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ABSTRACT 

A systems theory has previously been developed by Liu and Hallett to interpret droplet size distributions in 
turbulent clouds by utilizing ideas from statistical physics and information theory. The present paper generalizes 
that systems theory to allow for varying fluctuations. The generalized theory provides a self-consistent theoretical 
framework for a wide range of fluctuations. It reduces to that presented previously when liquid water content 
is conserved, and becomes consistent with the uniform growth models for nonturbulent, adiabatic clouds. The 
theory indicates that there exists an important characteristic scale, defined as the saturation scale, beyond which 
droplet size distributions do not change with further increases in averaging scale, but below which droplet size 
distributions strongly depend on the scale over which they are sampled and are therefore ill-defined without an 
adequate specification of scale. It is further demonstrated that the saturation scale and the details of scale 
dependence depend on the level of fluctuations; stronger fluctuations lead to larger saturation scales and stronger 
scale dependency of droplet size distributions. The potential scale mismatch leads to issues regarding the 
comparability between models and observations, and the direct coupling of numerical models of different scales, 
which in turn underscores the significance of understanding and quantifying the scale dependence of droplet 
size distributions. The importance of fluctuations suggests the need to measure and analyze turbulence simul- 
taneously and at the same scales with measurements of droplet size distributions in order to provide a practical 
limit to the sample size required to reach the saturation scale, ahd to specify the effect of turbulence. The ideas 
presented in this paper have general applications to fields where fluctuations exist. 

1. Introduction 

Reliable knowledge of cloud droplet size distributions 
is crucial for many cloud-related areas such as precip- 
itation, climate modeling, and remote sensing. A long- 
standing problem in cloud physics is that observed drop- 
let size distributions are generally much broader than 
those predicted by the classical uniform model (e.g., 
Howell 1949). To explain this so-called spectral broad- 
ening has been a major focus of cloud physics over the 
last few decades, and a number of models have been 
proposed. Stochastic condensation theory considers the 

, growth of droplet populations as a stochastic process 
and relates the spectral broadening to various fluctua- 

. tions associated with turbulence (Zhou 1964; Sedunov 
:- 1974). Khvorostyanov and Curry (1999) derived from 

stochastic theory that gamma distributions could be used 
to represent ensemble-averaged droplet size distribu- 
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tions. Cooper (1989) derived equations for estimating 
the spectral width of droplet size distributions from the 
fluctuations of vertical velocity and integral radius, and 
their correlation by applying small perturbation analysis 
to the Lagrangian integral of the quasi-steady super- 
saturation averaged over an ensemble of droplets that 
encounter different growth trajectories through turbulent 
clouds. Considine and Curry (1996) proposed a model 
based on the assumption that size distributions at a given 
level in a cloud are horizontal averages over a large 
number of air parcels that can have different lifting 
condensation level. Shaw et al. (1998) recently related 
spectral broadening to turbulence-induced preferential 
concentration of droplets. Much effort has been devoted 
to the processes of turbulent entrainment and mixing as 
causes of spectral broadening (Baker et al. 1980; Hicks 
et al. 1990; Telford and Chai 1980; Su et al. 1998). 
Srivastava (1989) argued that the supersaturation that 
controls each individual droplet (microscopic supersat- 
uration) differs from the commonly used macroscopic 
supersaturation. It was shown that, even without tur- 
bulence, the Poisson spatial distribution of droplets 
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could cause droplet-droplet variations in the micro- 
scopic supersaturation, which in turn leads to some spec- 
tral broadening. Despite their differences, all these mod- 
els have one feature in common: they attempt to follow 
each droplet or each parcel and then take statistical av- 
erages one way or another. By analogy to the kinetic 
theory of gases, these models are referred to as kinetic 
theories of droplet size distributions throughout the rest 
of the paper. Although these kinetic models produce size 
distributions broader than those predicted by uniform 
models and improve the understanding of the formation 
of droplet size distributions, the details of the processes 
involved are poorly understood and highly controver- 
sial. 

It has been generally accepted that the fundamental 
equations describing individual droplets have been well 
established. However, to numerically solve these equa- 
tions, the size of the model grid needs to be as small 
as - 1 mm so that the smallest eddies of turbulence and 
the mean distance between droplets can be resolved and 
the grid values of variables such as temperature and 
water vapor mixing ratio represent the ambient condi- 
tions for the droplet (Vaillancourt 1998). In fact, the 
physical processes, the wide range of scales, and droplet 
interactions involved in turbulent clouds are so complex 
that it may be hopelessly difficult to completely know 
the path of each dropletlparcel, droplet interactions, and 
the initial and boundary conditions necessary for solv- 
ing the kinetic equations. The difficulties are evident 
from the fact that the randomness of turbulence is no 
simpler than that of Brownian motions of molecules 
(Mandelbrot 1999). and that turbulent entrainment and , . 
mixing processes occur over a tremendous range of 
scales between the largest eddy of a cloud size and the 
smallest eddy of the Kolmogorov microscale (Su et al. 
1998). In fact, the subject of turbulence itself has been 
considered one of the unsolved problems of classical 
physics (Nelkin 1992; Sreenivasan 1999). The mutual 
interactions between droplets and turbulence further 
complicate the problem (Malinowski and Jaczewski 
1999; Vaillancourt and Yau 2000). This vexing situation 
is similar to the early stage of the kinetic theory of gases 
in the late Nineteenth and early twentieth centuries. Dur- 
ing that time period, scientists (e.g., Maxwell, Boltz- 
mann, and Gibbs) were frustrated by their inability to 
explain the macroscopic thermodynamic properties of 
gases, despite the fact that the Newtonian equations 
could accurately describe the motion of each individual 
molecule in a gas. 

In view of these insurmountable difficulties, a dif- 
ferent formalism, which considers cloud droplets as a 
system and studies them as a whole instead of following 
each dropletlparcel, has been recently developed by in- 
tegrating into cloud physics the ideas that have flour- 
ished in statistical physics and information theory (Liu 
1992, 1995; Liu and Yang 1992; Liu et al. 1995; Liu 
and Hallett 1997, 1998, hereafter LH98). Just as clas- 
sical statistical mechanics introduces statistical laws to 

remove the difficulties associated with random Brown- 
ian motions of individual molecules by concerning itself 
with the most probable state of a molecular system, the 
early systems theory focused mainly on the most prob- 
able droplet size distribution (defined as maximum like- . 
lihood size distribution and denoted by MXSD). The 
early systems theory predicts that the MXSD follows 
the Weibull distribution (Liu 1992, 1995; Liu et al. 1995; 
Liu and Hallett 1997). Observations are consistent with 
this prediction because a measured droplet size distri- 
bution averages many size distributions and, subse- 
quently, looks more like the broad MXSD. LH98 re- 
cently generalized the systems idea by introducing and 
deriving the least probable size distribution (defined as 
minimum likelihood size distribution and denoted by 
MNSD) and coupling it with the MXSD. This gener- 
alization not only provides a reasonable framework for 
explanation of spectral broadening, but also reveals the 
scale dependence of droplet size distributions in tur- 
bulent clouds. Furthermore, it was argued that the dis- 
crepancy between observed and model-predicted drop- 
let size distributions might be a manifestation of scale 
dependence because of the scale mismatch between the- 
oretical models and observations. 

The major objective of this paper is to further gen- 
eralize the systems theory beyond that described in 
LH98 to allow for varying fluctuations as occur in real 
clouds, and thereby to lay the foundation for studying 
the effect of fluctuations using the systems theory ap- 
proach. As will be shown, the newly generalized sys- 
tems theory establishes a self-consistent theoretical 
framework, and offers new insights into the issues of 
spectral broadening and scale dependence of droplet size 
distributions as a function of fluctuations. For droplet 
systems with conserved liquid water content, it reduces 
to the framework presented in LH98, and for nontur- 
bulent uniform clouds, its predictions are consistent with 
the uniform models. The theory also has important im- 
plications for the development of theoretical models and 
instrumentation, sampling strategies, and approaches to 
data analysis. We will further elaborate on these new 
challenges only briefly touched on in LH98.. 

2. The systems idea 

The leitmotif of the systems theory approach is to 
obtain useful information on droplet size distributions 
without concern with the details of each individual drop- 
let. This is analogous to classical statistical mechanics 
applied to molecular systems where properties of the 5 

system are derived without invoking the details of each 
individual molecule. The current systems theory mainly 
centers on two characteristic size distributions occurring 
with the maximum and minimum probability: MXSD 
and MNSD. 

As the Boltzmann energy distribution describes the 
most probable energy distribution of a molecular system 
and the Maxwell velocity distribution characterizes the 
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most probable velocity distribution of a molecular sys- 
tem, the MXSD as proposed, describes the most prob- 
able droplet size distributions. In this sense, the theory 
is better described as statistical cloud physics rather than 
the systems theory. 

On the other hand, describing cloud droplet systems 
is more complex than describing molecular systems. For 
a molecular system, the most probable state suffices to 
specify macroscopic thermodynamic properties such as 
temperature and pressure because of the enormous num- 
ber of molecules involved (e.g., lo2* ~ m - ~ ) .  However, 
because of very limited concentrations of cloud droplets 
(e.g., 100 ~ m - ~ ) ,  one cannot equate the MXSD with 
observed or modeled droplet size distributions in many 
cases. Therefore, a complete characterization of a drop- 
let system requires knowing the probabilities of all pos- 
sible droplet size distributions. Although determining 
the specific probability of each possible size distribution 
seems prohibitive at present, useful information can be 
obtained by knowing the MNSD in addition to the 
MXSD. If the MNSD is identical with the MXSD, 
clouds are expected to be absolutely uniform, and the 
uniform model suffices. The equivalent model would 
be a uniform updraft with all droplets exposed to the 
same supersaturation and identical cloud condensation 
nuclei (CCN). However, such idealized situations hardly 
occur in nature. If there are any differences between the 
MXSD and MNSD, individual size distributions then 
depend on the scale over which they are averaged. As 
discussed in LH98, there are striking contrasts between 
the MXSD and the MNSD in turbulent clouds, and the 
resulting scale dependence of droplet size distributions, 
in fact, lies at the root of many unsolved problems of 
cloud physics, including the long-standing issue of so- 
called spectral broadening. The scale dependence poses 
new challenges to the development of numerical models 
as well as to instrumentation and sampling strategies. 
Furthermore, as will be addressed later in this paper, the 
involved complexity is closely related to fluctuations 
associated with turbulence. 

3. Quantitative formulation 

In LH98, the MXSD and the MNSD were derived for 
a special droplet system with conserved liquid water 
content. However, the assumption of conserved liquid 
water content does not always hold. A variety of fluc- 
tuations can occur in real clouds, for example, ranging 
from strongly turbulent cumulus to weakly turbulent 
stratocumulus, to laminar lenticular clouds. It is there- 
fore desirable to incorporate varying fluctuations into 
the systems formulation. Liu and Hallett (1997) ex- 
tended the MXSD from the special droplet system to a 
more general one that allows for different fluctuations. 
In this paper, we further extend the MNSD presented 
in LH98 to this general droplet system, and thereby 
establish a generalized systems framework applicable 
to a wide range of fluctuations by combining the general 

MNSD with the general MXSD presented in Liu and 
Hallett (1 997). 

For completeness, the general droplet system dis- 
cussed in Liu and Hallett (1997) is briefly outlined here. 
The general droplet system is controlled by two con- 
straints: 

where x, defined as the restriction variable, is related to 
the physical processes controlling the droplet system, X 
is the total amount of x per unit volume, n(x) is the 
droplet concentration per unit volume per unit x interval, 
N is the total droplet concentration, and p(x) = n(x)/N 
can be considered the probability that a droplet of x 
occurs. It should be noted that the correspondence be- 
tween x and the conservation law is a key to the gen- 
eralization. For example, for the special droplet system 
discussed in LH98, which is constrained by the con- 
servation of liquid water content, x represents the mass 
of a droplet of diameter D, Xis the liquid water content, 
and n(x) the droplet concentration per unit mass interval. 
The power-law relationship between the mass and the 
diameter of a droplet is readily generalized as 

where the parameters a and b are related to physical 
mechanisms controlling the droplet system. For the spe- 
cial case of liquid water content conservation, a = [I/  
(67rp..,)], and b = 3. The symbol p.., denotes the water 
density. 

Liu and Hallett (1997) derived the MXSD for this 
system. Briefly, by analogy with the Boltzmann entropy 
for molecular systems and the Shannon-Jaynes entropy 
generalized for complex multibody systems, spectral en- 
tropy H is defined as 

The MXSD is the droplet size distribution that maxi- 
mizes (3), subject to the constraints described by (la) 
and (lb). By solving the corresponding variational prob- 
lem, the MXSD was derived to be the Weibull distri- 
bution: 

where the parameters No = abI@ and A = a/@, and @ 
= XIN. Note that the @ here is the inverse of that used 
in Liu and Hallett (1997) and represents the mean value 
of X per droplet. This change makes the physical mean- 
ing of @ consistent with that of ''KBT1 in the Boltzmann 
energy distribution (Kg is the Boltzmann constant, T is 
the temperature, and KcT essentially represents the 
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mean energy per molecule in the gas). The derivation 
of (4) also uses the power-law relationship (2). 

The MNSD is associated with the populational energy 
change (E) to form a population of droplets with n(D). 
In LH98, E is expressed as 

where the first term on the right-hand side is the latent 
energy with L representing the latent heat of water; the 
second term is the surface energy with u representing 
the surface tension of water. The coefficient c is related 
to the activated CCN. Equation (5a) is derived under 
the common assumption that other forms of energy (i.e., 
gravitational potential energy, the kinetic energy asso- 
ciated with droplet terminal velocities, and the solution 
effect) are negligibly small (Pruppacher and Klett 1978). 
In fact, these minor terms can be incorporated into the 
coefficients before the integrals, 

The coefficient c,  = [(7rpw)/6(-L + gh + 1 /2e ) ]  (g 
is the gravitational constant; h is the height overwhich 
the water molecules in droplets are displaced; V! is the 
mean square terminal velocity of droplets) includes the 
effects of the latent heat (L), gravitational potential en- 
ergy (gh), and the kinetic energy (112V;). The coeffi- 
cient c2 considers the solution effect on the surface ten- 
sion. Another assumption for both (5a) and (5b) is that 
the amount of energy change is completely exchanged 
with the environment by processes such as heat con- 
duction. Maximizing E given by (5b) subject to the 
constraints described by (la) and (lb), the general 
MNSD is derived as (see appendix A) 

Similar to the special MNSD presented in LH98, the 
general MNSD is also a 5-function. However, the sim- 
ilarity ends here. Derivation of the general MNSD re- 
quires use of the general restriction variable satisfying 
(2); only the special case with a = [l/(67rpw)] and b = 
3 was used in LH98. This generalization is not as trivial 
as it may seem. Mathematically, the derivation requires 
a combination of the calculus of variations and the gen- 
eralized function theory, whereas the mathematics for 
the special case presented in LH98 is rather simple. 
Physically, as will become evident, the generalization 
permits us to study the effect of varying fluctuations on 

properties of droplet size distributions. Furthermore, an 
examination of (4), (6a), and (6b) reveals that the MXSD 
and MNSD presented in LH98 for the droplet system 
with conserved liquid water content are just special cas- 
es of the MXSD and the MNSD given above with a = 
[l/(67rpw)], b = 3, and X = liquid water content. Note 
that the general MNSD also corresponds to the mini- 
mum spectral entropy H = 0. 

4. Important implications 

The striking spectral differences between the MXSD 
and the MNSD in turbulent clouds have been discussed 
in LH98. Briefly, given X and N, the MXSD and the 
MNSD represent the most and the least probable way 
to distribute X among the N droplets, respectively. The 
MXSD is much broader than the MNSD. Based on the 
fact that very narrow droplet size distributions have in- 
deed been observed under uniform conditions such as 
in adiabatic cores of cumulus clouds and in uniform 
lenticular clouds, we speculated in LH98 that the spec- 
tral differences between the MXSD and the MNSD de- 
pends on fluctuations in clouds and should decrease as 
fluctuations decrease. This speculation can now be jus- 
tified by the generalized systems theory presented 
above. 

An analysis of the Weibull distribution as described 
by (4) shows that it becomes narrower with increasing 
values of the parameter b, and eventually approaches 
the monodisperse MNSD as described by (6a) when b 
approaches (see appendix B for the mathematical 
proof). This result indicates that the MXSD approaches 
the MNSD with decreasing fluctuations, because b is 
closely related to fluctuation levels in clouds, and in- 
creases with decreasing fluctuations (Liu and Hallett 
1997). The dependence on fluctuations of the MXSD 
and the MNSD, along with their other unique properties, 
have profound implications for many fundamental is- 
sues of cloud physics, for cloud-related models such as 
climate models, for instrument design, and for sampling 
strategies. 

a. Scale dependence and spectral broadening 

In LH98 we discussed the scale dependence of droplet 
size distributions in turbulent clouds because of the 
striking differences between the MXSD and the MNSD 
for the special droplet system where liquid water content 
is conserved. We also pointed out that the long-standing 
issue of spectral broadening might be just a manifes- 
tation of the scale dependence as a result of the scale 
mismatch between theoretical models and observations. 
These arguments are reinforced and extended by the 
generalized systems theory presented above in the fol- 
lowing aspects. 

First, the scale dependence of droplet size distribu- 
tions indicates that an individual size distribution ap- 
proaches the MXSD with an increase in the averaging 
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Averaging Scales 

FIG. 1. A diagram illustrating the scale dependence of individual 
droplet size distributions at different levels of fluctuations. The mean- 
ings of both coordinates are only qualitative. The fluctuation increases 
from case MXSD1 to case MXSD3. The MXSD represent the max- 
imum likelihood size distribution. This figure illustrates the following 
points addressed in the paper: 1) observed size distributions approach 
the MXSD with the increase in averaging scales; 2) there exists a 
characteristic scale, defined as saturation scale and denoted by LA, 
beyond which droplet size distributions do not change much with 
further increases in averaging scales, but below which size distri- 
butions change rapidly with averaging scales; 3) the stronger the 
fluctuation the larger the macroscopic scale ( L c  > L s  > L,); 4) the 
spectral width of droplet size distributions increases with increases 
in averaging scales at a given level of fluctuations, and increases with 
increasing fluctuations at a given scale. 

scale. It is anticipated from this behavior of scale de- 
pendence that there exists a characteristic scale, defined 
as the saturation scale, beyond which all size distri- 
butions are approximately the same and equal to the 
MXSD. However, droplet size distributions are strongly 
dependent on the averaging scale when it is less than 
the corresponding saturation scale, and therefore ill-de- 
fined without specification of the averaging scale. In 
this case, it is necessary to explicitly specify the scale 
and the dependence of droplet size distributions on the 
scale. Similar findings were reported for raindrop size 
distributions in studying fluctuations of precipitation 
(Joss and Gori 1978; Liu 1993; Smith and Liu 1993; 
Ulbrich and Atlas 1998; Kostinski and Jameson 1997, 

- 1999; Jameson and Kostinski 1998, 1999, 2000; Ja- 
meson et al. 1999). 

Second, it is well known that the degree of spectral 
broadening depends on the processes of entrainment and 
mixing determined by turbulence. Very narrow droplet 
size distributions are often observed in clouds formed 
under uniform conditions, for example, in lenticular 
clouds and in adiabatic cores of small cumulus. At first 
glance, the narrow size distributions observed under 
uniform conditions seem to indicate that these observed 

size distributions are associated with the MNSD. How- 
ever, as indicated by the generalized systems theory, 
this is actually due to the fact that the MXSD approaches 
the MNSD with decreasing fluctuations. Furthermore, 
real clouds are always in a more or less turbulent state. 
Even in nonturbulent uniform clouds with uniform 
CCN, the Poisson random spatial distribution of droplets 
can cause fluctuations in the microscopic supersatura- 
tion (Srivastava 1989), an essential variable controlling 
the condensation/evaporation of individual droplets. 
These facts suggest that the extremely narrow size dis- 
tributions of the &function will seldom be observed, no 
matter how uniform the cloud is. Application of the 
generalized systems theory to the inevitable small fluc- 
tuations provides an explanation for the phenomenon 
that very narrow droplet size distributions, yet still 
broader than those predicted by uniform models, are 
often observed in the so-called adiabatic cores (Bren- 
guier and Chaumat 2001). Similar to spectral broad- 
ening, the saturation scale and the details of the scale 
dependence of droplet size distributions also depend on 
fluctuations. The weaker the fluctuation, the smaller the 
difference between the MXSD and the MNSD, the 
smaller the saturation scale, and the weaker the scale 
dependency. The scale dependence and spectral broad- 
ening will eventually disappear when there are no fluc- 
tuations. 

Figure 1 schematically illustrates the feature of scale 
dependence of droplet size distribution as a function of 
fluctuations derived from the generalized systems the- 
ory. For a given level of fluctuation, droplet size dis- 
tributions approach the MXSD with increases in the 
averaging scale. The spectral change is fast and indi- 
vidual size distributions are ill-defined when the aver- 
aging scale is less than the saturation scale. The change 
slows down as the saturation scale is approached, and 
eventually becomes approximately zero beyond the cor- 
responding saturation scale. Furthermore, the variability 
of a mean size distribution is expected to decrease with 
the averaging scale. For a given averaging scale, the 
MXSD-MNSD difference and the saturation scale in- 
crease with increasing fluctuations. Evidently, the av- 
eraging scale is an important quantity in defining droplet 
size distributions in a fluctuating environment. Because 
of the potential scale mismatches, the comparability is 
questionable between models and measurements having 
different scales, and so is the direct coupling of models 
of different scales. Although the issue of potential scale 
mismatch has been realized for sometime [see Hallett 
(1996) for instrumentation, Cotton et al. (1995) for mod- 
el development, and LH98 for a general discussion], the 
issue of scale dependence has not been rigorously ad- 
dressed. In the following, we will expand on the im- 
plications of, and challenges posed by, the scale de- 
pendence and associated ill definedness of droplet size 
distributions as a function of fluctuations. 
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b. Model development 

Representation of droplet size distributions is crucial 
for a variety of cloud-related models (Cotton and Anthes 
1989). Cloud parameterization in climate models has 
become a topic of intensive research because of the role 
of clouds in regulating the earth's radiation balance and 
the hydrological circle (Chahine 1992; Schwartz and 
Slingo 1996). To improve cloud parameterizations, it is 
increasingly common to couple dynamical and radiative 
models with microphysical models as detailed as al- 
lowed by computer resources (Ackerman et al. 1995). 
Such a direct coupling of models of different scales 
seems natural at first glance, but this coupling is ques- 
tionable because of the scale dependence of individual 
droplet size distributions in turbulent clouds. For ex- 
ample, droplet size distributions predicted by detailed 
microphysical models may not be compatible with those 
required in climate models because of the large scale 
mismatch between the two kinds of models. Even if the 
scales of droplet size distributions involved in models 
of both kinds are compatible (e.g., when clouds are 
uniform), detailed microphysical models are still com- 
putationally expensive. In fact, we would argue that the 
MXSD should be used to represent droplet size distri- 
butions in climate models because of the large scales 
involved. Recently, simple microphysical models have 
been developed based on the methods of moment by 
assuming size distributions follow an analytical form 
such as a gamma distribution (Mitchell et al. 1996; 
White and Hounslow 2000). Besides being simple and 
computationally cheap, such moment-based microphys- 
ical models could be more physically sound compared 
to complicated models with detailed microphysics, be- 
cause the distribution functions are often obtained by 
empirically analyzing a large number of data and the 
resultant distributions could be close to the MXSD. 

Assuming an analytical form for droplet size distri- 
butions is also a common practice in the parameteri- 
zation of cloud microphysics in cloud models (Cohard 
and Pinty 2000). However, it is not clear whether the 
scales involved in such models are large enough to meet 
the requirement of the saturation scale. When the av- 
eraging scales involved are less than the saturation scale, 
treating droplet size distributions becomes a more com- 
plicated and vexing problem. As discussed above, size 
distributions are ill defined without specifying the scale 
involved under this condition. This unique property sug- 
gests the necessity of making explicit references to the 
averaging scale in numerical models. In other words, a 
new theoretical formalism is necessary to treat scale as 
an independent variable, just as the current formalism 
treats the variables of space and time. Similar challenges 
have been realized in other disciplines (Nottale 1996; 
Herrmann 1997; Glasser and Goldhirsch 2001). Actu- 
ally, the need for a paradigm shift from a scale-inde- 
pendent to a scale-dependent theoretical framework is 

emerging in many fields where a variety of fluctuations 
and scales are involved. 

Furthermore, the vital role of fluctuations in deter- 
mining the details of the scale dependence of droplet 
size distributions, and their close relationship with tur- , 
bulence, demands better understanding and consider- 
ation of cloud turbulence. Even for the MXSD, this 
study strongly suggests that turbulence plays a critical 
role in determining its shape parameter b because of its 
close relationship to the spectral dispersion of the cloud 
droplet size distribution (Liu and Daum 2000b). Our 
recent studies have shown that the specification of tur- 
bulence is crucial for the parameterization of effective 
radius, a critical variable used to calculate radiative 
properties of clouds (Liu and Daum 2000a,b). Although 
it has been long speculated that turbulence affects cloud 
droplet size distributions, and the effect of turbulence 
has been studied rather extensively in cloud physics, 
turbulence and related scale issues are poorly repre- 
sented (if at all) in current models. 

c. Instrumentation, sampling strategy, and data 
analysis 

The scale dependence and ill definedness of individ- 
ual size distributions and their relationships with fluc- 
tuations also pose challenges to instrumentation, sam- 
pling strategies, and data analysis. On one hand, new 
instruments are needed that are capable of characterizing 
the finest physical structures of droplet size distributions 
(e.g., - 1 mm of the smallest turbulent eddies). This is 
particularly important in regions of sharp discontinuity 
(Hallett and Hallett 2000). On the other hand, the av- 
eraging scale needs to be large enough to obtain a well- 
defined droplet size distribution, in other words, to reach 
the corresponding saturation scale. 

In general, instrument design defines a sampling vol- 
ume, and instrument motion defines a sampling strategy 
in making any practical physical or chemical measure- 
ment in the atmosphere. Thus, an aircraft sweeps out a 
volume along its path; a ground instrument samples a 
volume of air defined by the local airflow. Both are 
dependent on the rate of processing of the fluid medium 
in the sensor itself. For a given instrument, further 
choice lies in not only the sampling time and but also 
the spatial scale of the sample. Is there motion relative 
to the fluid medium (atmosphere or ocean), or does the 
instrument follow the parcel in the Lagrangian sense? , 
Superimposed on these issues is the time response of 
the sensor to change, and the rate at which the changing 
properties of the local environment are communicated 
to the sensor. 

Measurement of particle size distributions raises par- 
ticularly difficult problems because, in general, particle 
concentration is highly size dependent, there tends to 
be more smaller particles, and there may be spectral 
peaks that depend on different physical processes. Two 
separate questions are identified. First, even in a uni- 
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FIG. 2. Analysis routine for a particle size distribution collected by a cloudscope on the NASA 
DC-8 (sampling volume is 50 cm3 SKI) in outflow of Hurricane Earle approaching the Louisiana 
coast, 1998. The protocol is set by the selection of the number of size bins on a logarithmic 
scale. It is further set by the level of uncertainty-for example 2 10%. The uncertainty in the 
number of particles actually counted in each bin is given by Poisson statistics, represented by 
the vertical error bars on each point. The uncertainty is large for small concentrations of large 
particles. The horizontal line from each point represents a flight distance necessary to sample 
100 2 10 particles. The physical domain over which any set of measurements must be analyzed 
is then selectable. This could be (as this case) I 0  km of a hurricane outflow; 1000 km of marine 
stratus or the whole North Pacific Ocean. In either case, the criterion for an overall sampling 
time or distance will be ultimately set by consideration of Fig. 1. It will be composed of a 
multitude of data selected according to the Poisson statistics of this figure but with a scale 
determined by the variability imposed by the limitation of the physical process considered-on 
the largest scale the whole atmosphere, on the smallest scale an adiabatic core with uniform 
everything, subject only to random spatial and time distribution of particles. 

form, unchanging environment, particles are subject to 
the usual Poisson statistics of distribution. A size dis- 
tribution is defined in terms of a number of particles in 
a selected bin width (linear or logarithmic) and therefore 
a measurement of N particles in a given bin is uncertain 
to ?N1I2. Somewhere in the spectrum a bin has but one 
particle, with an uncertainty of ? 1. These consider- 
ations apply also to higher moments as particle mass, 
area, or radar reflectivity. Obviously the statistics may 
be improved by sampling for a longer time but this 
merely extends the problem to a larger (lower concen- 
tration) size. A different approach lies in asking for how 
far or how long a sample must be taken to obtain an ' acceptable uncertainty-say, ? 10%. Figure 2 shows 
how such an approach may be used from a practical 
viewpoint in specifying and comparing spectra. The ver- - tical bars on each point relate to the Poisson uncertainty 
of the actual number of particles in that bin; the hori- 
zontal lines from each point relate to how far the aircraft 
must fly for this particular instrument to achieve an 
uncertainty of 2 10%. Application is to the simplest 
adiabatic, uniform situation in which the MXSD is ap- 
proximately equal to the MNSD of a 8-function. In this 

case, identifying the scale of satisfactory Poisson count- 
ing statistics may be enough. 

The second problem lies in applying this analysis to 
the real, turbulent atmosphere. The length of time-dis- 
tance to be sampled needs to first provide a 10% un- 
certainty for the largest size (smallest concentration) of 
interest, but, most important, to provide the saturation 
scale as shown in Fig. 1 so that the MXSD is ap- 
proached. Note that recent studies have indicated Pois- 
son statistics may not hold in turbulent clouds (Kostinski 
and Jameson 2000; Burnet and Brengier 2000). A sam- 
pling strategy exists for each case to obtain satisfactory 
measurements of spectra and to fulfill the criteria of Fig. 
1. In practice this means that data for the cloud field 
with the same level of fluctuations would be used for 
the analysis. The prescribed field may be associated with 
different upper limit of the physical scale. If the upper 
limit of the physical scale is less than the saturation 
scale, repeated sampling of the same portion or portions 
of clouds defined by similar dynamics is then necessary 
to meet the requirement of saturation scale. Repeated 
sampling may be needed particularly in strongly tur- 
bulent, narrow regions of cumulus clouds in regions of 
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strong shear. When clouds or parts of clouds such as a 
growing turret are not stable enough to permit repeated 
penetrations, sampling of other similar clouds may be 
necessary to reach the saturation scale. Herein lies a 
decision of practicality for making an observation. Uni- 
formity is to be translated from the Poisson uncertainty 
in a completely nonturbulent environment, to an envi- 
ronment whose fluctuations can be prescribed from 
physical or chemical considerations. Thus a cumulo- 
nimbus anvil, a field of marine stratocumulus cloud, or 
a widespread field of cumul~nimbus may be chosen as 
the field of interest. The ultimate limit is evidently the 
whole atmosphere. The criterion for reaching the sat- 
uration scale should be investigated empirically by seek- 
ing the limit of measurement, which become invariant 
with further addition of data. In summary, not only are 
instruments needed that are capable of identifying the 
finest structure, but also sampling strategy has to meet 
the requirement of reaching the saturation scale. 

Furthermore, even with satisfactory measurements 
available, extensive analysis is needed to fill in the de- 
tails theoretically illustrated in Fig. 1. However, except 
for the uniform case, the saturation scale and the scale 
dependence are largely unknown. Application of such 
methodologies as multiscale analysis (Smith and Liu 
1993; Liu et a]. 1996; Davis et al. 1996; Kostinski and 
Jameson 1997, 1999; Jameson and Kostinski 1998, 
1999, 2000; Jameson et a1. 1999; Miles et al. 2000) to 
datasets sampled at different levels of fluctuations are 
necessary to fill this gap. After identifying the saturation 
scale, the relationship between the exponent b and the 
level of fluctuations can be empirically established by 
investigating the corresponding size distributions and 
their relationship with turbulent intensities (e.g., tur- 
bulent kinetic energy and dissipation rate). 

Cloud properties and size distributions can also be 
measured by use of remote sensing techniques such as 
radars (Atlas et a]. 1973; Heymsfield et al. 1996; God- 
dard et a1. 1997). Because remote sensing techniques 
typically sample large volumes, measured size distri- 
butions are expected to be close to the MXSD. Recently, 
remote sensing techniques have been developed to mea- 
sure droplet size distributions as well as turbulent prop- 
erties such as velocity variance and turbulent dissipation 
rate (Babb and Verlinde 1999). This provides another 
way to relate the exponent b to turbulence properties. 
Furthermore, a variety of in situ and remote sensing 
instruments (surface-, aircraft-, and satellite-based) are 
often coordinated in current field projects to address 
cloud-related issues because of the wide range of scales 
involved. An important issue with this approach is the 
mutual comparison and validation of measurements 
made by these instruments operated at different sam- 
pling scales. Ideas presented here may be used for this 
purpose as well. 

5. More comparisons with kinetic models 
As discussed in the introduction, the systems theory 

stands in stark contrast to kinetic models with regard to 

the philosophy of treating the problem of droplet size 
distributions. The philosophical differences between the 
systems theory and kine& models in turn lead to dif- 
ferences in other aspects. Mathematically, unlike kinetic 
models formulated using differential equations, the sys- 
tems theory is built upon calculus of variations, integral 
equations, and constrained optimization. Furthermore, 
averaging is used one way or another in kinetic models . 
to explain observed droplet size distributions. Typical 

. 
examples are those studies that generate many parcels 
and predict size distributions for each parcel and then 
average size distributions predicted for all the parcels 
(Feingold et al. 1998). The averaging processes of ki- 
netic models are computationally extensive. A more fun- 
damental difficulty arises from the wide range of scales 
involved in entrainment and mixing processes in tur- 
bulent clouds (Krueger et A. 1997). In contrast, as in 
statistical mechanics, the systems theory introduces sta- 
tistical laws for fluctuations and simply relates the large- 
scale average to the MXSD, and provides an analytical 
way of averaging. 

In the quest to understand and explain observed drop- 
let size distributions, major efforts have been devoted 
to various kinetic models. The idea of the systems theory 
has received much less attention compared to its kinetic 
counterpart. At first glance, the systems theory seems 
to convey a "strange" impression that observed size 
distributions have little to do with the details of indi- 
vidual droplets and their interactions. It is interesting to 
note that physicists shared a similar impression regard- 
ing statistical mechanics at the early days of this dis- 
cipline. However, such a view was refuted by the later 
success of statistical mechanics. The ideas of statistical 
mechanics have been successfully extended to various 
disciplines to study complex systems (Haken 1977). 
Such widespread success provides indirect justifications 
for using the systems approach to study cloud droplet 
size distributions. The systems theory has also been 
justified by its successful explanations for many ob- 
served phenomena such as spectral broadening and scale 
dependence. The Weibull size distributions predicted as 
the MXSD by the systems theory have been demon- 
strated to be consistent with observed droplet size dis- 
tributions (Costa et al. 2000; Liu and Daum 2000a,b). 
Miles et al, (2000) recently reported observational ev- 
idence supporting the scale dependence of droplet size 
distributions predicted from the systems theory. 

6. Concluding remarks 

The systems theory presented in LH98 is generalized 
to allow for varying fluctuations in clouds. The general .- 

MXSD and MNSD are, respectively, a general Weibull 
distribution and a general &-function.   he generalized 
theory provides a self-consistent theoretical framework 
for a wide range of conditions. It reduces to those pre- 
sented in LH98 when liquid water content is conserved, 
and becomes consistent with the uniform growth models 
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for nonturbulent adiabatic clouds. The generalized sys- 
tems theory reveals the following important points. 
First, droplet size distributions depend on the scale over 
which they are observed or simulated, and approach the 

- MXSD with increases in averaging scale. Second, there 
exists a characteristic scale. defiied as the saturation 
scale, beyond which observed size distributions do not 
change much because of their closeness to the MXSD. 
Third, individual droplet size distributions are strongly 
scale dependent when the sampling scale is less than 
the saturation scale, and therefore ill defined without 
specification of the averaging scale. Fourth, the differ- 
ence between the MXSb and the MNSD, scale depen- 
dence. and the saturation scale decreases with decreas- 
ing fluctuations, and eventually disappear under uniform 
conditions. The absolute uniform state characteristic of 
the minimum spectral entropy and maximum popula- 
tional energy change is analogous to the state of absolute 
zero for atomic systems, which assumes the minimum 
thermodynamic entropy and is prohibitively difficult to 
realize. 

The generalized systems theory provides explanations 
for a number of long-standing issues. First, it is shown 
that spectral broadening can be understood in the frame- 
work of scale dependence, arising as a result of scale 
mismatch between models and observations. Second. 
the phenomenon that droplet size distributions observed 
in adiabatic cores of cumulus clouds are very narrow, 
yet still broader than those predicted by uniform models, 
are due to the small, yet inexorable fluctuations affecting 
cloud droplets even in adiabatic cores, which will cause 
small differences between the MXSD and MNSD. 

Implications of the scale dependence and ill defined- 
ness of droulet size distributions in turbulent clouds are 
discussed. In general, caution is needed when comparing 
observed droplet size distributions with those simulated 
by models, when coupling models of different scales, 
and when comparing measurements collected using in- 
struments with different sampling scales. The unique 
property of scale dependence in turbulent clouds sug- 
gests the necessity of making explicit references to the 
averaging scale in numerical simulations as well as in 
observational studies. In particular, it is argued that to 
represent clouds in climate models, the simple moment- 
based microphysical models could be more accurate 
than the complicated models with detailed microphysics 
because of the large scales involved in climate models. 
Furthermore, the unique property of scale-dependence 
suggests the ultimate need for a new theoretical frame- 
work that treats the scale as an indevendent variable, 
just as the variables of space and time are treated in the 
current framework. It is not clear to us now how to 
realize this. But, it seems that a combination of the 
systems idea with multiscale approaches may be a prom- 
ising avenue. In terms of instrumentation and sampling 
strategies, it is suggested that instruments capable of 
detecting structures at the resolution of the smallest tur- 
bulent eddies (e.g., 1 mm) are needed. Repeated or large 

volume sampling of the same cloud or similar clouds 
may be necessary to reach the saturation scale for clouds 
that have small physical scales, for example, small cu- 
mulus. Similarly, if regions of specific characteristics 
are selected for analysis-for example regions of strong 
shear between up- and down- drafts, such regions must 
have sufficient volume to satisfy the criterion for the 
saturation scale. Thus, the rationale for comparison of 
models and observations or intercomparison of models 
and observations themselves requires attention to not 
only the Poisson criteria for particle measurements, but 
also the scale dependence and the saturation scale in a 
turbulent environment. 

The present work highlights the importance of fluc- 
tuations in determining droplet size distributions and 
their scale dependence. However, quantitative studies 
along this line are very limited. Because fluctuations are 
closely related to turbulence, simultaneous measure- 
ments and analysis of turbulence and droplet size dis- 
tributions, at the same time, and spatial resolution are 
needed to provide some measure of the saturation scale 
and the form of the scale dependence. The term of "fluc- 
tuation" is used in this paper in a generic sense. No 
assumption on specific mechanisms causing fluctuations 
is made since we think there may exist a number of 
mechanisms that cause fluctuations and these mecha- 
nisms are not well understood. Such mechanisms in- 
clude turbulence-related processes such as entrainment 
and mixing. The differences in CCN properties (e.g., 
sizes, chemical compositions, and concentrations) may 
cause fluctuations as well. 

It is noteworthy that there may also be utility in ap- 
plying the arguments presented in this paper for com- 
parison of dynamical systems characterized by motions 
and particle distributions in an astronomical-scale set- 
ting where fluctuations exist. 
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APPENDIX A 

Derivation of the General Minimum Likelihood 
Size Distribution 

To determine the MNSD, n,,,,,,(D), is a problem of the 
calculus of variation, and requires the generalized func- 
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tion theory because of the involvement of the 8 function. 
The details of the generalized function theory are re- 
ferred to in Gelfand and Shilov (19641, Zemanian 
(1965), and Keener (1995). Only the definitions and 
operations relevant to this paper are outlined here. 

The inner product of two functions f ( D )  and g(D)  is 
defined as 

A test function, denoted by q(D) ,  is a function such 
that it is continuously differentiable infinitely and has 
compact support. 
A generalized function is defined as a continuous lin- 
ear function acting on q(D) ,  denoted by the inner 
product ( f  ( D L  W)) .  
Two generalized functions f l ( D )  and f 2 ( D )  are said 
to be the same if, for a test function q ( D ) ,  we have 

( f , ( D ) ,  = (f2(D),  ( A l )  

The derivative of a generalized function is defined by 
the equation 

The constraints as described by ( l a )  and ( l b )  for the 
general droplet system can be rewritten as 

f n(D) dD = N, 043) 

f Dbn(D) dD = ND;, (-44) 

where Db = [lDbn(D)dD/N]llb is defined as the bth di- 
ameter. The MNSD is the characteristic distribution that 
maximizes the populational energy change defined by 
(5b) subject to ( A 3 )  and (A4) .  Following the general 
procedure of variational calculus, we construct the spe- 
cific Lagrangian functional as 

Setting the first variation of F[n(D)]  with respect to the 
unknown n ( D )  equal to zero, we have ,. 

Solving ( A 5 )  utilizes the knowledge of the generalized 
function as introduced above. When the test function is 
chosen such that 

D > Dmax 1:: i 

q ( D )  = c lD3 + c2D2 - Al - A2Db, Dmin 5 D 5 Dmax 
D < Drni", 

- 
Eq. ( A 5 )  is equivalent to the following inner product: 

Using ( A 2 )  for the derivative of a generalized function, 
we further have 

Therefore, 

- 

- ID: (3c1D2 + 2c2D - bA2Db-I)n(D) dD 

= 0. (-49) 

Given a generalized function 

n+(D)  = K8(D - D*), ( A  10) 

where D E ( D  DmaX), we have 

Without loss of generality, we can always choose a A2 
such that 

Therefore, we have 

Based on the definition of equality of two generalized 
functions by ( A l ) ,  the MNSD is 

nmi,,(D) = n+(D) = K8(D - D*). (A12) 

The constant K is determined by substituting (A12)  into 
(A3):  
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where D* is given by substituting (A12) and (A13) into 

Therefore the MNSD is given by 

n&) = NS(D - D,). 

APPENDIX B 

The Approach of the MXSD to the MNSD 

Equation (4) can be rewritten as 

where DO = ((b - l)lb)llb(XlaN)llb is the mode diameter 
of the droplet (Deirmendjian 1964). 

When D = Do, (Bl) becomes 

As b approaches m, the ratio (b - 1)lb approaches 
1, and therefore nmaX(Dn) approaches a. When D # Do, 
it is obvious that nrnax(D) approaches 0 as b approaches 
m. Together with the fact that Do approaches Db as b 
approaches m, we have that nmax(D) approaches the 
MNSD, n d D )  = NS(D - Db) as b approaches m. 
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