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ABSTRACT

A systems theory has previously been developed by Liu and Hallett to interpret droplet size distributions in
turbulent clouds by utilizing ideas from statistical physics and information theory. The present paper generalizes
that systems theory to allow for varying fluctuations. The generalized theory provides a self-consistent theoretical
framework for a wide range of fluctuations. It reduces to that presented previously when liquid water content
is conserved, and becomes consistent with the uniform growth models for nonturbulent, adiabatic clouds. The
theory indicates that there exists an important characteristic scale, defined as the saturation scale, beyond which
droplet size distributions do not change with further increases in averaging scale, but below which droplet size
distributions strongly depend on the scale over which they are sampled and are therefore ill-defined without an
adequate specification of scale. It is further demonstrated that the saturation scale and the details of scale
dependence depend on the level of fluctuations; stronger fluctuations lead to larger saturation scales and stronger
scale dependency of droplet size distributions. The potential scale mismatch leads to issues regarding the
comparability between models and observations, and the direct coupling of numerical models of different scales,
which in turn underscores the significance of understanding and quantifying the scale dependence of droplet
size distributions. The importance of fluctuations suggests the need to measure and analyze turbulence simul-
taneously and at the same scales with measurements of droplet size distributions in order to provide a practical
limit to the sample size required to reach the saturation scale, and to specify the effect of turbulence. The ideas
presented in this paper have general applications to fields where fluctuations exist.

1. Introduction

Reliable knowledge of cloud droplet size distributions
is crucial for many cloud-related areas such as precip-
itation, climate modeling, and remote sensing. A long-
standing problem in cloud physics is that observed drop-
let size distributions are generally much broader than
those predicted by the classical uniform model (e.g.,
Howell 1949). To explain this so-called spectral broad-
ening has been a major focus of cloud physics over the
last few decades, and a number of models have been
proposed. Stochastic condensation theory considers the
growth of droplet populations as a stochastic process
and relates the spectral broadening to various fluctua-
tions associated with turbulence (Zhou 1964; Sedunov
1974). Khvorostyanov and Curry (1999) derived from
stochastic theory that gamma distributions could be used
to represent ensemble-averaged droplet size distribu-
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tions. Cooper (1989) derived equations for estimating
the spectral width of droplet size distributions from the
fluctuations of vertical velocity and integral radius, and
their correlation by applying small perturbation analysis
to the Lagrangian integral of the quasi-steady super-
saturation averaged over an ensemble of droplets that
encounter different growth trajectories through turbulent
clouds. Considine and Curry (1996) proposed a model
based on the assumption that size distributions at a given
level in a cloud are horizontal averages over a large
number of air parcels that can have a different lifting
condensation level. Shaw et al. (1998) recently related
spectral broadening to turbulence-induced preferential
concentration of droplets. Much effort has been devoted
to the processes of turbulent entrainment and mixing as
causes of spectral broadening (Baker et al. 1980; Hicks
et al. 1990; Telford and Chai 1980; Su et al. 1998).
Srivastava (1989) argued that the supersaturation that
controls each individual droplet (microscopic supersat-
uration) differs from the commonly used macroscopic
supersaturation. It was shown that, even without tur-
bulence, the Poisson spatial distribution of droplets
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could cause droplet–droplet variations in the micro-
scopic supersaturation, which in turn leads to some spec-
tral broadening. Despite their differences, all these mod-
els have one feature in common: they attempt to follow
each droplet or each parcel and then take statistical av-
erages one way or another. By analogy to the kinetic
theory of gases, these models are referred to as kinetic
theories of droplet size distributions throughout the rest
of the paper. Although these kinetic models produce size
distributions broader than those predicted by uniform
models and improve the understanding of the formation
of droplet size distributions, the details of the processes
involved are poorly understood and highly controver-
sial.

It has been generally accepted that the fundamental
equations describing individual droplets have been well
established. However, to numerically solve these equa-
tions, the size of the model grid needs to be as small
as ;1 mm so that the smallest eddies of turbulence and
the mean distance between droplets can be resolved and
the grid values of variables such as temperature and
water vapor mixing ratio represent the ambient condi-
tions for the droplet (Vaillancourt 1998). In fact, the
physical processes, the wide range of scales, and droplet
interactions involved in turbulent clouds are so complex
that it may be hopelessly difficult to completely know
the path of each droplet/parcel, droplet interactions, and
the initial and boundary conditions necessary for solv-
ing the kinetic equations. The difficulties are evident
from the fact that the randomness of turbulence is no
simpler than that of Brownian motions of molecules
(Mandelbrot 1999), and that turbulent entrainment and
mixing processes occur over a tremendous range of
scales between the largest eddy of a cloud size and the
smallest eddy of the Kolmogorov microscale (Su et al.
1998). In fact, the subject of turbulence itself has been
considered one of the unsolved problems of classical
physics (Nelkin 1992; Sreenivasan 1999). The mutual
interactions between droplets and turbulence further
complicate the problem (Malinowski and Jaczewski
1999; Vaillancourt and Yau 2000). This vexing situation
is similar to the early stage of the kinetic theory of gases
in the late Nineteenth and early twentieth centuries. Dur-
ing that time period, scientists (e.g., Maxwell, Boltz-
mann, and Gibbs) were frustrated by their inability to
explain the macroscopic thermodynamic properties of
gases, despite the fact that the Newtonian equations
could accurately describe the motion of each individual
molecule in a gas.

In view of these insurmountable difficulties, a dif-
ferent formalism, which considers cloud droplets as a
system and studies them as a whole instead of following
each droplet/parcel, has been recently developed by in-
tegrating into cloud physics the ideas that have flour-
ished in statistical physics and information theory (Liu
1992, 1995; Liu and Yang 1992; Liu et al. 1995; Liu
and Hallett 1997, 1998, hereafter LH98). Just as clas-
sical statistical mechanics introduces statistical laws to

remove the difficulties associated with random Brown-
ian motions of individual molecules by concerning itself
with the most probable state of a molecular system, the
early systems theory focused mainly on the most prob-
able droplet size distribution (defined as maximum like-
lihood size distribution and denoted by MXSD). The
early systems theory predicts that the MXSD follows
the Weibull distribution (Liu 1992, 1995; Liu et al. 1995;
Liu and Hallett 1997). Observations are consistent with
this prediction because a measured droplet size distri-
bution averages many size distributions and, subse-
quently, looks more like the broad MXSD. LH98 re-
cently generalized the systems idea by introducing and
deriving the least probable size distribution (defined as
minimum likelihood size distribution and denoted by
MNSD) and coupling it with the MXSD. This gener-
alization not only provides a reasonable framework for
explanation of spectral broadening, but also reveals the
scale dependence of droplet size distributions in tur-
bulent clouds. Furthermore, it was argued that the dis-
crepancy between observed and model-predicted drop-
let size distributions might be a manifestation of scale
dependence because of the scale mismatch between the-
oretical models and observations.

The major objective of this paper is to further gen-
eralize the systems theory beyond that described in
LH98 to allow for varying fluctuations as occur in real
clouds, and thereby to lay the foundation for studying
the effect of fluctuations using the systems theory ap-
proach. As will be shown, the newly generalized sys-
tems theory establishes a self-consistent theoretical
framework, and offers new insights into the issues of
spectral broadening and scale dependence of droplet size
distributions as a function of fluctuations. For droplet
systems with conserved liquid water content, it reduces
to the framework presented in LH98, and for nontur-
bulent uniform clouds, its predictions are consistent with
the uniform models. The theory also has important im-
plications for the development of theoretical models and
instrumentation, sampling strategies, and approaches to
data analysis. We will further elaborate on these new
challenges only briefly touched on in LH98.

2. The systems idea

The leitmotif of the systems theory approach is to
obtain useful information on droplet size distributions
without concern with the details of each individual drop-
let. This is analogous to classical statistical mechanics
applied to molecular systems where properties of the
system are derived without invoking the details of each
individual molecule. The current systems theory mainly
centers on two characteristic size distributions occurring
with the maximum and minimum probability: MXSD
and MNSD.

As the Boltzmann energy distribution describes the
most probable energy distribution of a molecular system
and the Maxwell velocity distribution characterizes the
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most probable velocity distribution of a molecular sys-
tem, the MXSD as proposed, describes the most prob-
able droplet size distributions. In this sense, the theory
is better described as statistical cloud physics rather than
the systems theory.

On the other hand, describing cloud droplet systems
is more complex than describing molecular systems. For
a molecular system, the most probable state suffices to
specify macroscopic thermodynamic properties such as
temperature and pressure because of the enormous num-
ber of molecules involved (e.g., 1022 cm23). However,
because of very limited concentrations of cloud droplets
(e.g., 100 cm23), one cannot equate the MXSD with
observed or modeled droplet size distributions in many
cases. Therefore, a complete characterization of a drop-
let system requires knowing the probabilities of all pos-
sible droplet size distributions. Although determining
the specific probability of each possible size distribution
seems prohibitive at present, useful information can be
obtained by knowing the MNSD in addition to the
MXSD. If the MNSD is identical with the MXSD,
clouds are expected to be absolutely uniform, and the
uniform model suffices. The equivalent model would
be a uniform updraft with all droplets exposed to the
same supersaturation and identical cloud condensation
nuclei (CCN). However, such idealized situations hardly
occur in nature. If there are any differences between the
MXSD and MNSD, individual size distributions then
depend on the scale over which they are averaged. As
discussed in LH98, there are striking contrasts between
the MXSD and the MNSD in turbulent clouds, and the
resulting scale dependence of droplet size distributions,
in fact, lies at the root of many unsolved problems of
cloud physics, including the long-standing issue of so-
called spectral broadening. The scale dependence poses
new challenges to the development of numerical models
as well as to instrumentation and sampling strategies.
Furthermore, as will be addressed later in this paper, the
involved complexity is closely related to fluctuations
associated with turbulence.

3. Quantitative formulation

In LH98, the MXSD and the MNSD were derived for
a special droplet system with conserved liquid water
content. However, the assumption of conserved liquid
water content does not always hold. A variety of fluc-
tuations can occur in real clouds, for example, ranging
from strongly turbulent cumulus to weakly turbulent
stratocumulus, to laminar lenticular clouds. It is there-
fore desirable to incorporate varying fluctuations into
the systems formulation. Liu and Hallett (1997) ex-
tended the MXSD from the special droplet system to a
more general one that allows for different fluctuations.
In this paper, we further extend the MNSD presented
in LH98 to this general droplet system, and thereby
establish a generalized systems framework applicable
to a wide range of fluctuations by combining the general

MNSD with the general MXSD presented in Liu and
Hallett (1997).

For completeness, the general droplet system dis-
cussed in Liu and Hallett (1997) is briefly outlined here.
The general droplet system is controlled by two con-
straints:

r(x) dx 5 1, (1a)E
X

xr(x) dx 5 , (1b)E N

where x, defined as the restriction variable, is related to
the physical processes controlling the droplet system, X
is the total amount of x per unit volume, n(x) is the
droplet concentration per unit volume per unit x interval,
N is the total droplet concentration, and r(x) 5 n(x)/N
can be considered the probability that a droplet of x
occurs. It should be noted that the correspondence be-
tween x and the conservation law is a key to the gen-
eralization. For example, for the special droplet system
discussed in LH98, which is constrained by the con-
servation of liquid water content, x represents the mass
of a droplet of diameter D, X is the liquid water content,
and n(x) the droplet concentration per unit mass interval.
The power-law relationship between the mass and the
diameter of a droplet is readily generalized as

bx 5 aD , (2)

where the parameters a and b are related to physical
mechanisms controlling the droplet system. For the spe-
cial case of liquid water content conservation, a 5 [1/
(6prw)], and b 5 3. The symbol rw denotes the water
density.

Liu and Hallett (1997) derived the MXSD for this
system. Briefly, by analogy with the Boltzmann entropy
for molecular systems and the Shannon–Jaynes entropy
generalized for complex multibody systems, spectral en-
tropy H is defined as

H 5 2 r(x) ln[r(x)] dx. (3)E
The MXSD is the droplet size distribution that maxi-
mizes (3), subject to the constraints described by (1a)
and (1b). By solving the corresponding variational prob-
lem, the MXSD was derived to be the Weibull distri-
bution:

b21 bn (D) 5 N D exp(2lD ), (4)max 0

where the parameters N0 5 ab/b and l 5 a/b, and b
5 X/N. Note that the b here is the inverse of that used
in Liu and Hallett (1997) and represents the mean value
of X per droplet. This change makes the physical mean-
ing of b consistent with that of ‘‘KBT’’ in the Boltzmann
energy distribution (KB is the Boltzmann constant, T is
the temperature, and KBT essentially represents the
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mean energy per molecule in the gas). The derivation
of (4) also uses the power-law relationship (2).

The MNSD is associated with the populational energy
change (E) to form a population of droplets with n(D).
In LH98, E is expressed as

pr Lw 3E 5 2 D n(D) dDE6

21 ps D n(D) dD 1 c, (5a)E
where the first term on the right-hand side is the latent
energy with L representing the latent heat of water; the
second term is the surface energy with s representing
the surface tension of water. The coefficient c is related
to the activated CCN. Equation (5a) is derived under
the common assumption that other forms of energy (i.e.,
gravitational potential energy, the kinetic energy asso-
ciated with droplet terminal velocities, and the solution
effect) are negligibly small (Pruppacher and Klett 1978).
In fact, these minor terms can be incorporated into the
coefficients before the integrals,

3 2E 5 c D n(D) dD 1 c D n(D) dD 1 c. (5b)1 E 2 E
The coefficient c1 5 [(prw)/6(2L 1 gh 1 1/2 )] (g2V t

is the gravitational constant; h is the height over which
the water molecules in droplets are displaced; is the2V t

mean square terminal velocity of droplets) includes the
effects of the latent heat (L), gravitational potential en-
ergy (gh), and the kinetic energy (1/2 ). The coeffi-2V t

cient c2 considers the solution effect on the surface ten-
sion. Another assumption for both (5a) and (5b) is that
the amount of energy change is completely exchanged
with the environment by processes such as heat con-
duction. Maximizing E given by (5b) subject to the
constraints described by (1a) and (1b), the general
MNSD is derived as (see appendix A)

n (D) 5 Nd(D 2 D ), (6a)min b

1/b 
bD n(D) dD E

1/b  X D 5 5 . (6b)b 1 2N aN 

Similar to the special MNSD presented in LH98, the
general MNSD is also a d-function. However, the sim-
ilarity ends here. Derivation of the general MNSD re-
quires use of the general restriction variable satisfying
(2); only the special case with a 5 [1/(6prw)] and b 5
3 was used in LH98. This generalization is not as trivial
as it may seem. Mathematically, the derivation requires
a combination of the calculus of variations and the gen-
eralized function theory, whereas the mathematics for
the special case presented in LH98 is rather simple.
Physically, as will become evident, the generalization
permits us to study the effect of varying fluctuations on

properties of droplet size distributions. Furthermore, an
examination of (4), (6a), and (6b) reveals that the MXSD
and MNSD presented in LH98 for the droplet system
with conserved liquid water content are just special cas-
es of the MXSD and the MNSD given above with a 5
[1/(6prw)], b 5 3, and X 5 liquid water content. Note
that the general MNSD also corresponds to the mini-
mum spectral entropy H 5 0.

4. Important implications

The striking spectral differences between the MXSD
and the MNSD in turbulent clouds have been discussed
in LH98. Briefly, given X and N, the MXSD and the
MNSD represent the most and the least probable way
to distribute X among the N droplets, respectively. The
MXSD is much broader than the MNSD. Based on the
fact that very narrow droplet size distributions have in-
deed been observed under uniform conditions such as
in adiabatic cores of cumulus clouds and in uniform
lenticular clouds, we speculated in LH98 that the spec-
tral differences between the MXSD and the MNSD de-
pends on fluctuations in clouds and should decrease as
fluctuations decrease. This speculation can now be jus-
tified by the generalized systems theory presented
above.

An analysis of the Weibull distribution as described
by (4) shows that it becomes narrower with increasing
values of the parameter b, and eventually approaches
the monodisperse MNSD as described by (6a) when b
approaches ` (see appendix B for the mathematical
proof ). This result indicates that the MXSD approaches
the MNSD with decreasing fluctuations, because b is
closely related to fluctuation levels in clouds, and in-
creases with decreasing fluctuations (Liu and Hallett
1997). The dependence on fluctuations of the MXSD
and the MNSD, along with their other unique properties,
have profound implications for many fundamental is-
sues of cloud physics, for cloud-related models such as
climate models, for instrument design, and for sampling
strategies.

a. Scale dependence and spectral broadening

In LH98 we discussed the scale dependence of droplet
size distributions in turbulent clouds because of the
striking differences between the MXSD and the MNSD
for the special droplet system where liquid water content
is conserved. We also pointed out that the long-standing
issue of spectral broadening might be just a manifes-
tation of the scale dependence as a result of the scale
mismatch between theoretical models and observations.
These arguments are reinforced and extended by the
generalized systems theory presented above in the fol-
lowing aspects.

First, the scale dependence of droplet size distribu-
tions indicates that an individual size distribution ap-
proaches the MXSD with an increase in the averaging
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FIG. 1. A diagram illustrating the scale dependence of individual
droplet size distributions at different levels of fluctuations. The mean-
ings of both coordinates are only qualitative. The fluctuation increases
from case MXSD1 to case MXSD3. The MXSD represent the max-
imum likelihood size distribution. This figure illustrates the following
points addressed in the paper: 1) observed size distributions approach
the MXSD with the increase in averaging scales; 2) there exists a
characteristic scale, defined as saturation scale and denoted by Ls,
beyond which droplet size distributions do not change much with
further increases in averaging scales, but below which size distri-
butions change rapidly with averaging scales; 3) the stronger the
fluctuation the larger the macroscopic scale (L . L . L ); 4) theS S S3 2 1

spectral width of droplet size distributions increases with increases
in averaging scales at a given level of fluctuations, and increases with
increasing fluctuations at a given scale.

scale. It is anticipated from this behavior of scale de-
pendence that there exists a characteristic scale, defined
as the saturation scale, beyond which all size distri-
butions are approximately the same and equal to the
MXSD. However, droplet size distributions are strongly
dependent on the averaging scale when it is less than
the corresponding saturation scale, and therefore ill-de-
fined without specification of the averaging scale. In
this case, it is necessary to explicitly specify the scale
and the dependence of droplet size distributions on the
scale. Similar findings were reported for raindrop size
distributions in studying fluctuations of precipitation
(Joss and Gori 1978; Liu 1993; Smith and Liu 1993;
Ulbrich and Atlas 1998; Kostinski and Jameson 1997,
1999; Jameson and Kostinski 1998, 1999, 2000; Ja-
meson et al. 1999).

Second, it is well known that the degree of spectral
broadening depends on the processes of entrainment and
mixing determined by turbulence. Very narrow droplet
size distributions are often observed in clouds formed
under uniform conditions, for example, in lenticular
clouds and in adiabatic cores of small cumulus. At first
glance, the narrow size distributions observed under
uniform conditions seem to indicate that these observed

size distributions are associated with the MNSD. How-
ever, as indicated by the generalized systems theory,
this is actually due to the fact that the MXSD approaches
the MNSD with decreasing fluctuations. Furthermore,
real clouds are always in a more or less turbulent state.
Even in nonturbulent uniform clouds with uniform
CCN, the Poisson random spatial distribution of droplets
can cause fluctuations in the microscopic supersatura-
tion (Srivastava 1989), an essential variable controlling
the condensation/evaporation of individual droplets.
These facts suggest that the extremely narrow size dis-
tributions of the d-function will seldom be observed, no
matter how uniform the cloud is. Application of the
generalized systems theory to the inevitable small fluc-
tuations provides an explanation for the phenomenon
that very narrow droplet size distributions, yet still
broader than those predicted by uniform models, are
often observed in the so-called adiabatic cores (Bren-
guier and Chaumat 2001). Similar to spectral broad-
ening, the saturation scale and the details of the scale
dependence of droplet size distributions also depend on
fluctuations. The weaker the fluctuation, the smaller the
difference between the MXSD and the MNSD, the
smaller the saturation scale, and the weaker the scale
dependency. The scale dependence and spectral broad-
ening will eventually disappear when there are no fluc-
tuations.

Figure 1 schematically illustrates the feature of scale
dependence of droplet size distribution as a function of
fluctuations derived from the generalized systems the-
ory. For a given level of fluctuation, droplet size dis-
tributions approach the MXSD with increases in the
averaging scale. The spectral change is fast and indi-
vidual size distributions are ill-defined when the aver-
aging scale is less than the saturation scale. The change
slows down as the saturation scale is approached, and
eventually becomes approximately zero beyond the cor-
responding saturation scale. Furthermore, the variability
of a mean size distribution is expected to decrease with
the averaging scale. For a given averaging scale, the
MXSD–MNSD difference and the saturation scale in-
crease with increasing fluctuations. Evidently, the av-
eraging scale is an important quantity in defining droplet
size distributions in a fluctuating environment. Because
of the potential scale mismatches, the comparability is
questionable between models and measurements having
different scales, and so is the direct coupling of models
of different scales. Although the issue of potential scale
mismatch has been realized for sometime [see Hallett
(1996) for instrumentation, Cotton et al. (1995) for mod-
el development, and LH98 for a general discussion], the
issue of scale dependence has not been rigorously ad-
dressed. In the following, we will expand on the im-
plications of, and challenges posed by, the scale de-
pendence and associated ill definedness of droplet size
distributions as a function of fluctuations.
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b. Model development

Representation of droplet size distributions is crucial
for a variety of cloud-related models (Cotton and Anthes
1989). Cloud parameterization in climate models has
become a topic of intensive research because of the role
of clouds in regulating the earth’s radiation balance and
the hydrological circle (Chahine 1992; Schwartz and
Slingo 1996). To improve cloud parameterizations, it is
increasingly common to couple dynamical and radiative
models with microphysical models as detailed as al-
lowed by computer resources (Ackerman et al. 1995).
Such a direct coupling of models of different scales
seems natural at first glance, but this coupling is ques-
tionable because of the scale dependence of individual
droplet size distributions in turbulent clouds. For ex-
ample, droplet size distributions predicted by detailed
microphysical models may not be compatible with those
required in climate models because of the large scale
mismatch between the two kinds of models. Even if the
scales of droplet size distributions involved in models
of both kinds are compatible (e.g., when clouds are
uniform), detailed microphysical models are still com-
putationally expensive. In fact, we would argue that the
MXSD should be used to represent droplet size distri-
butions in climate models because of the large scales
involved. Recently, simple microphysical models have
been developed based on the methods of moment by
assuming size distributions follow an analytical form
such as a gamma distribution (Mitchell et al. 1996;
White and Hounslow 2000). Besides being simple and
computationally cheap, such moment-based microphys-
ical models could be more physically sound compared
to complicated models with detailed microphysics, be-
cause the distribution functions are often obtained by
empirically analyzing a large number of data and the
resultant distributions could be close to the MXSD.

Assuming an analytical form for droplet size distri-
butions is also a common practice in the parameteri-
zation of cloud microphysics in cloud models (Cohard
and Pinty 2000). However, it is not clear whether the
scales involved in such models are large enough to meet
the requirement of the saturation scale. When the av-
eraging scales involved are less than the saturation scale,
treating droplet size distributions becomes a more com-
plicated and vexing problem. As discussed above, size
distributions are ill defined without specifying the scale
involved under this condition. This unique property sug-
gests the necessity of making explicit references to the
averaging scale in numerical models. In other words, a
new theoretical formalism is necessary to treat scale as
an independent variable, just as the current formalism
treats the variables of space and time. Similar challenges
have been realized in other disciplines (Nottale 1996;
Herrmann 1997; Glasser and Goldhirsch 2001). Actu-
ally, the need for a paradigm shift from a scale-inde-
pendent to a scale-dependent theoretical framework is

emerging in many fields where a variety of fluctuations
and scales are involved.

Furthermore, the vital role of fluctuations in deter-
mining the details of the scale dependence of droplet
size distributions, and their close relationship with tur-
bulence, demands better understanding and consider-
ation of cloud turbulence. Even for the MXSD, this
study strongly suggests that turbulence plays a critical
role in determining its shape parameter b because of its
close relationship to the spectral dispersion of the cloud
droplet size distribution (Liu and Daum 2000b). Our
recent studies have shown that the specification of tur-
bulence is crucial for the parameterization of effective
radius, a critical variable used to calculate radiative
properties of clouds (Liu and Daum 2000a,b). Although
it has been long speculated that turbulence affects cloud
droplet size distributions, and the effect of turbulence
has been studied rather extensively in cloud physics,
turbulence and related scale issues are poorly repre-
sented (if at all) in current models.

c. Instrumentation, sampling strategy, and data
analysis

The scale dependence and ill definedness of individ-
ual size distributions and their relationships with fluc-
tuations also pose challenges to instrumentation, sam-
pling strategies, and data analysis. On one hand, new
instruments are needed that are capable of characterizing
the finest physical structures of droplet size distributions
(e.g., ;1 mm of the smallest turbulent eddies). This is
particularly important in regions of sharp discontinuity
(Hallett and Hallett 2000). On the other hand, the av-
eraging scale needs to be large enough to obtain a well-
defined droplet size distribution, in other words, to reach
the corresponding saturation scale.

In general, instrument design defines a sampling vol-
ume, and instrument motion defines a sampling strategy
in making any practical physical or chemical measure-
ment in the atmosphere. Thus, an aircraft sweeps out a
volume along its path; a ground instrument samples a
volume of air defined by the local airflow. Both are
dependent on the rate of processing of the fluid medium
in the sensor itself. For a given instrument, further
choice lies in not only the sampling time and but also
the spatial scale of the sample. Is there motion relative
to the fluid medium (atmosphere or ocean), or does the
instrument follow the parcel in the Lagrangian sense?
Superimposed on these issues is the time response of
the sensor to change, and the rate at which the changing
properties of the local environment are communicated
to the sensor.

Measurement of particle size distributions raises par-
ticularly difficult problems because, in general, particle
concentration is highly size dependent, there tends to
be more smaller particles, and there may be spectral
peaks that depend on different physical processes. Two
separate questions are identified. First, even in a uni-
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FIG. 2. Analysis routine for a particle size distribution collected by a cloudscope on the NASA
DC-8 (sampling volume is 50 cm3 s21) in outflow of Hurricane Earle approaching the Louisiana
coast, 1998. The protocol is set by the selection of the number of size bins on a logarithmic
scale. It is further set by the level of uncertainty—for example 610%. The uncertainty in the
number of particles actually counted in each bin is given by Poisson statistics, represented by
the vertical error bars on each point. The uncertainty is large for small concentrations of large
particles. The horizontal line from each point represents a flight distance necessary to sample
100 6 10 particles. The physical domain over which any set of measurements must be analyzed
is then selectable. This could be (as this case) 10 km of a hurricane outflow; 1000 km of marine
stratus or the whole North Pacific Ocean. In either case, the criterion for an overall sampling
time or distance will be ultimately set by consideration of Fig. 1. It will be composed of a
multitude of data selected according to the Poisson statistics of this figure but with a scale
determined by the variability imposed by the limitation of the physical process considered—on
the largest scale the whole atmosphere, on the smallest scale an adiabatic core with uniform
everything, subject only to random spatial and time distribution of particles.

form, unchanging environment, particles are subject to
the usual Poisson statistics of distribution. A size dis-
tribution is defined in terms of a number of particles in
a selected bin width (linear or logarithmic) and therefore
a measurement of N particles in a given bin is uncertain
to 6N 1/2. Somewhere in the spectrum a bin has but one
particle, with an uncertainty of 61. These consider-
ations apply also to higher moments as particle mass,
area, or radar reflectivity. Obviously the statistics may
be improved by sampling for a longer time but this
merely extends the problem to a larger (lower concen-
tration) size. A different approach lies in asking for how
far or how long a sample must be taken to obtain an
acceptable uncertainty—say, 610%. Figure 2 shows
how such an approach may be used from a practical
viewpoint in specifying and comparing spectra. The ver-
tical bars on each point relate to the Poisson uncertainty
of the actual number of particles in that bin; the hori-
zontal lines from each point relate to how far the aircraft
must fly for this particular instrument to achieve an
uncertainty of 610%. Application is to the simplest
adiabatic, uniform situation in which the MXSD is ap-
proximately equal to the MNSD of a d-function. In this

case, identifying the scale of satisfactory Poisson count-
ing statistics may be enough.

The second problem lies in applying this analysis to
the real, turbulent atmosphere. The length of time–dis-
tance to be sampled needs to first provide a 10% un-
certainty for the largest size (smallest concentration) of
interest, but, most important, to provide the saturation
scale as shown in Fig. 1 so that the MXSD is ap-
proached. Note that recent studies have indicated Pois-
son statistics may not hold in turbulent clouds (Kostinski
and Jameson 2000; Burnet and Brengier 2000). A sam-
pling strategy exists for each case to obtain satisfactory
measurements of spectra and to fulfill the criteria of Fig.
1. In practice this means that data for the cloud field
with the same level of fluctuations would be used for
the analysis. The prescribed field may be associated with
different upper limit of the physical scale. If the upper
limit of the physical scale is less than the saturation
scale, repeated sampling of the same portion or portions
of clouds defined by similar dynamics is then necessary
to meet the requirement of saturation scale. Repeated
sampling may be needed particularly in strongly tur-
bulent, narrow regions of cumulus clouds in regions of
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strong shear. When clouds or parts of clouds such as a
growing turret are not stable enough to permit repeated
penetrations, sampling of other similar clouds may be
necessary to reach the saturation scale. Herein lies a
decision of practicality for making an observation. Uni-
formity is to be translated from the Poisson uncertainty
in a completely nonturbulent environment, to an envi-
ronment whose fluctuations can be prescribed from
physical or chemical considerations. Thus a cumulo-
nimbus anvil, a field of marine stratocumulus cloud, or
a widespread field of cumulonimbus may be chosen as
the field of interest. The ultimate limit is evidently the
whole atmosphere. The criterion for reaching the sat-
uration scale should be investigated empirically by seek-
ing the limit of measurement, which become invariant
with further addition of data. In summary, not only are
instruments needed that are capable of identifying the
finest structure, but also sampling strategy has to meet
the requirement of reaching the saturation scale.

Furthermore, even with satisfactory measurements
available, extensive analysis is needed to fill in the de-
tails theoretically illustrated in Fig. 1. However, except
for the uniform case, the saturation scale and the scale
dependence are largely unknown. Application of such
methodologies as multiscale analysis (Smith and Liu
1993; Liu et al. 1996; Davis et al. 1996; Kostinski and
Jameson 1997, 1999; Jameson and Kostinski 1998,
1999, 2000; Jameson et al. 1999; Miles et al. 2000) to
datasets sampled at different levels of fluctuations are
necessary to fill this gap. After identifying the saturation
scale, the relationship between the exponent b and the
level of fluctuations can be empirically established by
investigating the corresponding size distributions and
their relationship with turbulent intensities (e.g., tur-
bulent kinetic energy and dissipation rate).

Cloud properties and size distributions can also be
measured by use of remote sensing techniques such as
radars (Atlas et al. 1973; Heymsfield et al. 1996; God-
dard et al. 1997). Because remote sensing techniques
typically sample large volumes, measured size distri-
butions are expected to be close to the MXSD. Recently,
remote sensing techniques have been developed to mea-
sure droplet size distributions as well as turbulent prop-
erties such as velocity variance and turbulent dissipation
rate (Babb and Verlinde 1999). This provides another
way to relate the exponent b to turbulence properties.
Furthermore, a variety of in situ and remote sensing
instruments (surface-, aircraft-, and satellite-based) are
often coordinated in current field projects to address
cloud-related issues because of the wide range of scales
involved. An important issue with this approach is the
mutual comparison and validation of measurements
made by these instruments operated at different sam-
pling scales. Ideas presented here may be used for this
purpose as well.

5. More comparisons with kinetic models
As discussed in the introduction, the systems theory

stands in stark contrast to kinetic models with regard to

the philosophy of treating the problem of droplet size
distributions. The philosophical differences between the
systems theory and kinetic models in turn lead to dif-
ferences in other aspects. Mathematically, unlike kinetic
models formulated using differential equations, the sys-
tems theory is built upon calculus of variations, integral
equations, and constrained optimization. Furthermore,
averaging is used one way or another in kinetic models
to explain observed droplet size distributions. Typical
examples are those studies that generate many parcels
and predict size distributions for each parcel and then
average size distributions predicted for all the parcels
(Feingold et al. 1998). The averaging processes of ki-
netic models are computationally extensive. A more fun-
damental difficulty arises from the wide range of scales
involved in entrainment and mixing processes in tur-
bulent clouds (Krueger et al. 1997). In contrast, as in
statistical mechanics, the systems theory introduces sta-
tistical laws for fluctuations and simply relates the large-
scale average to the MXSD, and provides an analytical
way of averaging.

In the quest to understand and explain observed drop-
let size distributions, major efforts have been devoted
to various kinetic models. The idea of the systems theory
has received much less attention compared to its kinetic
counterpart. At first glance, the systems theory seems
to convey a ‘‘strange’’ impression that observed size
distributions have little to do with the details of indi-
vidual droplets and their interactions. It is interesting to
note that physicists shared a similar impression regard-
ing statistical mechanics at the early days of this dis-
cipline. However, such a view was refuted by the later
success of statistical mechanics. The ideas of statistical
mechanics have been successfully extended to various
disciplines to study complex systems (Haken 1977).
Such widespread success provides indirect justifications
for using the systems approach to study cloud droplet
size distributions. The systems theory has also been
justified by its successful explanations for many ob-
served phenomena such as spectral broadening and scale
dependence. The Weibull size distributions predicted as
the MXSD by the systems theory have been demon-
strated to be consistent with observed droplet size dis-
tributions (Costa et al. 2000; Liu and Daum 2000a,b).
Miles et al. (2000) recently reported observational ev-
idence supporting the scale dependence of droplet size
distributions predicted from the systems theory.

6. Concluding remarks

The systems theory presented in LH98 is generalized
to allow for varying fluctuations in clouds. The general
MXSD and MNSD are, respectively, a general Weibull
distribution and a general d-function. The generalized
theory provides a self-consistent theoretical framework
for a wide range of conditions. It reduces to those pre-
sented in LH98 when liquid water content is conserved,
and becomes consistent with the uniform growth models
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for nonturbulent adiabatic clouds. The generalized sys-
tems theory reveals the following important points.
First, droplet size distributions depend on the scale over
which they are observed or simulated, and approach the
MXSD with increases in averaging scale. Second, there
exists a characteristic scale, defined as the saturation
scale, beyond which observed size distributions do not
change much because of their closeness to the MXSD.
Third, individual droplet size distributions are strongly
scale dependent when the sampling scale is less than
the saturation scale, and therefore ill defined without
specification of the averaging scale. Fourth, the differ-
ence between the MXSD and the MNSD, scale depen-
dence, and the saturation scale decreases with decreas-
ing fluctuations, and eventually disappear under uniform
conditions. The absolute uniform state characteristic of
the minimum spectral entropy and maximum popula-
tional energy change is analogous to the state of absolute
zero for atomic systems, which assumes the minimum
thermodynamic entropy and is prohibitively difficult to
realize.

The generalized systems theory provides explanations
for a number of long-standing issues. First, it is shown
that spectral broadening can be understood in the frame-
work of scale dependence, arising as a result of scale
mismatch between models and observations. Second,
the phenomenon that droplet size distributions observed
in adiabatic cores of cumulus clouds are very narrow,
yet still broader than those predicted by uniform models,
are due to the small, yet inexorable fluctuations affecting
cloud droplets even in adiabatic cores, which will cause
small differences between the MXSD and MNSD.

Implications of the scale dependence and ill defined-
ness of droplet size distributions in turbulent clouds are
discussed. In general, caution is needed when comparing
observed droplet size distributions with those simulated
by models, when coupling models of different scales,
and when comparing measurements collected using in-
struments with different sampling scales. The unique
property of scale dependence in turbulent clouds sug-
gests the necessity of making explicit references to the
averaging scale in numerical simulations as well as in
observational studies. In particular, it is argued that to
represent clouds in climate models, the simple moment-
based microphysical models could be more accurate
than the complicated models with detailed microphysics
because of the large scales involved in climate models.
Furthermore, the unique property of scale-dependence
suggests the ultimate need for a new theoretical frame-
work that treats the scale as an independent variable,
just as the variables of space and time are treated in the
current framework. It is not clear to us now how to
realize this. But, it seems that a combination of the
systems idea with multiscale approaches may be a prom-
ising avenue. In terms of instrumentation and sampling
strategies, it is suggested that instruments capable of
detecting structures at the resolution of the smallest tur-
bulent eddies (e.g., 1 mm) are needed. Repeated or large

volume sampling of the same cloud or similar clouds
may be necessary to reach the saturation scale for clouds
that have small physical scales, for example, small cu-
mulus. Similarly, if regions of specific characteristics
are selected for analysis—for example regions of strong
shear between up- and down- drafts, such regions must
have sufficient volume to satisfy the criterion for the
saturation scale. Thus, the rationale for comparison of
models and observations or intercomparison of models
and observations themselves requires attention to not
only the Poisson criteria for particle measurements, but
also the scale dependence and the saturation scale in a
turbulent environment.

The present work highlights the importance of fluc-
tuations in determining droplet size distributions and
their scale dependence. However, quantitative studies
along this line are very limited. Because fluctuations are
closely related to turbulence, simultaneous measure-
ments and analysis of turbulence and droplet size dis-
tributions, at the same time, and spatial resolution are
needed to provide some measure of the saturation scale
and the form of the scale dependence. The term of ‘‘fluc-
tuation’’ is used in this paper in a generic sense. No
assumption on specific mechanisms causing fluctuations
is made since we think there may exist a number of
mechanisms that cause fluctuations and these mecha-
nisms are not well understood. Such mechanisms in-
clude turbulence-related processes such as entrainment
and mixing. The differences in CCN properties (e.g.,
sizes, chemical compositions, and concentrations) may
cause fluctuations as well.

It is noteworthy that there may also be utility in ap-
plying the arguments presented in this paper for com-
parison of dynamical systems characterized by motions
and particle distributions in an astronomical-scale set-
ting where fluctuations exist.
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APPENDIX A

Derivation of the General Minimum Likelihood
Size Distribution

To determine the MNSD, nmin(D), is a problem of the
calculus of variation, and requires the generalized func-
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tion theory because of the involvement of the d function.
The details of the generalized function theory are re-
ferred to in Gelfand and Shilov (1964), Zemanian
(1965), and Keener (1995). Only the definitions and
operations relevant to this paper are outlined here.

• The inner product of two functions f (D) and g(D) is
defined as

^ f (D), g(D)& 5 f (D)g(D) dD.E
• A test function, denoted by w(D), is a function such

that it is continuously differentiable infinitely and has
compact support.

• A generalized function is defined as a continuous lin-
ear function acting on w(D), denoted by the inner
product ^ f (D), w(D)&.

• Two generalized functions f 1(D) and f 2(D) are said
to be the same if, for a test function w(D), we have

^ f (D), w(D)& 5 ^ f (D), w(D)&. (A1)1 2

• The derivative of a generalized function is defined by
the equation

df dw
, w(D) 5 2 f (D), . (A2)7 8 7 8dD dD

The constraints as described by (1a) and (1b) for the
general droplet system can be rewritten as

n(D) dD 5 N, (A3)E
b bD n(D) dD 5 ND , (A4)E b

where Db 5 [#Dbn(D)dD/N]1/b is defined as the bth di-
ameter. The MNSD is the characteristic distribution that
maximizes the populational energy change defined by
(5b) subject to (A3) and (A4). Following the general
procedure of variational calculus, we construct the spe-
cific Lagrangian functional as

3 2F [n(D)] 5 c D n(D) dD 1 c D n(D) dD1 E 2 E
b2 l n(D) dD 2 l D n(D) dD .1 E 2 E[ ] [ ]

Setting the first variation of F[n(D)] with respect to the
unknown n(D) equal to zero, we have

3 2 bDF 5 (c D 1 c D 2 l 2 l D )Dn(D) dDE 1 2 1 2

5 0, or

dn(D)
3 2 bDF 5 (c D 1 c D 2 l 2 l D ) dDE 1 2 1 2 dD

5 0. (A5)

Solving (A5) utilizes the knowledge of the generalized
function as introduced above. When the test function is
chosen such that

0, D . Dmax
3 2 bw(D) 5 c D 1 c D 2 l 2 l D , D # D # D1 2 1 2 min max

0, D , D , min

(A6)

Eq. (A5) is equivalent to the following inner product:

dn
, w(D) 5 0. (A7)7 8dD

Using (A2) for the derivative of a generalized function,
we further have

dn dw
, w(D) 5 2 n(D), 5 0. (A8)7 8 7 8dD dD

Therefore,
` dw

n(D) dDE dD
2`

Dmax

2 b215 (3c D 1 2c D 2 bl D )n(D) dDE 1 2 2

Dmin

5 0. (A9)

Given a generalized function

1n (D) 5 Kd(D 2 D ),* (A10)

where D ∈ (Dmin, Dmax), we have

dw
1 2 b21n (D) dD 5 K(3c D* 1 2c D* 2 bl D* )E 1 2 2dD

5 0.

Without loss of generality, we can always choose a l2

such that

dw
1n (D), 5 0.7 8dD

Therefore, we have

dw dw
1n (D), 5 n(D), . (A11)7 8 7 8dD dD

Based on the definition of equality of two generalized
functions by (A1), the MNSD is

1n (D) 5 n (D) 5 Kd(D 2 D*). (A12)min

The constant K is determined by substituting (A12) into
(A3):

n(D) dD 5 Kd(D 2 D*) dD 5 K 5 N, (A13)E E
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where D* is given by substituting (A12) and (A13) into
(A14):

b b bD Nd(D 2 D*) dD 5 ND* 5 ND , orE b

D* 5 D . (A14)b

Therefore the MNSD is given by

n (D) 5 Nd(D 2 D ).min b (A15)

APPENDIX B

The Approach of the MXSD to the MNSD

Equation (4) can be rewritten as

bN(b 2 1) b 2 1 D
b21n (D) 5 D exp 2 , (B1)max b 1 2[ ]D b D0 0

where D0 5 ((b 2 1)/b)1/b(X/aN)1/b is the mode diameter
of the droplet (Deirmendjian 1964).

When D 5 D0, (B1) becomes

N(b 2 1) b 2 1
n (D ) 5 exp 2 (B2)max 0 1 2D b0

As b approaches `, the ratio (b 2 1)/b approaches
1, and therefore nmax(D0) approaches `. When D ± D0,
it is obvious that nmax(D) approaches 0 as b approaches
`. Together with the fact that D0 approaches Db as b
approaches `, we have that nmax(D) approaches the
MNSD, nmin(D) 5 Nd(D 2 Db) as b approaches `.
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