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We extendthe application of moment methods to multivariate
suspended particle population problems—those for which size alone
is insufficient to specify the state of a particle in the population.
Specifically, a bivariate extension of the quadrature method of mo-
ments (QMOM) (R. McGraw, Aerosol Sci. Technol. 27, 255 (1997))
is presented for efficiently modeling the dynamics of a population of
inorganic nanoparticles undergoing simultaneous coagulation and
particle sintering. Continuum regime calculations are presented for
the Koch-Friedlander-Tandon-Rosner model, which includes co-
agulation by Brownian diffusion (evaluated for particle fractal di-
mensions, Dy, in the range 1.8-3) and simultaneous sintering of
the resulting aggregates (P. Tandon and D. E. Rosner, J. Colloid
Interface Sci. 213, 273 (1999)). For evaluation purposes, and to
demonstrate the computational efficiency of the bivariate QMOM,
benchmark calculations are carried out using a high-resolution dis-
crete method to evolve the particle distribution function n(v, a) for
short to intermediate times (where v and a are particle volume and
surface area, respectively). Time evolution of a selected set of 36
low-order mixed moments is obtained by integration of the full bi-
variate distribution and compared with the corresponding moments
obtained directly using two different extensions of the QMOM. With
the more extensive treatment, errors of less than 1% are obtained
over substantial aerosol evolution, while requiring only a few min-
utes (rather than days) of CPU time. Longer time QMOM simula-
tions lend support to the earlier finding of a self-preserving limit for
the dimensionless joint (v, a) particle distribution function under
simultaneous coagulation and sintering (Tandon and Rosner, 1999;
D. E.Rosner and S. Yu, AIChE J., 47 (2001)). We demonstrate that,
even in the bivariate case, it is possible to use the QMOM to rapidly
model the approach to asymptotic behavior, allowing an immedi-
ate assessment of when previously established asymptotic results
can be applied to dynamical situations of current/future interest.
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1. INTRODUCTION

1.1. Background and Recent Developments

The method of moments (MOM) is a class of techniques
for tracking preselected moments of a particle size distribu-
tion directly in space and time without explicit knowledge of
the particle size distribution (PSD) itself (see, e.g., 1-3). Ad-
vantages include great computational efficiency, as only a few
variables need to be integrated to accurately obtain important
integral properties of the underlying PSD and freedom from
numerical diffusion. Through recent developments summarized
below, the MOM has become a powerful tool for representation
of aerosol microphysical processes under rather general condi-
tions. Important earlier limitations having to do with closure of
the set of moment evolution equations have largely been over-
come through the use of interpolation schemes for obtaining mo-
ments not explicitly tracked (4) or Gaussian quadrature—based
moment schemes (5, 6) emphasized here. Indeed, the quadra-
ture method of moments (QMOM) permits closure of the mo-
ment evolution equations for arbitrarily complex laws governing
growth (5) and coagulation (6), and the method is free from the
previously severe restrictions requiring an assumed PSD shape.
Furthermore, although the distribution function itself remains
unknown, integrals of known kernel functions over the distri-
bution can still be accurately estimated using moment-based
methods. In recent applications (5, 7-9), reliable estimates for
aerosol physical and optical properties (generally within an ac-
curacy of a few percent) were obtained using only the tracked
lower order moments of the distribution. Perhaps the most ex-
tensive application of the method of moments to date has been
to the representation of aerosol dynamics in regional-to-global
scale atmospheric transport/transformation models (10). In this
class of applications, which exploits the fact that the moments
satisfy convective-diffusion equations of the standard form, si-
multaneous nucleation and aerosol dynamics are represented,
and required physical and optical properties of the aerosol are
estimated from the six lowest order radial moments of the local
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1.2. Moment Methods for Multivariate Population
Balance Problems

This paper initiates the realistic extension of moment meth-
ods to multivariate population balance problems, defined here
as those for which the particle distribution function depends
on more than one internal coordinate (or particle ‘state’ vari-
able). This can include the representation of generally mixed
multicomponent aerosols, and/or evolving particles of complex
morphology—indeed, the latter is the focus of the present study.
We are motivated by the fact that, currently, the design and con-
trol of particle synthesis reactors is being impeded because, even
forrelatively simple flows, discrete, sectional, or finite difference
numerical methods for solving the particle population balance
equations (coupled with the host mixture flow) are too ineffi-
cient to be used for partially aggregated particle populations that
require more than one or two state variables for their adequate
description. Moreover, these methods may be “dead ends” when
it comes to future incorporation into generally useful turbulent
reactor codes currently needed by industry.

As a historical footnote, it is interesting that the pioneer-
ing application of moment methods to particulate systems by
Hulburt and Katz (1) already considered, as an example, a bi-
variate form for evolution of the two radii of curvature of el-
lipsoidal particles in a continuously fed batch reactor. However,
all subsequent MOM papers seem to be confined to the more
tractable case of only a single radius, volume, or mass coor-
dinate. Indeed, Hulburt and Katz did not actually complete a
bivariate moment calculation, except to outline a possible solu-
tion for the overly restrictive special case that the growth law is
independent of particle shape. More significantly, they certainly
did not paint an optimistic prognosis for multivariate moment
methods n general, citing such difficulties as the number of
equations required to handle the larger number of (“mixed”)
moments, and analytic problems associated with reconstituting
a bivariate distribution from bivariate moments. However, the
ntervening 35 years have seen unprecedented development in
computational resources, along with the above-mentioned ad-
vances in the method of moments itself. In view of these devel-
opments, and the complexity of alternative simulation meth-
ods based on sectional discretization (see, e.g., 11-15), the
feasibility of multivariate extensions of the MOM is ripe for
reexamination.

1.3. Outline/Objectives of the Present Paper

In this paper we develop and illustrate a bivariate extension
of the QMOM for modeling simultaneous coagulation and par-
ticle sintering. These processes occur in recently studied seeded
laminar flames (16—18). The presently assumed condition of
continuum regime Brownian coagulation, while not typical of
nanoparticle synthesis in atmospheric pressure flames, was se-
lected on account of the availability of comparable Monte Carlo
numerical simulations for an established bivariate model (19),
recently carried out by Tandon and Rosner (20) and Rosner
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and Yu (21). Calculations similar to those presented here that
treat coagulation in the free-molecular regime are under way
and will be reported separately. Details of the bivariate model,
which uses particle volume (v) and surface area (a) as the
state variables, are described in the cited papers. In Section 2
we call attention to the most important general features of the
model, which includes simultaneous particle coagulation and
finite-rate high-temperature sintering (coalescence) in a time-
independent spatially uniform environment. Here we present a
mathematical description of the simplest form of this bivariate
model, including the dynamical equations for evolution of the
associated mixed moments. Two implementations of bivariate
QMOM model closure are presented in Section 3. It is impor-
tant to note that these bivariate extensions of the QMOM re-
quire no further information about the distribution function other
than its lower order mixed moments in order to evolve these
moments to later times. This section also describes the high-
resolution discrete model that will be used in Section 4 to evalu-
ate the QMOM and to demonstrate its comparative efficiency. In
Section 4 we compare our results for short to intermediate times
with numerical benchmark calculations of the full bivariate dis-
tribution function obtained using this high-resolution discrete
model. Time evolution of 36 preselected low-order mixed mo-
ments is obtained by numerical integration of the full distribu-
tion and compared with the corresponding moments obtained
directly using the two above-mentioned bivariate implementa-
tions of the QMOM. With our more extensive implementation,
errors of less than 1% are obtained. Moreover, longer time sim-
ulations using the QMOM (well beyond the reasonable compu-
tational range of the discrete model) are found to be in good
agreement with the Monte Carlo—continuum regime results of
Tandon and Rosner (20), lending support to their finding of a
self-preserving asymptotic limit for the dimensionless joint par-
ticle distribution function, n(v, a). Our results also display for
the first time the approach to this asymptotic limit and thereby
provide the time lag to effectively reach self-preserving behav-
ior. We conclude in Section 5 with our recommendations for
future work, which include comparing QMOM flame simula-
tions to available experimental data (18). However, regarding
the longer time horizon, we make the case that these techniques
will probably also allow, in the foreseeable future, incorporation
into full probability density function (PDF) methods for turbu-
lent synthesis reactors of industrial interest, applying equally
well to nanoparticle and microparticle synthesis covering the
spectrum from the gas phase, to the liquid phase, and including
(as an intermediate case of current industrial interest) supercrit-
ical fluids.

2. MATHEMATICAL MODEL

Taking particle volume and area as continuous variables, the
particle distribution function n(v, a) gives the number density
of particles having volumes between v and v + dv and surface
areas between a and a + da. For the evolution of n(v, a) due to
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coagulation,
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For simplicity and to illustrate our methodology, the coagulation
rate, B(u, v), between aggregates of sizes # and v is here con-
sidered to depend only on particle volume and not on aggregate
surface area. For aggregates undergoing Brownian coagulation
in the continuum regime this is taken to be

B, v) =K - (H—I/D, + Ufl/Df)(uuur n vl/[),.)’ 2]

where K is an environment-dependent proportionality constant
and Dy is the particle fractal dimension (20). For Brownian co-
agulation of spherical particles Dy = 3.

For particles undergoing sintering, volume is conserved and
evolution follows the continuity equation

on(v, a) _ 0 .
|: ot i|l'usion B _a[an(v’ a)J [3]

We use the linearized expression of Koch and Friedlander (19)
for the time rate of change of surface area for an individual
aggregate,

- amin)v [4]

where ap;, is the area of the fully compacted (spherical) particle
[m(6v/7)>?] and #; is the characteristic time of fusion/sintering.
We define the bivariate moments My, as

M“=/\f via'n(v, a)dvda [5]
o Jo

and seek their evolution based on application of Egs. [1]-[4].
following Tandon and Rosner (20) and Rosner and Yu (21), we
assume that the particle surface area is, like the particle volume,
additive during a coagulation event,

() + (v2) = (v +v2)

(@) +(a2) — (a1 + a2)
and thus the change in My; during the event involves the inte-
grand multiplier

* Ikl ko
(1 +v2) (@) + @) —vid) — va;.

Multiplying this expression by the coagulation rate and integrat-
ing over the population distribution give the bivariate moment
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evolution equation

dM,; L[> > > [~ : :
] -1 [ Lisstsei
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(6]

Under sintering, the moments evolve according to

[dM“} Z/m/kaa/[—a”(”’“)} dvda, [7]
dt fusion 0 0 ot fusion ’

and using Eq. [3] and integrating by parts gives

aM Rl B
|: “] :1/ f v a' " lan, a)dv da. [8]
dt fusion 0 0

In keeping with the model of Tandon and Rosner (20), in addi-
tion to considering the collision frequency between aggregates
a function only of particle volume and not of aggregate surface
area, it is assumed that the characteristic fusion time ¢ remains
constant during the aggregation process, whereas in general
is a function of time through its dependence on the primary
particle diameter (20). Both of these approximations have been
made for simplicity to illustrate the method and it is apparent
from the structure of Egs. {6] and [8], which are already fully
bivariate, that both approximations can be relaxed as modifica-
tions of this simplest form of the model become available in
future applications of the bivariate QMOM.

3. MODEL SOLUTION

3.1. The Particle Size Distribution n(v, a)

While the primary focus of this paper is on moments, we
begin this section with a description of the high-resolution dis-
crete model that will be used for tracking the full particle size
distribution in order to benchmark the accuracy of the moment
methods. To solve for the particle size distribution n(v, a) we
use a bivariate generalization of the discrete scheme presented
in McGraw and Wright (22). The two-dimensional version of
the discrete approach introduced here uses a fixed logarithmic
grid in both the area and volume coordinates, and because evo-
lution processes create particle areas and volumes that do not
correspond to any of the fixed points of the grid, these particles
must be distributed over the fixed grid points. This is done as
described below.

As an illustration, suppose there are N coagulation events
between particles having the coordinates (v;, a;) and (v;,a;)
grid points / and j) during an integration time step. This
would yield N particles having the coordinates (v, a;) with
v = v; + v; and a; = ¢; + a;. In v—a space the point (v, ar)
falls within a quadrilateral of grid points. The material contained
in the N particles is apportioned over the grid points of the
quadrilateral such that the number of new particles N, the total
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volume N vy, and the total surface area Na; are each conserved
during the apportionment.

During sintering, each of the n; particles having surface area
a; has its area incremented by da; (da; < 0) during the time step,
with a;_; < a; + da; < a;. The time step is kept small enough
to ensure that the latter inequality is satisfied. The total surface
area contained in the #; particles of area a; + da; is apportioned
between enclosing grid points i and i — 1 such that for each of
the n; particles, surface area is conserved during apportionment.
For simultaneous coagulation and sintering, operator splitting is
used. The grid is extended far enough in each coordinate to
ensure that the distribution amplitude is negligible at the high-
volume, high-surface area end of the population spectrum.

Previous comparison of the one-dimensional version of this
algorithm with the finite element method (FEM) results of
Barrett and Webb (6) showed good agreement between the two
approaches for the moments of n(v) for coagulation. Exact so-
lutions for the integral volume moments, available for constant-
kernel coagulation, provide an important test of this approach,
as it is the accuracy of the moments of the discrete scheme that
is relevant for this work. Numerical results for the moments, ob-
tained by integrating the discrete distributions, were found to be
in excellent agreement with the corresponding exact moments.
The handling of sintering is analogous to that of condensational
growth—both of these are single particle processes and tend to
suffer more from numerical diffusion than does coagulation, as
is known from efforts to accurately model condensation using
a fixed-bin sectional approach. Previous comparisons of results
from this grid scheme for condensational growth with results
from the method of characteristics (exact) show good agreement
for n(v) when sufficiently high grid resolution is used. There are
both similarities and contrasts between our discrete model and
the sectional models of Xiong and Pratsinis (14) and Seto et al.
(23). Similarities include the use of a logarithmic grid in both the
area and volume coordinates and in the use of flux conservation
equations to consistently update the model at each time step, The
main difference is that in the present approach the distribution
is defined only at the grid points of the discrete model, whereas
in the sectional approach a function of the size distribution, for
example, the volume distribution function, is taken as constant
within each section. We note that the recent work of Tsantilis
and Pratsinis (15) implicitly allows for dynamical control of Dy
in that aggregate shape is taken into account in computing the
coagulation rate. Although the fractal dimension of each grid
point could be computed from its coordinates (v, a;), for sim-
plicity the coagulation rate was evaluated using a constant Dy in
all of our calculations using the discrete model.

3.2. Quadrature Approaches to the Bivariate Moments My,

The N-point quadrature expression for My, is

N
My = vaafwi, [9]

i=l
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where each quadrature point {v;, a;, w;} has abscissas for both
volume and area, as well as a weight. For the moment evolution
equations we have the approximations

1 N N

dMy , , .
[ dr Lag 2 22 [+ vpha +ap —vfal - vid)]

i=1 j=I

x Bvi, vwiw; (10]

and

dM; AN
[d["} MZv,‘a{“aaza,wi, [11]

where the approximate equalities refer to use of the quadrature
approximation.

We present two quadrature techniques in this report: amultiple
3-point quadrature technique (N = 3) and a 12-point quadra-
ture technique (N = 12). The latter is more computationally
demanding but considerably more accurate. In each case we
will propagate a square matrix M of 36 moments whose ele-
ments are the My, and both k and / take the values 0, 1/3, 2/3,
1, 4/3, and 5/3. Fractional rather than integral moments were
chosen so that the k and / values remain small enough to not
place too much emphasis on the tail of the distribution. It is use-
ful to briefly discuss the rationale for selecting 36 moments. A
description of the physical significance of the bivariate mixed
moments for selected values of k and / has recently been pre-
sented (24). We do not attempt to attribute physical significance
to each of the 36 mixed moments tracked in the present study,
but view these instead as a basis set for approximation of quan-
tities of interest that can be represented as weighted integrals
over n(v, a). Such quantities can include experimental observ-
ables and even other moments not included in the original set.
Clearly, a finite set of mixed moments parameterizes the joint
distribution n(v, @) and constitutes an alternative description to
the more obvious one of providing, say, an array of n(v;, a;)
values. Many moments of physical interest, including those for
which the indices k and/or [ are negative, can be adequately pre-
dicted using one of the 9-moment (3-point quadrature) descrip-
tions furnished below (24). Use of 36 moments simply provides
a larger basis enabling, as shown below, more accurate 12-point
or multiple 3-point quadrature approximations than obtainable
from a single 3-point quadrature derived from just 9 moments.
Further consideration of the accuracy of quadrature approxima-
tions to weighted integrals over n(v, a) based on 36 moments is
given in Section 5. We now present a description of the multiple
3-point quadrature technique employed in the present calcula-
tions. While representative, the approach we describe here for
multiple 3-point quadrature is not unique, and partitioning of the
moments into different quadrature groupings may have certain
advantages in other applications of the method (25).
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The six diagonal elements of M are

3 3
(= a)w =) Alw;, [12]
i=1 i=1

where A; = v,¢;. The superdiagonal and subdiagonal elements
are

N
1/3 k _
M3 = E a;" " (via) w; =
i=1
3
1/3 .
M50 = E v (viar) wy

i=1

[13a]

N
1/3 4k
E a[/ Afw,-
=1
3
1/3 4k
= E v[/ Af»‘wi,
i=1

[13b]

respectively. Forming three (k =0, 1/3, 2/3) symmetrized
moments from these elements of M, we get

k
A,-w,-.

1/3 13

My ger3+ Misipas 3 (a[ +v; )
- ——= 14

: > [14]

i=l

Equations [12] and [14] represent nine moments and these
equations can be solved simultaneously to obtain three quadra-
ture points {v;, a;, w;}, i = 1-3. This is accomplished by first
performing a one-dimensional quadrature with the diagonal
moments using the routine ORTHOG of Press er al. (26),
which will yield the {A;, w;}. Using these values of A; and
w; in Eq. [14] converts Eq. [14] into a linear system of three
eclluatlons in three unknowns which are solved tor the sums
+v,"". Then for each A; -va,andsuma -I—v/3 ne
can solve a quadratic for the quadrature abscissas v; and a;.
The three quadrature points determined in this way can be
used in Egs. [10] and [11] to propagate any number of moments
from their initial values. If the important pure volume (/ = 0,
first column of M) moments and pure area (k = 0, first row
of M) moments were to be determined from quadrature points
derived from the diagonal, subdiagonal, and superdiagonal ele-
ments of M only, one would not expect these three quadrature
points to do an especially good job. To improve the accuracy
of the estimated pure volume/area moments, one can perform
additional 3-point quadratures to determine the {v;, @;, w;} opti-
mal for the evolution of these moments. For example, whenever
coagulation is done, the pure volume moments Mg are used in
a 3-point quadrature to obtain the set {v;, w;},i = 1-3. Then
using these {v;, w;} in Eq. [9] for M; 1,3 for k =1, 4/3, 5/3
one again gets a linear system of three equations in three un-
knowns which can be solved for the three g; yielding the full
set {v;, a;, w;}. Whenever sintering is done, an analogous pro-
cedure is performed using the pure area moments My, together
with the moments M3, for! =1,4/3,5/3.
The 12-point quadrature technique employs all 36 elements
of M to obtain 12 quadrature points {v;, a;, w;} such that each
of the 36 moments is exactly given by Eq. [9] with these points.
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That is,

[15]

E vaw,

These 12 quadrature points are determined with the aid of
the conjugate-gradient minimization algorithm outlined in (26).
From an initial guess of the quadrature parameters {v;, a;, w;},
i = 1-12, a 36-dimensional minimization is used to locate val-
ues of the parameters that satisfy Eq. [15]. This search is driven
by minimization of the squared differences between the actual
moments and moments computed via Eq. [15] by minimization
of the function

i3V, a, w) —

Mis.is

5 5 2
F(v,a,w) = ZZ[ ’“'-’/3] . 116}
i=0 j=0

where v = {v; } and likewise for a and w. Constraints are imposed
to ensure that the w; remain positive by modification of the
expressions for 0 F (v, a, w)/dw;.

A 36-dimensional minimization would be expected to be dif-
ficult and very demanding computationally, but two circum-
stances facilitate the computation. First, an excellent initial guess
for the set {v;, a;, w;} can be obtained from the quadrature pa-
rameters obtained from the multiple 3-point technique described
above, supplemented by one additional quadrature (similar to
the second and third quadratures above) using the last row (or
column) of M in conjunction with three other appropriate My;.
The quadrature parameters from four 3-point quadratures can be
grouped into a single set of 12 yielding a set {v;, a;, w;}, i = 1-
12, and with the w; renormalized by a factor of 4, this set of 12
parameters used in Eq. [15] yields all 36 My, to within a few
percent. Thus this set provides an excellent initial guess for the
minimization routine.

The second and more important circumstance is that as the
integration of the moment evolution equations proceeds, the val-
ues of {v;, a;, w;} consistent with the M, at time r + dr differ
ever so slightly from the known values consistent with the My,
at time ¢. Thus relatively few iterations of the minimization al-
gorithm are required to nudge the quadrature parameters along
so that they remain consistent with the moments as they evolve.
At each time step, increments to the moments are computed
from Egs. [10] and [11] from the current set {v;, a;, w;} (which
are consistent with the current moments) and the moments are
updated. The updated moments are then used in Eq. [16] to ad-
vance the {v;, a;, w;} until they yield the updated moments to
within about 0.001%. We have found this approach to be sur-
prisingly efficient; only about 10 min CPU time was required on
a PC (Pentium II processor) for the calculation shown in Fig. 2
using the 12-point quadrature technique, although we note that
efficient coding of Eq. [16] and its partial derivatives is essential
to this performance. Though less accurate, the multiple 3-point
quadrature technique is about 100 times faster than the 12-point
technique.
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FIG.1. Joint volume—surface area distribution v a n1(v, a) used as a test case,
with n(v, ¢) normalized to unity, at (a) t = 0. (b)r = 10 for evolution under
coagulation alonc, and (c) result at t = 10 for evolution under simultaneous
coagulation and sintering. The time coordinate is T = KMyg(0)t, where K is
the constant appearing in the coagulation kernel, Eq. [2]. The horizontal scales
are logarithmic in particle volume and surface area and indicate the grid point
number for each coordinate; volume(/) = v; = vminSi,“l and area(j) = a; =
amin(v,')Sg,’*l, where S, and S, are constant scale factors, vy, is the volume of
the smailest grid point, and amin(v;) is the minimum surface area for a particle
of volume v;. For each v;, the first grid point in the area coordinate is the
minimum area for that particle volume (corresponding to a spherical particle),
and the largest value of @ for that v; is 100dm;.(v; ). Thus the extent to which the
distribution projects in the area coordinate is a measure of the degree to which
the particles are noncompact and thus have fractal dimensions (Dy) less than 3.
Sy =1.06825, S, = 1.031138, and vy = 0.05341.

4. RESULTS

The initial test distribution was taken as lognormal in both co-
ordinates (Fig. 1a). For the cases of coagulation alone and simul-
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taneous coagulation and sintering, the grid contained 150 points
in each coordinate and each of these benchmark calculations us-
ing the bivariate discrete scheme of Section 3.1 required about
10 calendar days on a Sun Spark Enterprise computer. The co-
agulation kernel was evaluated setting Dy = 3 in Eq. [2]. For
the case of sintering alone, a larger grid of 1000 points in each
coordinate could be run in tolerable computation time. The time
coordinate is T = K Mo(0)¢, where K is the constant appearing
in the coagulation kernel of Eq. [2] and M(0) is the initial parti-
cle number density. Figure 1 shows the normalized initial [t = 0;
Moo (0) = 1] distribution (Fig. 1a) and the final (t = 10) distri-
butions for both the cases of coagulation alone (Fig. 1b) and the
simultaneous coagulation and sintering (Fig. 1¢). The conditions
are K = 1l and fy = 10in Eqgs. [2] and [4], respectively. Note that
the area and volume scales are logarithmic and that the distribu-
tion undergoes substantial evolution in both of these cases. Thus
the average particle volume (v = Mo/ M) and average surface
area (@ = My, /Mqyo) change from the initial values v(0) = 1.0
and a(0) = 25.8 to v(10) = 22.25 and a(10) = 574.5 under co-
agulation alone and to #(10) = 22.25 and a(10) = 240.3 under
simultaneous coagulation and sintering,

Figure 2 shows the time evolution for 18 of the 36 bivari-
ate moments modeled in this study, as computed from both the
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FIG.2. Comparison of the time evolution for 18 of the 36 bivariate moments
obtained from the 12-point bivariate extension of the QMOM and from the
150 x 150 discrete representation of the full bivariate distribution function, for
simultaneous coagulation and sintering. The time coordinate is T = KM(0)t,
where K is the constant appearing in the coagulation kernel, Eq. [2]. The various
curves may be distinguished by noting that the £-index increases from the lowest
to the highest curves shown in each panel of the figure.
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150 x 150 discrete model and the 12-point bivariate extension
of the QMOM. These results are for simultaneous coagulation
and sintering and are for the same conditions and time period as
in Fig. 1 (r = 0-10). The 12-point quadrature approach yields
excellent tracking of all moments, with errors [(quadrature—
exact)/exact 100%] not exceeding 1% over the full set of 36 mo-
ments, including those not shown in the figure. (The term “exact”
refers here to the moments obtained by numerically integrat-
ing the full PSD from the high-resolution discrete model as a
function of time.) For the separate processes of coagulation and
sintering, the errors also did not exceed 1%. For the multiple 3-
point quadrature technique, all three cases studied (coagulation,
sintering, and simultaneous coagulation and sintering) gave er-
rors in the range 0-7% with the largest errors encountered for
the highest order moments.

Figure 3 shows evolution for 18 of the computed 36 dimen-
sionless bivariate moments

M\ { Moo \* ( Moo\’
M = (‘“‘") ("“‘ v [17a]
Moo ) \ Mo Mo,
2.0
k=0, =0
e e k=113, 120
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_____________ ——-k=4/3, I=0
10— ——| -~ k=5/3, 1=0
0.5
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] e 213, 12173
Mk/ 207, -7 ] e k=1, 1=1/3
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10K
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FIG. 3. Time evolution for 18 of the 36 dimensionless bivariate moments
toward their asymptotic values (see also Table 1) for simultaneous coagulation
and sintering for fractal dimension D¢ = 2.5 and nondimensional time constant
ratio Damy = [KMoo(0)]~'/¢r = 107*. The time coordinate is T = KMoo(0)r,
where K is the constant appearing in the coagulation kernel, Eq. [2]. The split
scale shows both the initial time evolution (r = 0--10), highlighting the approach
to asymptotic behavior, and the evolution at considerably longer times ( = 570-
580), in which the reduced moments have assumed essentially constant values
characteristic of the asymptotic regime. These results were obtained using a
single 3-point quadrature as described in the text.
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TABLE 1

Asymptotic Values of the Dimensionless Bivariate Moments
for Dy = 2.5, Damy = 10~*

k=0 k=1/3 k=2/3 k=1 k=4/3 k=5/3
/=0 1.000000 0906171 0.904653 1.000000 1.225794 1.661185
7=1/3 0.882725 0.893132 0.984853 1.185555 1.560478 2.240350
1=2/3 0.895444 0.985409 1.166676 1.493252 2.072759 3.111479
{=1  1.000000 [.166718 1454857 1953273 2832171 4.412098
1=4/3 1.183588 1441677 1875104 2624132 3.953228 6.358280
{=5/3 1450848 1.832549 2.476687 3.601437 5.615130 9.284314

and their approach to the self-preserving limit. The moments,
My, and reduced moments, p,, are functions of time, but this
dependence has been suppressed in Eq. [17a] to simplify no-
tation. Note that these are the same dimensionless moments of
the joint PDF (v/,) studied by Tandon and Rosner (20) in the
asymptotic limit (+ — oo) using the Monte Carlo method:

>0 20
uum:/ f ninh - waGn, n, 6) - dmidna. 170
0 0

In Eq. [17b], n, is particle volume divided by the average parti-
cle volume (5, = v/v) and 1, is particle surface area divided by
the average particle surface area (1, = a/a). The results shown
in Fig. 3 were obtained under simultaneous coagulation and sin-
tering using a single 3-point quadrature derived from the six
diagonal elements of M, together with the three additional sym-
metrized moments of Eq. [ 14], by solving Egs. [12}and [14]. The
evolution shown in Fig. 3 is carried out for considerably longer
times than the results of Figs. 1 and 2 (well beyond the toler-
able computational time range of the high-resolution discrete
model) in order to show the approach of these reduced moments
to asymptotic values characteristic of a self-preserving limit
for the bivariate distribution. Asymptotic values for the full set
of computed dimensionless bivariate moments are provided in
Table 1. The lag times required to reach the asymptotic limit
are evident in the short-time behavior shown in Fig. 3. Note that
in the top panel of Fig. 3 only four curves are clearly distinct.
This is due to the near coincidence in curves corresponding to
the pairs k =0, 1 and k = 1/3,2/3 (see also Table 1). Sim-
ilarly in the second panel the results for k =0 and & = 1/3
are nearly coincident. When the pure volume moments Myq are
treated on a self-evolving basis (results not shown), the evolu-
tion of these moments reduces to that of the univariate case,
and very accurate results for these moments are obtained. Ap-
plication of the univariate QMOM to pure coagulation, with
extension to the self-preserving limit, will be reported in fu-
ture work (22). Note that the similarity variable for coagula-
tion alone is the expected nondimensional volume ratio v/v as
follows from Eq. [17] for / = 0. For simultaneous coagulation
and sintering, we define the nondimensional Damkohler number
Damy = [KMyo(O)])~' /1. The asymptotic values of the mixed
moments shown in Fig. 3 are in reasonably good agreement
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with the values calculated independently from Monte Carlo sim-
ulation of the full asymptotic distribution for these conditions:
Dy = 2.5 and Dam; = 10™* (see Fig. 4 for comparison). Note
that sintering plays a considerably less important dynamical role
than does coagulation at Dam; = 1074,

Figure 4 presents a comparison between the bivariate QMOM
simulation results in the asymptotic limit and the results
of Monte Carlo (MC) simulations reported by Tandon and
Rosner (20). The QMOM asymptotic moments are obtained as
in Fig. 3 and the values of Dy and Damy are varied to match
the conditions of the MC simulations. The particle size distribu-
tions from the MC simulations are reduced distributions in the
asymptotic limit with moments that should be compared with
the corresponding reduced moments from Eq. [17] also in the
asymptotic limit. The MC moments used for this comparison
are derived from the values reported by Tandon and Rosner (20)
upon making a rescaling transformation as now described: From
Eq. [17a] it is evident that

Moo = po1 = pp = 1 [18]

for the reduced moments. Slight departures from these nor-

D, =25, Dam, =107 D, =2.5, Dam, =10"

$o0 10 20 30 40 50 60 7.0

00 10 20 30 40 50 60 70

D, =18, Dam, =107

$00 10 20 30 40 50 60 70
¢'o0 10 20 30 40 50 6.0 7.0

S

FIG. 4. Comparison of asymptotic reduced moments from Monte Carlo
(dotted line grid) and 3-point QMOM simulation (solid line grid). The Monte
Carlo moments have been rescaled to satisfy Eq. [18] following the procedure
described in the text.
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malization conditions were encountered in the MC calcula-
tions, most likely resulting from limitations of statistical sam-
pling, and these departures result in amplified error in the
higher order moments. Accordingly, we found it necessary to
rescale the previously reported MC moments, in order to satisfy
Eqs. [18]. The following two-step process was used: First, the
previously reported moments were normalized by u(l}’(')c such that
the renormalized moment X is now unity. In the second step
let ﬂ%c =1= Uscaleﬂllv(i)c and ﬁmc =1= ascaleﬂg/{c’WhereﬂMc
and AMC denote the ori ginal (20) MC moments—after renormal-
ization by puMC—and the rescaled MC moments, respectively.
The preceding relations determine the two scaling parameters
Uscale and aycqle, Which we then used to scale the remaining mo-
ments according to AMC = (Vcale)* (@scale)’ #MC. This forces the
scaled moments corresponding to those in Eq. [18] to be unity
and solves other problems with the original MC moment sets. For
example, because [y and | ¢ are exactly unity, intermediate
moments such as 1t/ o must be less than unity—this is because
of the convexity criterion that must be satisfied by any valid set
of moments of a distribution of a random variable (27). Specif-
ically, Log(u0) must be a convex function of £. The original
MC moments miss this dip below unity, probably due to their
overestimation of 1¢9. The same argument holds for the pure
area moments (k = 0) leading to the requirement that 1ig 1/, be
less than unity.

Figure 4 shows the rescaled moments M at the half-integer
values of k and / reported by Tandon and Rosner (20) (indicated
by the intersection points on the dotted grid) together with the
corresponding values obtained using a single 3-point quadrature
as described in connection with Fig. 3 (indicated by the inter-
section points on the solid line grid). Half-integer moments for
the QMOM were obtained from the neighboring %-fractional
moments by 3-point Lagrangian interpolation of Log(uy,). This
interpolation scheme is similar to the method used by Frenklach
and Harris (4) to estimate fractional moments and has the prop-
erty that it 1s exact for lognormal distributions. The agreement
shown in Fig. 4 lends support to the finding of Tandon and Rosner
(20) that for the case of continuum regime Brownian coagula-
tion, the notion of self-preserving asymptotic shape extends to
the bivariate populations using v/ and «/a as similarity vari-
ables (cf. Eq. [17]). Specifically, the asymptotic values of the
mixed moments obtained from the bivariate QMOM are seen to
be in good agreement with the values calculated independently
from Monte Carlo simulation of the full asymptotic distribu-
tions (20). This agreement also validates the new approach for
long-time simulation, demonstrating that the quadrature method
of moments can provide reliable characterization of the asymp-
totic limit as well as of the dynamics. The fact that this agreement
was obtained using only a single 3-point quadrature (9 moments)
suggests that fewer than 36 moments can be used, if required,
and reasonably accurate results in a fully bivariate calculation
can still be obtained.

Finally, it is interesting to note that the dimensionless mo-
ments show only a very weak sensitivity to changes in Dy.
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Indeed, taking the formal limit Dy — oo in Eq. [2] yields a
constant coagulation kernel case with analytic results for the di-
mensionless moments that are not significantly different from
numerical results for continuum Brownian coagulation with
Dy = 3. The insensitivity to D¢ may be explained by noting
that the continuum Brownian kernel is itself nearly constant, ex-
cept when the coagulating particles are of very different sizes.
More precisely, for 1/140 < u/v < 140, the Brownian kernel
differs from a constant value by at most 30% (28). Thus the
asymptotic values of the pure volume moments (/! = 0) shown
in Table 1 for Dy = 2.5 are quite close to the asymptotic reduced
moments obtained by Vemury et al. (29) for D¢ = 3. Physically,
the insensitivity to Dy in the continuum regime results because
the effect of enhanced collision area, with reduction of fractal
dimension below Dy = 3, is reduced by the increased drag of
the agglomerates (30).

5. OUTLOOK AND SUMMARY

Extension of quadrature-based moment methods to poten-
tially important trivariate distribution functions (e.g., those re-
quiring an additional state variable for chemical composition) is
probably now within reach of the kind of quadrature approach
developed here, with important implications for the process
modeling of turbulent nanoparticle synthesis reactors, includ-
ing turbulent “sooting” combustors. Indeed, work along these
lines has been initiated, and will be reported in future publi-
cations. Whether this approach is possible for describing pop-
ulations requiring more than three state variables, or whether
rather different (or perhaps ‘hybrid’) methodologies will be re-
quired, remains to be seen. A major application for multivari-
ate moment methods, with multiple state variables, would be
to modeling the dynamics of generally mixed, multicomponent
particle populations as well as to particle populations having
both mixed composition and complex shape. Generally mixed
multicomponent particle populations are described by a fully
multivariate distribution function f(m, ms,...), where m; is
the mass of component i in the particle. Currently, most aerosol
models are capable of treating only the two extreme mixing
states of the generally mixed particle population. These are in-
ternal mixtures, wherein it is assumed that all particles having
the same total mass have the same composition, and external
mixtures, where, in the acrosol population, each particle arises
from only one source (31). Most sectional models of the atmo-
spheric aerosol are univariate in that they classify the particle
population using only a single particle volume or mass coordi-
nate. This representation generally forces the internal mixture
approximation whereby f(m |, ma, ...} = f(m), where m is the
total particle mass. Thus it is assumed that all particles hav-
ing the same total mass have the same composition (31). The
bivariate methods presented here immediately provide a repre-
sentation for a generally mixed aerosol population having two
components and the fully bivariate distribution f(m, m,). The
extension of moment methods, perhaps in combination with dif-
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ferent methodologies such as MC, to higher order multivariate
representations would have immediate and revolutionary impli-
cations for aerosol modeling.

We next consider an issue that is beyond the scope of the
present paper yet important enough to mention. This concerns
the accuracy with which moment methods, which track only
the moments of the size distribution, can be used to predict
suspended nanoparticle observables of physical interest. Indeed
for univariate, spherical particles, the accuracy with which the
physical/optical properties of the particle size distribution could
be estimated using only the lower order tracked moments (gen-
erally to within a few percent) was cited in Section 1 above.
For multivariate applications, we have seen in Sections 3 and
4 that the number of quadrature points required to achieve ac-
curate representation of the dynamics is in general greater than
that in the univariate case, and this in itself will tend to favor
the accurate quadrature estimation of integrals of known kernel
functions over a multivariate distribution using the lower order
mixed moments. For example, assume that the property kernel
can be approximated as a binomial summation, with arbitrary
coefficients, over terms of the form v*a’, where both k and /
can take on 1/3 integer values from O through 5/3. Under this
approximation, it is easily seen that integration of this kernel
over n{u, v) reduces to summation over the 36 mixed moments
tracked in Fig. 2 with the same coefficients (cf. Eq. [5]). For
nonpolynomial kernels, such as optical kernels, kernels involv-
ing step functions (as might be used, for example, to evaluate
the total mass of particles within a selected size range), and
other complicated kernels over the size distribution, improved
sampling methods such as the multiple isomomental distribution
aerosol surrogate (MIDAS) technique (9) can be used. Indeed
the combination of MIDAS with the univariate QMOM for dy-
namics has proven to be a very eftective strategy for accurate
estimation of physical and optical properties from the modeled
moments of spherical particle distributions (9). Preliminary bi-
variate extension of the MIDAS method, based on a modification
of the 12-point quadrature scheme present here, has already been
achieved. This suggests that the bivariate mixed moments pro-
vide an efficient representation of the full bivariate distribution
for properties estimation. The bivariate MIDAS will yield surro-
gates to the true bivariate distribution that exactly reproduce the
known 30 bivariate moments. These surrogate distributions can
then be integrated over the appropriate kernel functions, thereby
providing what should be an eftective modeling strategy for es-
timating the physical and optical properties of the (unknown)
PSD from the modeled mixed moments. In future studies, the
overall accuracy of physical and optical properties estimation
will be evaluated for bivariate particle populations of complex
morphology using a combination of the bivariate QMOM and
MIDAS approaches.

The optimal design and control of nanoparticle synthesis
reactors will require more realistic and computationally
efficient simulation methods, both to facilitate -efficient
design/optimization/scale-up methods and to carry out practical
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parameter estimation based on laboratory aerosol reactor data.
Ideally, the methods developed to satisfy these immediate needs
will carry over to turbulent flame synthesis reactors of industrial
interest, and also apply equally well (with suitably modified rate
laws) to nanoparticle synthesis either from the liquid phase or
via supercritical fluids. What is clearly needed is a more efficient
representation of complex multivariate particle populations, and
one that lends itself to future incorporation into a computational
fluid mechanics—based framework for reactor design. We believe
that the quadrature-based MOM has the potential to accomplish
this, and in this paper we have taken the first steps toward this
end. Specifically, the extensions of the QMOM presented here
have been shown to provide efficient and accuraie modeling of
the dynamics of bivariate particle populations. Only at much
greater, if not prohibitive computational, expense can such re-
sults be obtained by explicit tracking of the bivariate distribu-
tion function, for example, by fully two-dimensional sectional
methods. Moreover, our time-dependent results (illustrated in
Figs. 1-3) would not be obtainable using purely “stochastic”
techniques, such as Monte Carlo, which currently can only be
used to obtain asymptotic results. On the other hand, we have
demonstrated that, even in the bivariate case, it is possible to
use the QMOM to rapidly model the approach to asymptotic be-
havior, allowing an immediate assessment of when the wealth
of previously established asymptotic results can be applied to
dynamical situations of interest—that is, when the assumption
of “quasi-self-preservation” might be valid.

In this paper the nanoparticle size distribution has been rep-
resented by a subset of preselected lower order mixed moments
whose evolution properties are readily determined using the bi-
variate QMOM. This approach has the attractive property that
the evolution equations for these mixed moments can be em-
bedded in a full PDF scheme for predicting particle dynamics
in turbulent chemically reacting flows (32). Until now, compu-
tation fluid dynamic models based on PDF methods have been
applied mainly to single-phase combustion systems, and exten-
sions into the coupled particulate domain have been blocked
by the formidable complexity of introducing an efficient “pop-
ulation balance solver.” The above-mentioned multivariate ex-
tensions of the QMOM have the potential to circumvent this
problem. In effect, the mixed moments would become addi-
tional state variables in, for example, a single-point PDF method
for computing reactor performance. In our view this suggestion
provides a rather promising path to the above-mentioned long-
range goals of optimal reactor design and control.
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