM in repre-
senting aerosol dynamics, but the impact of these dynamical errors in the moments on aerosol
properties has not been explored.

We conclude that the moment-based MIDAS and RMST methods are useful for the com-
putation of aerosol properties even when the properties are derived from only part of the size
range of the underlying PDF; the value of these techniques for the determination of aerosol
properties derived from the full size spectrum (such as optical properties) has already been
established. RMST and MIDAS can now enhance the capabilities of the MOM for represent-
ing aerosol evolution in atmospheric models, and the 8ndings of this study have guided the
development of algorithms for treating aerosol–cloud interactions in Chemical Transformation
Models (Wright et al., 2001). Accurate and compact representations of aerosol evolution and
properties based on the MOM are 8nding increased application, to permit treatment of aerosols
limited more by knowledge of the underlying processes rather than by computing resources.
This is especially so when external mixtures of several aerosol populations require independent
representation.
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