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The dynamics of nucleation barrier crossing is examined using Be€kaiing kinetics, matrix methods,

and stochastic model simulation. Fundamental connections between resistance to crossing and fluctuations in
cluster size are derived using the Kubidyquist relations. For analysis of nucleation kinetics, the matrix
approach of Shugard and Reiss is supplemented with a novel extension based on recursion/projection operator
methods. The combined approach yields nested sequences of upper and lower bounds to the relaxation rates
of clusters coupled to a thermal bath. Fluctuations are studied using simulations based on a stochastic model
of cluster evaporation/growth. Under typical conditions, it is found that relaxation from the top of the barrier

is slow, due to multiple re-crossings, and the transmission coefficient for nucleation is small and extremely
difficult to estimate from single-cluster simulations using standard Benfdtandler and Kramers models.

A new approach based on relaxation on a “dual” potential surface is introduced. It is shown that the dual
model provides an optimal weighted cluster sampling and reliable estimation of the transmission coefficient
(to within a few percent). Collectively, these methods address the efficient determination of nucleation rates
from computer simulations of individual cluster evaporation/growth events.

1. Introduction of individual clusters exchanging molecules with their (super-
saturated) environment. The problem is exacerbated by the fact
that although typical nucleation barrier heights greatly exceed
KT, the barriers themselves tend to be flat in the sense that many
different size clusters will typically have energies withih of
the barrier height. As a result, diffusive recrossings of the barrier
are the rule and the methods of transition state theory, which
assume no recrossing, are difficult to apply. Although some
progress has been made in extending the Ben@tandler

cheme to diffusive barrier crossifga Kramers pictur&which

as been shown to be more general in the sense that the reactive
flux (Bennett-Chandler) method is recovered in the high barrier
limit,® may be a more natural description. The present examina-

In their simulation capacity, and with a consistent cluster
definition, computers provide a unique source of statistical
information on the molecular addition/loss steps that are
responsible at equilibrium for fluctuating changes in cluster
sizel™* Simulations can lead to reliable estimates of cluster
energy! although care must be taken that the translational energy
is properly included. Fluctuations in cluster energy, and
statistical information about the frequencies of condensation and
evaporation events and changes in cluster size and shape ar
also valuable products of simulation the lie beyond the scope
of phenomenological nucleation models. Here, two issues
arise: The first derives from the fact that the height of the . . . . . MU .
nucleation barrier is typically much larger thim. As a result, tion of barrier cross!ng‘ using Belcke.Do.an.g kinetics (sec.tlon
those clusters that most control the kinetics of nucleation are 2) suggests t_ha'g _th's high bgrner limit” is much too high to
exceedingly rare and difficult to sample using conventional supportany S|gn|f|c_an_t nu_cleatlon rate. For this reason, we adopt
Boltzmann statistics. This necessitates sampling with respectthe Kramers description in the present study, but even here the

to unconventional ensembles, tailored to compensate for the factproblem of d.ete.r”."”g nucleation rate§ fro.m. the simulated
that the frequency of appearance of clusters in the critical size dynamics of individual clusters_remalns difficult and new
range is exceedingly small. For example, the nucleation barrierappr_oaches, perhaps along the lines suggested toward the end
has been obtain in a molecular simulation study using umbrella of this paper, are required.
sampling methods,and the recent development of iterative I Section 2, we review the dynamics of barrier crossing
multicanonical methods, applied to similar problems of first- Within the framework of the BecketDoring multistate kinetics
Order phase transformation, Should a|so be néth‘dthese mOde| The 0n|yassumpt|ons requ"ed are Val|d|ty Of deta”ed
approaches, external potentials, which are a priori unknown andPalance and rapid equilibration of clusters to the temperature
have to be determined, are applied to constrain the dynamicsOf their surroundings on the scale of the average time between
to selected regions of phase space over which statistical samplingfluster evaporation/growth events. Validity of detailed balance
takes place. An optimized weighting potential for sampling 'S supported by recen_t_molt_acular dyna_mlcs S|mulat|o_ns of cluster
clusters in the critical-size range most important to nucleation Size during the equilibration of a single cluster in a small
is presented in section 5. container volumé.Here, good agreement was found when the
The second issue facing molecular simulations is the ability transitionsg —~ g + 1 andg + 1 — g were enumerated and
to represent only one cluster, or at most several clusters, in thecompared with the detailed balance prediction over the range
simulation volume at any one time. Thus, one is faced with of cluster sizesg, included in the simulation. The barrier

determining nucleation kinetics from the simulated dynamics transmission coefficient, which is inversely correlated with the
number of recrossings, is shown in section 2 to be small due to

T Part of the special issue “Howard Reiss Festschrift”. the typically large number of mutually accessible clusters near
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the top of the barrier, which are strongly coupled to each other notation for what follows. For a more complete description see
through molecular exchange with the surrounding bath. In the ref 17. A substance-independent calculation of the barrier
Kramers picture, this strong coupling is characteristic of a highly transmission coefficient, as a function of critical cluster size
diffusive regime in which further increases in coupling lower and energy, is also presented below within the framework of
the barrier transmission rate. Becker-Doring kinetics.

The dynamics of cluster relaxation is examined in section 3 2.1 Becker-Doring Kinetics. The net flux for conversion
using a new matrix-recursion method. Addition of the recursion of clusters of sizey to sizeg + 1 is
method supplements the matrix approach to nucleation kinetics
developed by Shugard and Rel83he matrix approach, on its Jggr1 ﬂg g Vg+1 g+1 (2.1)
own, provides a powerful and complete description of the global
Becker-Doring model; yielding transient kinetics as well as
steady-state nucleation rate. Its supplementation with the recu
sion method allows one to obtain a local description of the
kinetics, which is ideal for studying the dynamics of individual
clusters. By focusing on clusters of near critical size, recursion B
enables one to project out the most important degrees of freedom

governing the kinetics of the global nucleation process. Ad- Here, ng is the constrained equilibrium concentration @f

ditionally, the method provides nested pairs of upper and lower ¢ sters. The constrained equilibrium concentration of monomer,
bounds to the cluster relaxation rate. In section 5, this relaxation ny, is related tayg andng: 1 through the reversible chemistéy

is linked to the barrier transmission coefficient and nucleation + Ay < Ag11 according to the law of mass action

wherefy is the actual number density gfmer clusters andy-

r-(vg) is the rate at which single molecules are added to (lost
from) the g-cluster. At equilibrium, according to detailed
balance, the net currents vanish to give

Ng — Vg+1Ngt1 = 0 (2.2)

rate.
The matrix-recursion method provides information on the K © Ag+1] N
continuous evolution of the probability that clusters are of a q(T) = (2.3)
[AdIAG] — ngny

specific size. Fluctuations and noise are treated using Kubo and
Nyquist methods-12in section 4. The fluctuations in cluster
size are correlated with the resistance to single-cluster motion
along the coordinate of cluster size using the Nyquist relation.
This section presents a Neraftlanck description for the total
nucleation flux and an equivalent Langevin description for the
Brownian-like motion of clusters in size space. It is suggested
that a fruitful analysis can be made of the random current

whereAg denotes a cluster containimgmonomers, A is the
activity of these clusters, and,®Y(T) is a function of temper-
ature alone. The last equality, the law of mass action, applies
to an ideal mixture of clusters for which activity is proportional
to number concentration. The population ratio appearing in eq
2.3 is given by the Boltzmann distribution

fluctuations in the Langevin equation leading ultimately to a Ngi1 ﬁg
statistical estimation of the key transport parameters in terms oy exp{ —[W(g + 1) — W(Q)I/KT} (2.4)
of which the nucleation rate can be obtained. In essence, the 9 Von

nucleation process is treated as a Brownian walk in a potential
consisting of the nucleation barrier itself. These ideas, which
can be found in related forms in the literatdfel® are made
explicit in section 4 through the introduction of a shot noise

where the first equality is from eq 2.2 akidg) is the reversible
work of forming a cluster of size.
Using eq 2.2 to eliminate the evaporation rate, eq 2.1 becomes

model for fluctuations during cluster evaporation and growth, +1
which is also the basis for the stochastic model simulations of Jggr1 = BN Y - ng— (2.5)
section 5. g+1,

Results from multiple simulation runs are averaged and
compared with nested bounds on the relaxation rate obtained
by the matrix-recursion method in section 5. This section also
presents calculations for a dual potential surface obtained by

At steady-state, the current is constalyigé1 = J), independent
of g, and egs 2.5 may be summed to give the Beelgring
nucleation rate

reversing the sign of the barrier force. Dualities between f, fs 1\ 1\t
relaxation to equilibrium for the dual (well-shaped) potential J=|——-—— z = z— (2.6)
and relaxation to a nonequilibrium steady state of constant n, ﬂg " ,Bg g

nucleation rate for the barrier are described. The dual well

potential is shown to provide the optimal weights for determin- In obtaining the last equality, the Szilard and monomer boundary
ing barrier transmission coefficients and nucleation rates throughconditions,fc = 0 andfi/ny = 1, respectively, wher& is set
non-Boltzmann sampling. Finally, the idea of applying real- significantly larger (e.g., twice) the critical cluster size, were
space renormalization technigéie$o obtain a different kind used. The insensitivity of to the precise location of these
of reduce-dimensionality description of the nucleation kinetics boundaries is discussed below.

is brieftly discussed. The present focus on classical nucleation 2.2 Barrier Transmission Coefficient. Ordinary transition
theory, for which the detailed kinetics is known a priori, provides state theory does not account for barrier recrossing once the
a testing ground for the analytic methods and may well provide critical nucleus is formed andl at this level of approximation,

a qualitative guide to the dynamics of barrier crossing for more is simply the product of the number of molecules at the top of
fundamental molecular models of nucleation as these arethe barrier (assuming equilibrium with the reactant) and crossing

developed. rate?
2. Background Jrs1= BNy (2.7)
This section begins with a brief review of the Beck&oring The correction factor required to recover the true current is the

kinetics scheme in order to establish the model framework and barrier transmission coefficienk- also known in nucleation
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Figure 1. Barrier transmission coefficienkt) as a function of critical
cluster size according to classical nucleation theory. Results are shown 3
for nondimensional barrier heights @/ kT = 60 (solid) andW*/ kT

= 20 (dashed) curves. 2 ‘ ]

theory as the Zeldovich factor
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The last equality neglects dependence of the monomer addition time (ns)

rate on surface "?"ea. by settifig = fg-. Th's, is generally an . Figure 3. Sampled sequence of cluster evaporation and growth events

excellent approximation (see below) that will be used again in from the stochastic model. The collision rate is that for vagiguid

section 5. For generality, tteedependence ¢f will otherwise nucleation of water and a near critical cluster under conditions for which

be retained. g* = 100. Under these conditions, the average time between growth
To be quantitative for a specific cluster model, we turn to an events isfg:) ™ = 2.47 x 10'%sec. Depicted here are the delta function

evaluation ofc with W(g) from the capillarity approximation ~ currents for growthj’(t), and for evaporationJ (t), as bars of height

of classical nucleation theory (CNT). Results will be kept in eqéjal t(l) ptlus a_nd mllnu? lél"llty, respectively. The gain/loss of higher-

sufficiently general form as to have relevance, like CNT itself, order clusters 1s heglected. . ) )

to both vapor and condensed phase, homogeneous or hetero20kT(dashed curve). These are typical barrier heights for

geneous, nucleation processes. The CNT barrier assumes thBomogeneous and heterogeneous nucleation processes, respec-
form tively.18 It follows from egs 2.4, 2.9, and 2.10 that these curves,

which for g* = 5—10 vary inversely withg*, are substance-
independent. It is worth noting here for later use that the results

Wenr(9) 9Au +ag 2Wk(g*) + 3W*(g*) obtained by the approximate equality of eq 2.9 are indistin-

(2.10) guishable from those shown in the figure. For example\¥or

= 60 kT and g* = 100, « = 0.02517 for the equality and
consisting of bulk and surface terms proportionagandg?3, 0.02524 for the approximate equality. Finally, one sees from
respectively. The coefficient includes surface tension and Figure 1 thatc increases slightly with barrier height. However,
nucleus shape (both assumed independen) ahd Au is the for this coefficient to approach unity, thus validating application
bulk free-energy difference driving the phase change. The two of transition state theory, the barrier would have to be
parametersAu and a determine the critical sizeg*, where insurmountably highrwell beyond the range of interest to
Went(g) assumes its maximum value, and the barrier haight nucleation theory.
= Went(g¥). In the last equality of eq 2.10Mcnt(g) has been Equations 2.6 and 2.9 show clearly that the most important

expressed in terms @f* and W*, showing that all nucleation  contributions taJ and tox are from clusters near critical size,
barriers have the same overall shape in CNT, independent ofwhereng assumes its minimum value. Figure 2 shows the result
substance. Accordingly, different substances will have the sameof a series of approximations togenerated by summing over
cluster ratiosng/ng and same barrier transmission coefficient all terms of eq 2.9 for which the summation index equgtls
(according to the approximate equality of eq 2.9) when g* + 1, g* + 2, ...,g* + mas a function of the summation
compared at the same valuesgifand W*. half-width m. Here, it is seen that not just the critical cluster,
Figures 1 and 2 show general features of the barrier but a large number of clusters on either sideydf here about
transmission coefficients in CNT. Figure 1 shows as a 40 (m = 20) contribute significantly tac and therefore to
function of critical size foM* = 60KT (solid curve) and\V* = nucleation rate. On the other hand, beyond this range there is
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Figure 4. Cluster size as a function of time. Conditions are the same

as in Figure 3. The figure shows excursions about the critical size

followed at later time by sustained growth beyond the barrier. In other

cases, which occur with about equal frequency, evaporation of the
cluster occurs. This sample trajectory shows both the slowness of the
relaxation from critical size and the multiple barrier recrossings.

time (ns)

Figure 5. Bounds on the relaxation of a critical cluster and comparison
with the stochastic model. Conditions are the same as in Figures 3 and
4. Shown are the lower bound fér= 1 (dashed-dotted curve), the
third (k = 3) upper and lower bound pair (dashed curves), the tdnth (
= 10) upper and lower bounds (smooth curves converged on the scale
of the figure). Also shown is the simulated decay from the stochastic
model averaged over 1000 runs (noisy solid curve).

little contribution demonstrating, the insensitivity df to

placement of the equilibrium and Szilard boundary conditions; 70
both boundaries could have been moved much closer in toward
g* without significantly changing the predicted nucleation rate. sol

The results of this section demonstrate that small values of
are inherent in classical nucleation theory. This is due to the
general feature that the nucleation barrier tends to be flat near ,
g* to the extent that many clusters typically lie within only a %t
few KT of the barrier height, and these are the clusters that aop &
contribute tox and toJ. (See, for example, the lower curve in i
Figure 6, which shows the classical barrier ggr= 100 and 10
W* near 60KkT.) From eq 2.10, the number of clusters within s
KT of the barrier height is proportional *. For g* = 100, :
about 40 clusters are withkil of W*—an ample illustration of 0 50 100 150 200
mutual accessibility of near critical clusters due to barrier g
flatness on the scale of monomeric changes in cluster size!Figure 6. Nucleation barrier and dual well for the nucleation of water
Accordingly, during a cluster growth sequence, multiple re- vapor under the conditions of Figures-3.
crossings of the barrier are likely to occur and this, in turn, ) )
implies a barrier transmission coefficient much less than unity. 'elaxation of clusters from the top of the free-energy nucleation
These expectations are borne out by the analytic techniquesba”'er- It provides a systematic procedure for abstracting, from

described below and by the stochastic model simulations of Secthe full kinetic information contained ifi, the most relevant
5. (nested) subspaces for describing the nucleation dynamics. Here,

an extended form of the recursion method, originally developed

to model excitation transfer in disordered metfiand having

the property of yielding nested sequences of upper and lower

bounds to the full dynamics with increasing subspace dimension
The relaxation properties of a critical nucleus are determined is adapted. A simpler and much more direct motivation of the

in this section by the matrix-recursion method, which is recursion is presented here using moment and quadrature

developed here and applied to the master equations governingnethods recently developed as part of a new approach to aerosol

multistate nucleation kinetics. The “matrix” part of the matrix- dynamics simulatiod*2?

recursion method consists of the general theoretical framework 3.1 Matrix Formulation of Shugard and Reiss.Evolution

developed by Shugard and Rel88/olecular rate constants are  of the cluster populationfy, is given in terms of nucleation

determined from detailed balance considerations and used incurrents

the construction of a Hermitian matriklj whose eigenvectors

and eigenvalues carry the overall rate information. This matrix dfg 3 3

formulation of nucleation kinetics forms the basis (in section dt g-1g  “ggtl

3.2) for extension of the recursion methdtb nucleation. The

matrix-recursion method is applied here to describe the averagedSubstitution from eq 2.5 gives the following set of master

3. Dynamics of Relaxation from the Top of the
Free-Energy Barrier

(3.1)
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equations
df Ng—1 Ng
E = ﬁgflfgfl - ﬂg + ﬂgfln_ fg + ﬁgn_fg+1 (3-2)
o] gt+1

Depending on the problem of interest, one applies the appropri-
ate boundary conditions to egs 3.2 to terminate the sequence.
For example, if the steady-state nucleation current is desired, a

constant source term for monomer is inclulfehd the sequence
of kinetic equations extends from= 2 tog = G — 1. Here,

we are interested in transient solutions for which a convenient

vector-matrix form of eqs 3.2 is appropriéte

df
dt

Kf

(3.3)

The components of the column vecthr whose dimension
remains for now unspecified, are the cluster populatidgs,
Elements oK follow inspection of eqs 3.2

Kg,gfl = ﬁgfl
Kg,g = _ﬁg - ﬂgfl(ngfl/ng)

Kg,g+l = ﬁg(ng/ng+l)

Although K is nonsymmetric, its off-diagonal elements are
related through the detailed balance condition. Rewriting the
nucleation current)y 11, from eq 2.5 gives

Jg,g+l = Kg+1,gfg - Kg,g+1fg+1 (34)

Under the conditions of constrained equilibriudgg+1 = 0 and

Kg+l,g = Kg,g+1(ng+1/ng) =
Kggt1 €XAIW(G) — WG + 1IKT} (3.5)

As shown in ref 10, detailed balance provides the basis for
converting K to Hermitian form. Introducing the diagonal
matrix, D, with elements

Dgg = eXpMW(g)/kT] (3.6)

McGraw

where the third equality follows from detailed balance (eq 3.7).
This shows thaH is Hermitian. From eq 3.8, its elements are

H,=— D%iIZK' D12

iiDij (3.9)

In the frame of the transformed matrik, eq 3.3 becomes

%—’f — “Hy (3.10)
where
y =DY4 (3.11)
The formal solution to eq 3.10 is
»(H) = exp(-HOy(0) = Vexp(-DHV 'y(0)  (3.12)
whereV diagonalizeH
VHV =D, (3.13)

D, not to be confused with the transformation mafiof eq
3.6, is the diagonal matrix having the eigenvaluesHofas
elements

(Di =4 (3.14)
and the columns of consist of the corresponding eigenvectors,

Vi, of H. With these definitions, eq 3.12 can be put into a more
explicit form. In Dirac notation

YO Vily(O)expAt)IVi0 (3.15)

showing the full time-dependent solution in terms of the
eigenvalues and eigenvectors bf. For single-component
nucleation the dimensionality &f is orderG, which may only
be a few hundred molecules. For binary nucleation, on the other
hand, the dimensionality oH can easily exceed several
thousand. Nevertheless, becatisés banded and sparsH (is
tridiagonal for the 1D kinetics considered here), efficient
numerical methods are available, and the matrix method has
been used to provide a complete 2D network description of
binary nucleation kinetic& These considerations set the stage
for application of the recursion method.

3.2 Application of the Recursion Method. The recursion
method provides a powerful technique for simulation of “local”

enables the detailed balance condition (eq 3.5) to be expressediynamical processes in extended strongly interacting systems.

as
K'=DKD* (3.7)

whereKT is the transpose df. Finally, consider the matriki
defined as

H = -D"%&D 2 (3.8)

whereD2 is the square root dD. Then

HT = —(D¥kD 3T = —p YK D2 =
D YpKD P2 = _pY¥%kp 2= H

Thus, although 3.15 furnishes a full global description of the
nucleation kinetics, the fact that the clusters contributing with
greatest weight to the nucleation rate are those near to the critical
size suggests that the full dynamics contains more information
then required and that the problem can be substantially reduced
using a local kinetics approach. The recursion method is ideal
for tracking the local dynamics of averaged single cluster motion
from a specified initial condition and will now be applied to
the relaxation of clusters undergoing molecular exchange with
a supersaturated parent phase.

Consider a single cluster exchanging molecules with a
surrounding bath at fixed temperature and chemical potential.
As the initial condition, we set the probability that the cluster
is of sizeg* att = 0 to unity. Accordingly, the normalized ket
|y(0)Oconsists of a column vector of zeros with unity at the
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position corresponding tg*

1p(0)0= |g* 0= |,

L (3.16)

0
The probability that the cluster hag molecules at timé is
given by the projection

J. Phys. Chem. B, Vol. 105, No. 47, 20011843

Lanczos tridiagonalizatiotf,a product-difference algorithm used
to obtain related bounds on the partition function by Goréfgn,
and projection operator methods for generating continued
fraction solutions to the generalized Langevin equatfoA.
compact algorithm is available in the subroutine ORTHOG from
Numerical Recipe® Our experience with aerosol mometits
supports ORTHOG as a highly efficient and robust approach
to generating  from moments. Nevertheless, inverting integral
moments of high order is known to be ill-condition&dand

we find that it is best to limit the dimensionalitk)(of Ty to
about 20.

Solution of the eigenvalue problem associated Witlyields
quadrature abscissas and weightsyhich in turn furnish a
sequence of nondecreasing lower boundB(tp for increasing
k.20 These solutions are in the form d&Epoint quadrature
approximations to the integral of eq 3.17

P® = BO)yOC= Y |VyO)F exp-At) =
S No(2) exp(=At)di (3.17)

where eq 3.15 has been used. The last equality shows that the K
time-dependent projection ¢ (t)Clonto the initial condition is P .. (t)= VLBl (0P exp(—1n. Bt 3.22
given by the Laplace transform of the local density of states Leco(® i;' YO expen ) (3.22)
distribution defined a4
where{y?} are the eigenvalues, afi¥-®} the corresponding
No(4) = Zlm/ih/)(o)[l]zé(/1 ) eigenvectors, ofy. I

! A physical understanding of connection betwdgnandH
is had by observing that eq 3.21 represents a partial similarity
transformation ofH. Letting Q; denote occupation of thi"
transformed basis site, the transformed kinetic equations are

(3.18)

The right side of eq 3.18 is a sum of weighted delta functions
centered on the eigenvalueslof

The extended recursion mett¥@grovides an algorithm for
generating nested sequences of upper and lower bouri{§ to dQ,
without having to solve the full eigensystem rgquwed by eq _3.17; i —a,Q,(t) + b,Q,(t)
only the lower-order moments dfy(1) are required. To describe t
the algorithm, we begin by noting that multiplication fgf (I d
by H produces a new vectdri|g* [Jwhich includes probability & =b,Q,(t) — a,Q,(t) + b,Qs(t)
for occupation of the nearest neighboring sizegfofas well dt = "+t zx2 23
as g* itself. Multiplication again byH introduces occupation
probability for the next nearest sizes, etc. The essence of the dQ, —b
recursion method lies in its property of tracking of the dynamics dat -1Qin-1(1) — ALK
in the k-dimensional subspace spanned by the Krylov vector
sequence generated in this manner

{1pOLH PO HpO)T ... H M p(0)F  (3.19)

In this Krylov vector space we define the momentdNg{1)

(3.23)

The secular equation in the new (Lanczos) basis, derived from
the moments is, thus, tridiagonal and the partial transformation
can be viewed as generating a sekaquivalent “sites” with
connectivity of a linear chain and nearest neighbor couplings.
(This 1D nearest neighbor coupling in the Lanczos basis is
independent of spatial dimensionality and degree of coupling
in the original basis, which just happens to be nearest neighbor
and 1D for the case of single component clusters and monomer
The last equality follows in a fashion similar to showing that exchange considered here.) The initial condition on eqgs 3.23 is
P(t) is the Laplace transform dfio(1). given by having unit excitation on the first chain si@y(0) =

A key feature of the extended recursion method is that bounds 1, and zero elsewhere. The rates of transfer to the rest of the
onP(t) can be obtained directly from the moments. The previous chain convey the dynamics in the transformed basis, from which
derivation of this resu) which was based on a product- the dynamics in the original basis is readily determined.
difference algorithm due to Gorddf,is simplified here by  Exploiting the 1D connectivity of the chain, we can give a
exploiting well-known connections between moments and simple geometric interpretation to the existence of nested bounds
quadrature method3:2 The algorithm proceeds in two steps. onP(t): Truncation of the transformed kinetic equations at level
In the first, the first R — 1 integral moments are used to generate k, as in eqgs 3.23, results in a lower bound to the true relaxation
the following tridiagonal Jacobi matrix P(t). This is apparent from the equations as the first neglected
term, b Qk+1(t), gives the back transfer to the included part of

w=mO)H[pO= AN (3.20)

a by the chain from the neglected part, whereas transfer to the
T, = b, a - (3.21) neglected part is already included in the diagonal terapQx-
k c by, ' (t). Thus, for any condition of the neglected part of the chain,
b, a straight truncation after a diagonal term results is a decay that

is at least as fast as for any physical model consistent with the
In generall  will have dimensionality considerably smaller than elements ofT«. Applying this argument to adjacent levels of
H. There are a number of interconnected approaches, under thapproximation shows that the right-hand side of eq 3.22
general heading of moment methods, for generating the elementdurnishes a sequence of nondecreasing lower bouriéi$)taith
of Ty from the first Z — 1 integral moments. These include increasingk: Pigu)(t) < Piee)(t) = ... =Paw(t).
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In similar fashion, a non-increasing sequence of upper boundswhose eigenvalue is zero. After some algebra we find
is obtained by solving the eigenvalue problem associated with

a sequence of modified matric@g®. These differ from the det )]z [det(T,)]?
matricesT only in assignment of the lower right elemei) Pugo(®) =11+ b + bb + .+
1 1~2
a, b det(,_) |3 *
b a, - detlico) } (3.27)
TUB ="t %2 (3.24) b,b,..b_;
. b1
b1 & The sequence of positive terms in curly brackets serves to

indicate the rate of convergence of the upper bounds to the exact
The new elementg, is determined by the condition that the decay.

determinant, deT(,“®) vanish. A little algebra shows that this The quadrature-based lower- and upper-bound approxima-
condition is satisfied forck given by a continued fraction  tions, given by eqs 3.22 and 2.26, respectively, generally
expansion in terms of previously generated elements converge much more rapidly than does a short-time moment

, series based on series expansion of the exponent within the

o = by, integral of eq 3.17. Furthermore, the bounds are optimal as a
k b, physically valid model can always be constructed in which any

Qo — 4, - - specified upper or lower bound is realized. This is easiest seen

by working with the transformed kinetic equations, egs 3.23.
The reason underlying improved convergence has been dis-
cussed previously in terms of linked-cluster expansibtfand
b the arguments are easily transfer to the present situation.
a; —- 2 Specifically, contributions t®(t) consist of Brownian-like loops
a, ——- in cluster size space that start at and return to the critical cluster
size. (Clusters that never depart from critical size are of course
- (3.25) also included.) Each unit step corresponds to either a monomer
gain or a loss event. The recursion method includasftoite
Note that in evaluatingck the matrix elementag is not orderthose loops which circulate repeatedly among clusters near
required, and thus one less moment is required, for the critical size (i.e., clusteréy—m throughAg-+m for mlevels of
determination ofT VB, the algorithm and Krylov space dimensionality+ 1). The
Solution of the eigenvalue problem associate witfy® moment series expansion fB(t), on the other hand, includes
yields a different set ok quadrature abscissas and weights, only those loop paths whose total length does not ex@eed
which in turn furnish a sequence of nonincreasing upper boundslt is useful to generalize this concept using graph theory:
to the left side of eq 3.17. These solutions are of the form Envisage the Brownian paths as graphs on a lattice containing
the various cluster sizes as node points. In this language, the
UB UB difference between the recursion method and the simple
Puse® = S 1V, Pl (0)TF exp(—7,""t)  (3.26) graphical expansion for the moments is equivalent to the
= difference between a linked cluster expansion, summing all
lower-order paths to infinite order, and an approximation that
simply generates all the lower-order graphs (paths) without
resumming. Accordingly, the recursion method includes con-
tributions to higher-order moments from paths that wind
repeatedly throughout neighboring cluster sizes. For an initial
cluster size ofy*, these are the very same paths that dominant
the nucleation rate.

k

where the sef#,“B} contains the eigenvalues afit "8} the
corresponding eigenvectors ®fVB. Equations 3.22 and 3.26
represented-point quadrature approximations to the integral
of eq 3.17 derived from the lower-order momentsNa{4).
Equations 3.243.26 for the upper bounds are equivalent to
results obtained previousf{,but can be derived more directly
as follows: To rationalize that eq 3.26 indeed furnishes an upper
bound of ordelk, imagine that the neglected part of the chain . .

. X 4. Fluctuations and Noise
described by egs 3.23 serves as a continuous source of
occupation probability, feeding into tih& transformed site. Any The matrix-recursion method was developed in the previous
positive source will lead to a reduction af. If the source is section and used to track the continuous evolution of probability,
too strong, an unbounded (and unphysical) growth in occupation P(t), that a cluster initially of critical size is of critical size at
will occur at long time, as signified by the appearance of a timet. P(t) describes an averaged relaxation process and is thus
negative eigenvalue whesy is so reduced. Thus, there must distinct from tracking the stochastic dynamics of individual
be a maximal source, which reducasto some new valuey clusters including fluctuations and noise. Fluctuations occur as
for which a zero eigenvalue first appears and the determinantthe particle executes its Brownian-like walk in cluster size space
of the modified matrix, def{,U®), vanishes. This is precisely  as determined by the properties of the bath, the detailed balance
the condition thaty equal the continued fraction of eq 3.25. condition, and the potential\(g), the gradient of which defines
Applying this argument to adjacent levels of approximation, as the field of force. This section takes the opposite approach by
before, shows that the right-hand side of eq 3.26 furnishes astuding the statistics of the Brownian-like walks. The theory is
sequence of nonincreasing upper bound3(tpwith increasing based on the Kubo and Nyquist relations, which are demon-
ki Pue(t) = Puse)(t) = ... =Pusg(b). strated using a shot noise model to describe the exchange of

Coincident with the vanishing determinant, and the lowest molecules between cluster and bath.
eigenvalue ofT\'B equaling zero, the upper bound solutions Equation 2.5 has the formcurrent = potential difference/
given by eq 3.26 approach constant values at long time. Theresistancewith potentialfy/ng, resistance 1fgng), and current
asymptotic value for ordek is determined by that eigenvector  Jgg+1. This resistor network “analogy”, is often a convenient
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way to think about nucleation currents, especially for binary instantaneously as single molecules or groups of molecules cross
and multicomponent nucleation where the networks have higherthe criterion boundary. Although the gain and loss of monomer
dimension?® However, the analogy is more of a mathematical generally dominates the kinetics, the importance of multimol-
guide and does not appear to have a direct physical significance ecule additions and subtractions has been demonstrateldas

For example, a physical resistor will have associated with it the validity of detailed balance for such multimolecular stéps.
Johnson noise through the Nyquist relatiéand the association ~ However, the multimolecular transitions were found to be
of 1/(B4ng) With a resistance does not naturally yield such a mainly due to the arrival and departure of smaller clusters.
relation. The origin of the difficulty lies in the fact thaflhg) Presumably, if these clusters were absent from the parent phase
is not a proper conjugate force in the sense of irreversible the multimolecular steps would be correspondingly reduced.
thermodynamic&! The problem is resolved by reformulating Here, we will assume that the parent phase is dominated by

eq 2.5 in terms of the NernsPlanck equatiod® For this monomer and higher-order transitions are neglected.
purpose, we take the continuum limit Under these conditions, the fluctuation currentin eq 4.3 is a
series of uniform delta functions as depicted in Figure 3. The
J = —pnV(fin) (4.1) figure shows a sequence of evaporation/growth events obtained

from a single realization of the stochastic model described here
where the gradient is with respect to cluster size. This expres-and in section 5. Additionally, it is assumed that molecular
sion, together with equilibrium population gfmers from eq addition and loss are statistically independ&ntyhich is
2.4, implies the NernstPlanck equation consistent for thermalization on a time short compared with the
collision time. Under these conditions, the fluctuating current
separates into its forward (condensation) and reverse (evapora-
tion) componentsJ, = J+ — J~ with 7 = S4(t — t) where
thet’s are the random times of molecular addition events, and
The lead term on the right-hand side describes diffusion in similarly for J,~ . The delta function currents may be expanded
cluster size space, with size-dependent diffusion con@anat  into their (white noise) frequency components as described in
Bg- The second term describes drift in the force field given by Lawson and Uhlenbech. After applying a similar expansion
the gradient of. (In cluster size spadeandV,f have the same  for the reverse currents (cross terms vanish from the assumption
units, cnT3, D andfy each have units of 3, andJy has units of statistical independence), the following result for the spectral
ofcm3sL) density of fluctuations in the currenl at frequencyvy is

The nucleation barrier, together with any applied bias potential obtained
that might be added for non-Boltzmann sampling, constitutes
the total potential, the gradient of which gives rise to (linear- G, (v =48 = 4KTIR (4.4)
response) drift of the cluster in size space with conductivity,
per clusterBy/kT. Note that if the “equivalent” electrochemical  For notational simplicity the subscripg™® has been omitted.
potential is assumed to have the standard fgi(g) = uo(T, The single-particle mobility3/kT is related to the autocor-
P) + KTIn fg + Wy, eq 4.2 becomedy = —(B4f/kT)(3i/39)1p, relation of the random current through the Kubo formtitg 15
which is the result demanded by irreversible thermodynamics. 5 1 1
Key quantities in eq 4.2, specifically the nucleation current, _ 1 = _ 1

J, and the population gradient,f, cannot be easily determined kT  kT/o exp(-2mr L (0) (= 4kTGJ’(Vk) (4.5)
from computer simulations of individual clusters. For example,
the diffusion current, which is a statistical property of the full The frequency independence of the left-hand side, which is
cluster distribution, cannot be determined this way. A more consistent withJi(t) having the properties of white noise, is a
useful approach for studying single cluster motion in size space characteristic of the shot noise model. From eq 4.4 and the last

f
— 9
3y =—BeVef — BrVoW (4.2)

is to construct a Langevin equati@requivalent to eq 4.2 equality of eq 4.5, we obtain the Nyquist relatiéft
B — g2 = XT
9= _k__gll_vgw_;’_ J,(t) (4.3) GJr(Vk)AV U0, R Av (4.6)

The middle expression gives the power spectrum of the current
fluctuations as measured through a filter having frequency
bandwidthAv. These arguments show that the proper “physical”
resistance, given b = kT/g, is indeed associated with classical
thermal noise (i.e., quantum effects are not evident). The thermal
noise, in turn, derives from fluctuations inherent in the (shot-
like) exchange of molecules between cluster and bath and is
fundamentally connected with the resistance through the Nyquist
relation.

Here g = dg/dt is the single particle current (equal to the
change in the number of molecules in the cluster with time),
and By/KT is the single-particle mobility consistent with the
Nernst relation D = KT x mobility). J.(t) is the fluctuating
current in the field-free reference system{ = O)—realizable
through the application of a bias potential chosen to locally
cancel the nucleation barrier (unbiased) gradient. The lead term
on the right of eq 4.3 gives the drift motion due to the gradient
force, and the inverse mobilityR = kT/p, is the resistance to
this force. We now show that this definition of the resistaisce
compatible with the Nyquist relation and identify the associated
noise. This section describes calculations based on the shot noise

Any analysis must first include a criterion for determining properties of the molecular exchange between a cluster and its
which sets of molecules form a cluster. The Stillinger critedbn,  surroundings. The present cluster model does not have any
in which a molecule is counted as part of the cluster if it is molecular detail, but is instead based on classical nucleation
within some specified distance from another molecule in the theory, for which the cluster free energy is given by eq 2.10.
cluster is a good example, although other criteria can be The resulting stochastic model is in fact very similar to the one
used?®2%|n any of these models, changes cluster size take placedeveloped in ref 30. The essential difference is that here it is

5. Calculations and a Duality Model
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assumed that clusters are rapidly thermalized with respect toations imply for the steady-state nucleation current

their surroundings, i.e., thermalized on a time scale short

compared to the average time (of ordepl) of molecular J= rfg*/ﬁ)mp(t)dt (5.1)
exchange.

The model is defined as follows: Evaporation and growth For P(t) equal to the pure exponential decay of the first lower-
events are treated as independent, Poisson-distributed processelsound, P gq1(t), the right side of eq 5.1 reduces to the rate
The growth sequence is simulated using Poisson arrival timespredicted by transition state theory. From section 2, this is an
for monomer at a fixed mean ragy = (g/g*) 23y based on upper bound on the true rate. Improved upper boundkresult
the scaling of the cluster surface to volume implicit in the upon substitution of higher-ordéswer boundson P(t) into eq
classical theory. As in eq 2.9, tlgedependence here is found 5.1 and, because these are nested, the value of the denominator
to have very little effect on the dynamics of barrier crossing. always increases, and the upper bound @iways decreases,
This dependence is retained here for the barrier simulations, with increasingk. Figure 5 highlights the difficulty of inferring
and neglected for the duality model, described below, for which a nucleation rate from simulations of individual cluster dynam-

the extra symmetry gained by having a size-indepenfeat ics. Specifically, it is difficult to evaluate the integral using just
required. The evaporation sequence is also simulated usingthe converged part of the decay. For example, from the
Poisson statistics with mean rate determined fffyrand\W(g) converged 10 pair of bounds one cannot, on this time scale,

using detailed balance (eq 2.4). The computational time step get even a reliable estimate for thignof the curvature of\/(g).

() is set sufficiently small that the occurrence of multiple events, Indeed the converged bounds are fit very well over the range
within a single time step, is rare. Model runs were previously of Figure 5 by the function

found to be independent of this setting for valuesr dfelow

about 1/10 of the average collision tirffeFor the present d(t) = (4nDt) V2= (4\71[391;[)71’2 (5.2)
simulationst = 0.025f.

With time expressed in units of Ad-, many of the results where the right side may be recognized as the expected decay
about to be presented would be substance independsrthe due to diffusion alon® when the potential is flat! On the other
only model parameters left agt and W* (cf. eq 2.10). For hand it is not useful for this problem to increase the order of
specificity, the methods are demonstrated below for homoge- recursion. The advantages of recursion (and related projection
neous nucleation of water vaporft= 300 K and at a saturation ~ Ooperator methods generally) are greatest when the subspace
ratio chosen so thag* = 100. Classical nucleation theory, dimension can be made small, not to mention the ill-conditioning
together with the known properties of water, predicts that this associated with working with higher-order moments.
condition occurs for a critical saturation ratio of about 3.2 and A potentially useful approach is suggested by a recent study
yields a barrier heightv* of about 57.%T and mean collision of nonequilibrium dynamics in one-dimensional random envi-
time 18y = 2.47 x 10 s, ronmentst® Using real space renormalization group methods,

Figure 3 shows a sample sequence of cluster growth angthese authors studied diffusion on a.one-dlmer_lsmnallpotentlal
evaporation events obtained from a single, short-time run of landscape, itself random, and describe a duality equivalent to

the model as described in section 4. These events illustrate sho;eversmg the sign of the average force. In the present context,
behavior, but the sampling is insufficient for garnering any orce reversal is achieved simply by inverting the nucleation

meaningful statistical information on the parameters that barrier to get a mirror-symmetric potential well. Barrier and
determine nucleation rate. Figure 4 shows cluster size as gdual well surfaces are shown in Figure 6 for the present example

function of time—again for a single trajectory realization of the (g* = 100,W* = 57'9<T)_'_ . o .
model. The initial condition ig = g* = 100. The figure reveals Froncl eq 24 the equilibrium distribution fqr clusterg_ln_the
essentially random excursions about the top of the barrier, with well,_ Mg 1S inversely r(_alated to the constrained equilibrium
multiple recrossings, followed some time later by sustained distribution for the barrier

growth. Once well into the growth regime, the probability of
another recrossing is negligibly small. =9 (5.3)

Figure 5 (noisy solid curve) shows the relaxation function 9 g

P(t) = [@* |y (t)Cestimated by averaging 1000 trajectories, each
obtained in the manner of Figure 4. The value at timis
determined as follows: For each run examine the cluster size

Introducing the additional symmetry gained by setifigg= Sy,
allows one to rewrite eq 2.9 for the barrier transmission

at timet; if this happens to bg*, assign a value of 1, otherwise coefficient

0. Finally, sum the results from each run and divide by 1000. n.\-1 n\-1 .

The figure also shows the first, third, and tenth upper and lower , — > 71 = z_g =2 =P, (®) (5.4)
bound pairs orP(t) from the matrix-recursion method. The first 7 Ny 7 Ny n

upper bound corresponds to no decayg)(t) = 1. The tenth % 9

upper and lower bound pairs are converged on the scale of the
figure, and remain converged for about the first 10 ns. Note wherePyg, (t) is the relaxation function for the well (analogous
that although the simulation goes outside of the bounds, this isto P(t) for the barrier) andPwe. () its value in the limit that
allowed because the matrix-recursion method yields bounds toequilibrium has been reached. Figure 7 shows a sample
the decay probability while the simulated decay, even after trajectory for the well. This differs from the barrier case (Figure
averaging 1000 runs, is still only a sampling and not a true 4) in that the fluctuations are contained by the well potential
probability. and a cluster never, with any reasonable probability, undergoes
The nucleation rate is related to the area urR{r To show either complete evaporation or significant growth. As a potential
this, letr denote the fraction of critical clusters that ultimately for non-Boltzmann sampling, the dual well has the optimal
escape to the growth regime (typicatly= 1/,). Then 1—r is property that it gives cluster weights in proportion to their
the fraction that ultimately evaporate. Flux balance consider- contribution to the nucleation rate. Figure 8 shows a statistical
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120 need to be developed. While these considerations are beyond
the scope of the present study, a few additional properties of
the duality model are worth noting.

110 Equation 5.4 has usual form of a fluctuatiedissipation
theorem in that a transport parameter, is related to an
equilibrium property, here the equilibrium cluster distribution,
100 but with respect to the dual potential, and not the original one
for which a true equilibrium state does not exist. Other

g g connections between the steady-state nucleation rate for a given
barrier and the equilibrium state for the dual well can be listed.
For example, as nucleation approaches steady state, the function
¢4 defined below (see also section 2
80 9
f, f 1/n n f ()
g ghl 9 9 g
70 by = PO = = =fy() (5.5)
o T Sun Y i)
20 2m 2
60 T T T
0 50 100 150 approaches the equilibrium probability for distribution of a
time (ns) cluster in the well. The latter distribution maximizes entropy at
Figure 7. Cluster size as a function of time for a simulated trajectory eqU|I|br|_um while the former minimizes the rate O.f entro_py
in the dual well of Figure 6. production at steady state. The focus on the dynamics of single

clusters results in the dual normalization conditiofgiy =

>fy =1, which are preserved over time. The first is simply a
consequence of the monomer and Szilard boundary conditions
of section 2, and the second is hormalization to a single cluster.
At criticality, the dynamics has pure diffusive character and it
is readily shown from the matrix equations of section 3 that
Bg(t) andfy(t) have identical dynamical behavior for all time
beginning with the initial conditionsig-(0) = f;.(0) = 1.

0.1

4

Pugsr ( t )

6. Summary

This paper has examined the dynamics of nucleation barrier
5 53 o 5 55 To0 crossing using a shot-noise model for fluctuations in cluster size
time (ns) and classical nucleation theory for the cluster free-energy. The
Figure 8. Simulated decayPwe..(t), obtained from the stochastic matr|>_(-fecur5|on method has been developed as a new tool for
model for the dual well potential of Figure 6. The result shown was des‘?”b'”g thg average relaxatlgn from the top of the free-energy
obtained by averaging 1000 trajectories as described in the text. GoodParrier, and yielding nested pairs of upper and lower bounds to
agreement results when the asymptotic (equilibrium) decay state for the relaxation rate. Results from sections®2demonstrate the
the well is compared with the transmission coefficient{ 0.248) for difficulties associated with estimating either the barrier transmis-
the corresponding barrier (horizontal line). sion coefficient or nucleation rate from simulation of single-
cluster size change events. The duality model provides at least
sampling ofPyg_ (t) obtained by an averaging of 1000 runs. a qualitative explanation by suggesting that these difficulties,
The calculation is similar to the one used to obtain the noisy which arise mainly form the large numbers of clusters contribut-
curve of Figure 5, except that here the potential has beening nearly equally to the dynamics, are indicative of a near-
inverted and the simulation carried out to significantly longer criticality condition. From this perspective, it is not surprising
time. The asymptotic decay to the well equilibrium state thatitis exceedingly difficult to abstract global nucleation rates
approaches, as expected from eq 5.4, the barrier transmissiorfrom the single-molecule kinetics of individual clusters undergo-
coefficient, which for the present conditions has the valze ing evaporation and growth. What is needed is a way to
0.248 indicated by the horizontal line. This last result shows eliminate the fast, essentially irrelevant, dynamics while ac-
that, albeit with extensive sampling, the barrier transmission curately retaining information on the long-time behavior
coefficient can be estimated using non-Boltzmann trajectories governing the overall nucleation process. For systems that have
evolving in the dual potential of the inverted well. inherent time scale separation, perhaps the best example being
The limit that the barrier is flat (zero drift), corresponds to the binary, vapor phase, nucleation of sulfuric acid and water,
criticality in the duality model and is approachedgddecomes a very effective-even quantitativemethod is availablé
large. Here fog* = 100 simulation difficulties associated with  However, for systems without inherent time scale separation,
criticality have already emerged: transport coefficients such as new approaches to the kinetics, perhaps based on renormaliza-
« are small, a large number of clusters contribute essentially tion group method& will be required. These are topics for
equally to the dynamics, and one has difficulty even determining future research.
the sign of the curvature from simulations on the molecular It should be noted that all of the results obtained in this paper
scale. For larger values @*, where one is even closer to apply equally well to a generalization of the CNT based on the
criticality, different methodsperhaps based on first transform-  Kelvin relation32 That theory develops the idea that if the Kelvin
ing the system away from criticality using decimation and real relation is satisfied, the barrier can differ from eq 2.10 only by
space renormalization methods similar to those of refubl a uniform displacement in energyM(g) = Went(g) + D(T)
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whereD(T) is a function of temperature alone. Consequently, (7) Ruiz-Montero, M. J.; Frenkel, D.; Brey, J. Molecular Physics
« is identical in the CNT and Kelvin-based models. Indeed, the 199(75;9%;2;’&5 H. APhysica164q 7, 264

oply dlfferencgl is that the two models will generally have ) Reguera” D.: Rubi, J. M.: Perez-Madrid, &.Chem. Phys1998
different transition state theory ratekgsr, due to the shift in 109, 5987.

barrier height. (10) Shugard, W. J.; Reiss, H. Chem. Physl976 65, 2827.

Alth h the or n velopment tr I rs within th (11) Wannier, G. HStatistical Physic,sDov_er: New Yprk, 1966_3.
though the present development treats clusters wit the (12) Kubo, R. InTokyo Summer Lectures in Theoretical Physics, Part

capillarity drop approximation, it is reasonable to expect many . \iany Body TheoryBenjamin: New York, 1965; pp£16.

of the essential features of barrier crossing derived from this  (13) Bashkirov, A. G.; Fisenko, S. Gleoreticheskaya i Mathemat-
model to carry over qualitatively, if not quantitatively, to icheskaya Fizikal981 48, 106. , _

molecular simulations. This expectation is supported by recent 10(14) Reguera, D.; Rubi, J. M.; Perez-Madrid, Physica A1998 259

simulations of nucleation i_n a Lennardones SYSIerﬁ? which .(15) McGraw, R.; Schaaf, P.; Reiss, H.Mucleation and Atmospheric
found good agreement with CNT for overall barrier shape Aerosols 2000 15 International Conference Rolla, Missouri 2008IP
displace CNT barrier in support of the Kelvin modelnd small Sggé?r\?gfegf‘fgeg'”gs Hale, B. N., Kulmala, M.; Eds.; AIP: New York,
barrier transmission coefficiehtconsistent with the values (1é) Fisher. D. S.: Le Doussal, P.: Monthus, Rhys. Re. Lett. 1998

shown in Figure 1. Nevertheless, the Bennett-Chandler andsgp, 3539.
Kramers models have traditionally been applied to molecular  (17) Abraham, F. BHomogeneous Nucleation ThepAcademic: New

it it _York. 1974.
sy_stems. Th(_a appllcat_lon of transmon s_tate metho_ds to nucle (18) Onasch, T. B.: McGraw, R.: Imre, D. Phys. Cherr2000 104
ation, for which the primary coordinate is cluster size and the 14797,

transition state corresponds to a single critical cluster size, (19) Haydock, R.; Heine, V.; Kelly, M. dI. Physics C1975 8, 2591;

remains an active area of resedrefh3® 1972 5, 2825.
(20) McGraw, R.; Merry, G. AChem. Phys1985 96, 97.

. (21) McGraw, R.Aerosol Sci. and Technal997, 27, 255.
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