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Abstract
This paper consists of three parts. The first part is concerned with the­

parameterization of cloud microphysics in climate models. We demonstrate the crucial
importance of spectral dispersion of the cloud droplet size distribution in determining
radiative properties of clouds (e.g., effective radius), and underline the necessity of
specw'ing spectral dispersion in the parameterization ofcloud microphysics. It is argued
that the inclusion of spectral dispersion makes the issue of cloud parameterization
essentially equivalent to that of the droplet size distribution flmction, bringing cloud
parameterization to the foreji'ont of cloud physics. The second part is concerned with
theoretical investigations into the spectral shape of droplet size distributions in cloud
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physics. After briefly reviewing the mainstream theories (including entrainment and
mixing theories, and stochastic theories), we discuss their deficiencies and the needJar a
paradigm shift jimn reductionist approaches to systems approaches. A systems theory
that has recently been Jormulated by utilizing ideas ji'om statistical physics and
information theOly is discussed, along with the major results derived/rom it. It is shown
that the systems formalism not only easily explains many puzzles that have been
frustrating the mainstream theories, but also reveals such new phenomena as scale­
dependence oj cloud droplet size distributions. The third part is concerned with the
potential applications oj the systems theoly to the specification ojspectral dispersion in
terms oj predictable variables and scale-dependence under different fiuctuating
enVir01l111ents.

1. Introduction
Clouds have attracted great interests from humans, as implied by the poem by Vallie

Cotton [1], "Clouds are pictures in the sky/They stir the soul/they please the eye/They
bless the thirsty earth with rain/which nurtures life from cell to brain/But no! They are
demons, dark and dire/hurling hail, wind, fiood, and fire/Killing, scarring, crnel
masters/OJ destl1lction and disasters /Clouds have such diversity/Now blessed, now
cursed/the best, the worst/But where would life without them be?" Clouds, which playa
crucial role in regulating the energy cycle and water cycle of the Earth, have been a
focus of the cloud physics community over the last few decades. With the increasing
recognition of the importance of clouds in regulating climate and the growing concern
over potential global climate change caused by human activities, clouds have reeently
come to the center stage of climate research. Cloud effects and cloud feedbacks have
been identified as one of the largest uncertainties in current climate models [2]. Cloud
processes/properties need to be parameterized in climate models as subgrid processes
because they cannot be explicitly resolved by the state-of-art climate models. For the
same reason, cloud microphysics has to be parameterized in cloud-resolving models.

Despite the great progress made over the last few decades, many issues regarding
clouds remain unsolved. This work is concerned with two of them: microphysics
parameterizations of warm clouds in climate models (cloud parameterizations hereafter
for brevity), and theoretical studies of cloud droplet size distributions. In Section 2, we
review and compare the existing schemes for cloud parameterizations in climate models,
with emphasis on the effect of spectral shape of the droplet size distribution. We show
that the spectral shape alone can cause substantial errors in calculation of cloud radiative
properties, indicating the need to specify the spectral shape in addition to liquic! water_
content and droplet concentration. We also argue that the same is true for cloud­
resolving models, in which the effect of spectral shape is often ignored in the
parameterization of cloud microphysics. The inclusion of spectral shape in cloud
parameterizations makes the subject of cloud parameterizations essentially equivalent to
the relatively old subject of specifying the droplet size distribution function. As a result,
instead of being treated as separate subjects, the key to improving cloud
parameterizations becomes the core of cloud physics.

In Section 3, we introduce some long-standing is;ues regarding the spectral shape of
the droplet size distribution, and then briefly discuss the traditional mainstream theories
proposed to address these issues and their deficiencies, including various entrainment
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and mixing models and stochastic models. In Section 4, we focus on a systems theory
that has been recently formulated based on ideas of statistical physics and information
theory to avoid the difficulties of the mainstream theories. This theory establishes a
self-consistent theoretical framework, offers new insights into the issues that have
been frustrating the mainstream theories, and reveals that droplet size distributions
depend on the scale over which the size distributions are averaged (scale-dependence
hereafter). This scale-dependence has important implications for virtually all cloud­
related issues, including cloud parameterizations. Because the systems theory is
relatively less known compared to mainstream models, it is a major focus of this
contribution. In Section 5, we discuss new challenges ahead, address potential
applications of the systems theory, and explore opportunities for a new theoretical
framework to meet these challenges.

2. Cloud parameterizations
2.1. Effective radius and spectral dispersion

Effective radius (defined as the ratio of the third to the second moment of a droplet
size distribution) is one of the key variables used in calculation of the radiative
properties of liquid water clouds [3-4]. The inclusion and parameterization of effective
radius in climate models has proven to be critical for assessing global climate change.
Slingo [5] studied the sensitivity of the global radiation budget to effective radius and
found that tbe warming effect of doubling the CO2 concentration could be offset by
reducing effective radius by approximately 2 flm. Kiehl [6] found that a number of
known biases of the early version of CCM2 were diminished, and important changes in
cloud radiative forcing, precipitation, and surface temperature resulted if different values
of effective radius were assigned to warm maritime and continental clouds. A high
sensitivity to the method of parameterizing effective radius was also found in a recent
study of the French Community Climate model [7].

Early parameterization schemes expressed effective radius as either a linear or a
cubic root function of the liquid water content, implicitly assuming no dependence of
effective radius upon the total droplet concentration [8, 9]. There has been increasing
evidence for parameterizing effective radius as a tlII3" power law of the ratio of the
cloud liquid water content to the droplet concentration [10-16]. The "1/3" power-law
takes the form

_ ( 3 )113 ( L )113r-p -- -
, 4Jrpw N

where r, is the effective radius in flm, L is the liquid water content in gm", and N is the
total droplet concentration in em". The dimensionless parameter ~ is a function of the
spectral shape, and can be universally expressed as [13, 16]
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where £ is the spectral dispersion defined as the ratio of the standard deviation and the
mean radius of the droplet size distribution, and s is the skewness of the droplet size
distribution.

2.2. Relationship between pand E
For clouds with a monodisperse droplet size distribution as described by a delta

function n(r)=Ni5(r-r,), effective radius equals the volume mean radius, and PMO = I.
This value of P was used by Bower and Choularton [10], and Bower et aI. [I I] to
estimate the effective radii of layer clouds and small cumuli. In a study of the sensitivity
of NCAR's CCM2 to variations in reo Kiehl [6] used this scheme to provide support for
choosing r, of 5 flm and 10 flm for continental and maritime clouds respectively. Martin
et a!. [13] found that there are differences in the values of spectral dispersion between
maritime and continental clouds, and derived estimates of PMM = 1.08 for maritime
stratocumulus, and PMC = 1.14 for continental stratocumulus. By assuming a negligible
skewness of the droplet size distribution, Pontikis and Hicks [12] analytically derived an
expression that relates Pto the spectral dispersion. Tills expression is hereafter referred
to as Gaussian-like and denoted by GL, because the Gaussian distribution represents a
typical form of such symmetrical distributions.

The assumption of either monodisperse or Gaussian-like distribution is clearly
problematic for cloud physicists, because it has been long known in cloud physics that
neither of them represent droplet size distributions observed in real clouds well (see
Section 3 for details). These parameterizations are only appropriate for clouds with weak
turbulent entrainment and mixing where droplet size distributions are rather narrow. For
clouds exhibiting broad size distributions, the above-mentioned parameterizations
underestimate Pand therefore effective radii, though to different degrees. To allow for
the spectral broadening processes such as turbulent entrainment and mixing in the
parameterization of effective radius, Liu and Hallett [14] derived another
parameterization for effective radius in

Table I. The Commonly Used P-E Express­
the form of Eq. (I) based on a systems ions.
theory that is discussed in Section 4. The
corresponding relationship between P
and £ is hereafter referred to as the WB
expression, because it corresponds to the
Weibull form of cloud droplet size
distributions. Besides the Weibull
distribution, the gamma distribution and
the lognormal distribution have also
been widely used to represent droplet
size distributions [17]. Similar to the
derivation of the WB expression,
expressions for Pas a function of £ can
be easily derived for the gamma [18,
GM hereafter] and the lognormal [19,
LN hereafter) droplet size distributions.
These expressions are summarized in
Table I.
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It is obvious from Table I that the only distinction between these different
parameterizations for effective radius lies in the form of the dependency of 13 on spectral
dispersion, which is determined by the functional form that is assumed for droplet size
distributions. Therefore, given liquid water content and droplet concentration, the
identification of the best parameterization of effective radius is essentially equivalent to
the determination of the best mathematical expression for the droplet size distribution.
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2.3. Comparison ofthe ~-E expressions
Although the importance of 13 in the parameterization of effective radius was

recognized in the early 1990s, most parameterizations assume a constant 13 and concern
themselves mainly with liquid water content and droplet concentration (see a rccent
review for details [20]). To the best of our knowledge, the only systematic study where
the effect of spectral dispersion is the focus was done by Liu and Daum [21]. In Ref.
[21], the MO, MM, Me, GL and WB expressions were compared with observed data
collected from continental stratocumulus clouds. It was found that the WB expression
performs the best over the range of observed values of spectral dispersion (0 to - 1.2).
For the dual purposes of identifYing the best cloud parameterization and the best size
distribution function, we compare in Fig. I all the expressions given in Table I with
those calculated from the measured droplet size distributions collected in continental
(crosses) as well as maritime (solid dots) clouds.

Significant differences between the dependencies of 13 on the spectral dispersion are
exhibited in Fig. I. The values of 13 derived from the measurements increase
monotonically with the spectral dispersion for both continental and maritime clouds. The

results indicate that the WB
expression best fits the
measurements over the range of
observed values of spectral
dispersion (the GM expression is
close to the WB expression). The
GL expression underestimates,
while the LN overestimates
13 when droplet. size distributions
are broad. The GL, WB, GM and
LN are almost equivalent for
very narrow size distributions.
The MO, MM and Me onl~

represent cases with specific
small values of spectral
dispersion.

Figure 1. Comparison of different ~-t expressions given
in Table I with measurements. NARE and ARM
represents results derived from measured droplet size
distributions collected in maritime clouds and continental
clouds during two different projects, respectively. See the
text for the meanings ofthe other symbols.

2.4. Comparison of mea­
sured and parameterized
effective radins

Figure 2 further illustrates
thc pcrformance of the different
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2.5. Section summary
Briefly, this section

demonstrates the following
results. (1). Spectral dispersion is
vitally important for the
parameterization of effective
radius, and therefore for the­
parameterization of cloud
radiative properties. (2). The
inclusion of spectral dispersion
makes cloud parameterizations
essentially equivalent to the
choice of the droplet size
distribution function. (3). The
WB (or GM) scheme of cloud
parameterization, which corres-
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Figure 3. The difference between measured effective
radii and those estimated from the expressions given in
Table 1 as a function of spectral dispersion.

Figure 2. Comparison of measured effective radii
with those derived from the different expressions
given in Table L

~ 12

cloud parameterizations given in
Table I, including the GM and LN
expressions. The measured values are
calculated from droplet size
distributions collected using the
Forward Scattering Spectrometer
Probe (FSSP). As expected, the WB
(or GM) expression obviously
outperforms the other schemes,
which all underestimate or
overestimate (LN) effective radii to
different degrees.

The substantial differences in
parameterized values of effective
radius are due to the different
treatments of P as a function of the
spectral dispersion because the same
values of Land N are used for all the
parameterization schemes. This result

can be better understood by examining the differences between measured and
parameterized values of effective radii as a function of spectral dispersion. Figure 3
shows that except for the WB and the GM schemes, whose errors in parameterized
effective radii are always withit;l I flm and without obvious trcnd of change with the
spectral dispersion, the biases in parameterized values of effective radii strongly
increases with the spectral dispersion. At large spectral dispersions, the GL scheme
could underestimate effective radius by over 2 flm; the underestimation is even larger for
those schemes with fixed values of P (MO, MM, and MC). In the contrary, the LN

scheme overestimates effective
radius by similar amount.
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ponds to the Weibull droplet size distribution, appears to be the most accurate among the
different expressions given in Table 1. It has also been found that the Weibull
distribution best fits droplet size distributions observed in cumulus clouds [22]. Because
the close interactions between microphysics, dynamics and radiation, spectral dispersion
is also importaut for microphysics parameterizatiou in cloud-resolving models.

These results prompt us to ask two further questions: (I) why does the Weibull
distribution well describe observed droplet size distributions, and (2) what is the best
way to specify spectral dispersion in terms of predictable variables in climate models?
These two questions lead the issue of cloud parameterizations to the core of cloud
physics: the spectral shape of the cloud droplet size distribution and the physics behind
it.

3. Spectral broadening and mainstream kinetic theories
3.1. Spectral broadening

A wonderful historical review of cloud physics is given in Refs. [23] and [24].
Briefly, the study of clouds started in the 18th century, but most of the quantitative
information on droplet size distributions was not available until the 1940s. Since 1940s,
increasing attention has been devoted to cloud physics as a result of a number factors.
For example, a surge of interest in cloud physics was closely tied to the military-related
research during World War II. After the war, interest was greatly stimulated by the
discovery of the potential for weather modification in the late 1940s. A recent surge of
interest comes from the recognition of the critical role of clouds in regulating climate.
Although great progress has been made over the last few decades, the central problem of
cloud physics- understanding and predicting droplet size distributions remains largely
unsolved.

The condensational growth equation for individual droplets is well established and
can be found in virtually every textbook on cloud physics [23, 24]. It is given by

dr G
-:::=;-

dt r (3)

where G is a function of the supersaturation. If all the droplets are exposed to the same
supersaturation (this is the assumption of the classical uniform model), then this equation
leads to droplet size distributions that tend to be monodisperse. This fact was realized
long ago. For example, Houghton [25] in 1938 considered the asymptotic approach of
droplet size distribution to monodisperse size distributions as a possible reason -for the­
colloidal stability of clouds, and suggested an experimental verification.

Contrary to Houghton's expectation, it soon became evident in the late 1940s and
early 50s that observed droplet size distributions are much broader compared to those
predicted by uniform models [26]. The discrepancy between observations and uniform
models (spectral broadening) has been a long-standing problem in cloud physics and is
still awaiting physical explanations. In addition, it has also been observed that the
discrepancy between observed and simulated droplet size distributions increases with
increases in turbulence intensity. Even in adiabatic cores, it was recently found that
observed droplet size distributions are still broader than those predicted by uniform
models [27].
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To explain the so-called spectral broadening, a number of models/hypotheses have
been proposed over the last few decades. The mainstream models can be roughly
grouped into two schools that are discussed below.

3.2. Entrainment and mixing models
a. Dynamieal effeets

Early studies of entminment and mixing processes were mainly concerned with their
effects on liquid water content, droplet concentration and dynamics. Stommel [28] noted
in 1947 that cumnlus clouds had to be significantly diluted by lateral entraimoent and
mixing of dry air in order to explain their internal temperature and liquid water content.
He found that temperature profiles measured .inside clouds were much closer to the
soundings of the surrounding environment than to the moist adiabatic, and that about
half the air in a cloud carne from the surrounding enviromoent. Malkos [29] had
considerable success in interpreting observed liquid water deficits based on Stonunel's
entrainment process. Based on observations of the liquid water content of cumulus
clouds, Warner and Squires [30] concluded, "it appears that the full adiabatic liquid
water content in cumuli is realized, if at all, only in regions which are of negligible size
in relation to the cloud as a whole. In most cases, the liquid water in the main body of
the cloud is less than a quarter of the adiabatic value, and often considerably less."

Three features conunonly observed in small cumulus clouds are a decrease in the
ratio of liquid water content to adiabatic liquid water content with altitude above cloud
base, the remarkably flat cloud base, and the horizontal uniformity of liquid water
content at anyone sampling altitude [31]. If entraimoent occurred through the sides of
the cloud, followed by lateral mixing, one would be facing the problem of explaining
infinite horizontal diffusion and near-zero vertical diffusion. Based on these facts,
Squires [32] in 1958 postulated the first cloud top entraimoent model. However, his idea
was not pursued by other scientists in this ficld until the mid-1970's. A thermal dynamic
diagram was devcloped in 1979 by Paluch to locate the origin of the mixed cloudy air
[33]. She used the wet equivalent potential temperature and the total water mixing ratio
(liquid water and water vapor) as axes in her diagram. Since both of these parameters
are conserved during adiabatic motions of a moist air parcel with or without
condensation, an air parcel's position on the diagram will not change during adiabatic
motions. She used this diagram to analyze data collected during the National Hail
Research Experiment (NHRE) and found that clouds consisted of mixtures of air
originating below cloud base and some level above the observation level, generally near
cloud top. LaMontagne and Telford [34] analyzed observations of small cumulus clouds
made in the South Dakota area using the Paluch diagmm. They fouod that the~clouds~

contained a mixture of air from cloud base and air from above cloud top. The portion of
air from above cloud top increased with altitude. Blyth et al. [35], using the Paluch
technique, investigated data obtained from the High Plain Experiment (HIPLEX) and the
Cooperative Convective Precipitation Experiment (CCOPE), both conducted near Miles
City, Montana. They conclnded that the entrained air was generally close to, or slightly
above the observation level of the aircraft. They presented a schematic model of a
cumulus cloud with continuous entrainment into the surface of the thermal eroding the
core, and the remaining undiluted core region continuing its ascent, leaving a turbulent
wake of mixed air behind it. Based on thermodynamic analysis, Jonas [36] concluded,
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"many of the clouds contain evidence of entrainment of air originating significantly
above the observation level which may result from penetrative downdraughts formed by
entrainment at cloud top." He also found that cloud top entrainment was more common
in deeper clouds (- 4 Ian deep) than in shallower clouds. Carpenter et al. [37-39J
presented results from their three-dimensional numerical model, and confirmed the
above-mentioned shedding thermal model.

Entrainment at the top of the stratocumulus-toppcd marine boundary layer is
important in the life cycle and the drizzle production of such clouds. Early studies in
this field began with Lilly [40J in 1968 by modeling the cloud-topped mixed layers
under an inversion. He, as well as Randall [41 J, assumed that cloud-top radiation was
important in entrainment instability. Telford and Chai [42J proposed a hypothetical
model of the fonnation of inversions, and fog, stratus and cumulus in warm air over
cooler water. They claimed that if the air was cooler than the water (which is the case in
most persisting cloud-topped marine boundary layers), an inversion could form which
would then lead to the formation of stratus as well as cumulus depending on the
entraimnent instability. They found that radiation was not an important controlling factor
in this process. Entrainment instability was controlled by the wet-bulb potential
temperature difference across the sharp inversion at cloud top. The amount of air that
could be entrained depended on the structure of the wet-bulb potential temperature above
the inversion.

Recent research in this area has concentrated· on two directions: airborne
measurements of entrainment rates under various conditions, and improvements in the
parameterization of the entraimnent process in numerical models. Using three methods
(thermodynamic budget of the boundary layer, turbulent flux observed near the
inversion, and combining the observed rate of cloud top height change and the estimated
subsidence rate), Boers et al. [43J obtained an entraimnent rate of 4 mm S·1 over the
Southern Ocean. The preliminary findings from the Dynamics and Chemistry of Marine
Stratocumulus (DYCOMS-ll) experiment [44J estimated an entraimnent rate of 3 to 5
mm 51 at the top of the stratocumulus during night times off the southern California
coast.

On the modeling side, since large-eddy simulation (LES) models have great promise
in the testing of entrainment closures, stratocumulus topped marine boundary layer
simulations are more reliant upon these models 145, 46]. Scientists are not only testing
different entrainment parameterization schemes but are also concentrating more on the
effect of grid resolution on entrainment calculations [47J. The effect of radiation on
entrainment rate has also raised more concern [48]. The effect ofentraimnent and mixing
processes on the parameterization of effective radius due to their impacts on liquid water
content and droplet concentration in climate models was recently discussed [20J.

b. Application to spectral broadening
The application of the idea of entraimnent and mixing to explain spectral broadening

started in the 1970s. In order to explain observed droplet size distributions, Warner in
1973 simulated entrainment in his model by assuming that the entraimnent rate was
either constant or varied with the updraft velocity [49]. He also assumed that the
entrained air spread instantaneously throughout the whole lateral cross-section of the
entrained level. In other words, all droplets at that level were exposed to the entrained
dry air, and all drops reduced in size in order to maintain saturation. This process has
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been referred to as homogeneous mixing through the sides of a cloud. He found that
spectral broadening was not significant if the entrained air was nuclei free, regardless of
the entrainment rate. If the entrained air contained nuclei, the size distribution was
broadened considerably; however, it often had a single broad peak that differed from
those observed in natural clouds. Lee and Proppacher [50] conducted a more complete
simulation of the homogeneous mixing model in whieh they used two different nuclei
[NaCi and (NH4)2S04]. They found that if entrained air contained no nuclei, size
distributions were similar to those adiabatic cases with no entrainment. If both kinds of
nuclei were considered, the size distributions were broadened, and sometimes bimodal
speetra were obtained. If only one kind of nuclei was used, the broadening was
somewhat less significant than in the previous casco In all cases, there were still some
difficulties in explaining the observed droplet size distributions. Mason and Jonas [51]
and Jonas and Mason [52] presented a spherical thermal model, each thermal rising
through the residual of its predecessors. In these cases, the air entrained from outside the
cloud is instantaneously mixed with that at the height of the center of the blob
throughout the thermal. Unfortunately in a cloud of this size (500m radius or so),
calculating the droplet size, distribution at the center of the spherical thermal does not
provide meaningful size distributions at other heights, partieularly when the lifting
condensation level is partway through the sphere.

Based on their laboratory experiments, Latham and Reed [53] found that
entrainment left the shape of the spectrum and its mean diameter unchanged while the
total number concentration of the droplets decreased. They hypothesized that, before
spreading throughout the whole cross-section of the cloud at the level of entrainment, as
assumed in the homogeneous mixing process, the entrained air would evaporate all the
droplets in its immediate neighborhood until saturation was reached and then spread
laterally throughout the level. This process is referred to as the inhomogeneous mixing
process. Based on the findings from these experiments, Baker and Latham [54] and
Baker et al. [55] simulated the inhomogeneous mixing process in a simple model, and
discussed the time scales for turbulent diffusion, molecular diffusion, and droplet
growth/evaporation. They concluded that the time scale for growth/evaporation is much
shorter than for both turbulent and molecular diffusion if the scales are greater than I m
for droplets of 10 lim radius. Their inhomogeneous mixing model produced broad
bimodal spectra with large drops as well as smaller droplets of all sizes. However, the
mechanism by which the entrained air quickly penetrated so deeply into the clouds
remained unclear.

Telford [56] discussed his entity type entraimnent mixing (ETEM) process through
cloud tops. He suggested that onee an air parcel is entrained, the parcel will maintain its­
identity and will mix with the cloudy air in its immediate neighborhood. The first
droplets mixed into the entrained parcel will be totally evaporated until saturation is
reached. Further mixing between the entrained parcel and cloudy air in its enviromnent
will only change the droplet concentrations but not their sizes. Evaporative cooling
makes the entrained air parcel denser than the surrounding cloud and will cause it to
desceod to a level of neutral buoyancy. This parcel will rise again toward the cloud top
at some later time. Continuous mixing with the surrounding cloudy air happens at all
times due to turbulence. Telford and Chai [57] further presented a condensation model of
the ETEM process. Because of the dilution effect in the entrained parcel, large drops
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can grow and because of the continuous mixing with its surrounding cloudy air, the
entrained parcel has a continuous supply of smaller droplets of all sizes. This process
broadens the droplet size distribution, reduces the adiabatic liquid water content and the
total droplet concentrations.

3.3. Stochastic theories
The idea of stochastic condensation, which considers the growth of a droplet

population as a stochastic process and relates the spectral broadening to various
fluctuations such as supersaturation associated with turbulence, was pursued from the
1960s especially by Chinese and Russian scientists [58-63]. These early theories often
replaced the full growth equations by simplified versions amenable to analytic analysis,
assumed Gaussian fluctuations, and claimed that turbulence fluctuations lead to spectral
broadening. On the contrary, by numerically solving the full growth equations under
Gaussian fluctuating environments generated by Monte-Carlo simulations, Warner [64],
and Barlett and Jonas [65] predicted that turbulent fluctuations only slightly broaden
droplet size distributions. They argoed that the supersaturation and the updraft are so
closely related to one another that a droplet that experiences a higher supersaturation,
and therefore grows faster, is likely to be in a stronger updraft which will allow it a
shorter time to grow on passing between any two levels in a cloud. Conversely, lower
supersaturations are associated with smaller updrafts and longer growth times. Manton
[66] demonstrated that turbulent mixing ignored in Refs. [64] and [65] can break the link
between supersaturation and updraft, and that the modified stochastic theory can lead to
spectral broadening. Nevertheless. the hypothesis of the breakdown of the correlation
between supersaturation and updraft remains controversial [67, 68]. Khvorostyanov and
Curry [69] pointed out that these early low-frequeney theories of stochastic condensation
generally yield droplet size distributions of the Gaussian type while observations tend to
follow positively skewed distributions. They derived a more general mean-field
equation. and showed that their equation bas the analytical solution of the gamma
distribution under certain assumptions in the low-frequency regime [70].

Considine and Curry [71] proposed a model based on the assumption that size
distributions at a given level in a cloud are horizontal averages over a large number of air
parcels that can have a different lifting condensation level. Shaw et al. [72] recently
related spectral broadening to turbulence-induced preferential eoncentration of droplets.
Srivastava [73] argued that the supersaturation that controls each individual droplet
(microscopic supersaturation) differs from the commonly used macroscopic
supersaturation. It was shown that, even without turbulence, the Poisson spatial
distribution of droplets could cause droplet-droplet variations in the microscopic­
supersaturation, which in turn leads to some spectral broadening.

3.4. Section summary
Significant progress in our understanding of formation of droplet size distributions

has been made over the last few decades through the various mainstream theories.
However, the details of the processes involved in the mainstream theories are poorly
understood and highly controversial. which is self-evident from the diversity of the
hypotheses discllssed above. Furthermore, the school of entrainment and mixing is
largely isolated from the school of stochastic condensation. Such isolation is problematic
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because entrainment, mixing and fluctuations, are actually acting together on droplets,
and all these processes occur over a tremendous range of interacting scales between the
largest eddy of a cloud size and the smallest eddy of the Kolmogorov microscale [74].
The mainstream theories do not provide explanations for the questions raised at the end
of Section 2.

Despite their differences, the mainstream models have one feature in common: they
attempt to follow each "eddy", or even each droplet. It has been increasingly recognized
that the size of the model grid needs to be as small as - I mm so that the smallest eddies
of turbulence, the mean distance between droplets, and microscopic supersaturation can
be resolved and tbat the grid values of variables such as temperature and water vapor
mixing ratio represent the ambient cooditions for the growing droplet [74-76]. It is
computationally prohibitive to numerically solve tbe associated equations. More
importantly, the stochastic processes, the wide range of scales, and droplet interactions
involved in turbulent clouds are so complex tbat it may be hopelessly difficult to
completely know the path of each droplet/parcel, droplet interactions, and the initial and
boundary conditions necessary for solving the growth equations. The difficulties are
evident from the fact that the randomness of turbulence is no simpler than that of
Brownian motions of molecules [77]. In fact, the subject of turbulence itself has been
considered one of the unsolved problems of classical physics [78]. The mutual
interactions between droplets and turbulence further complicate the problem [79, 80].

This vexing situation is similar to the early stage of the kinetic theory of gases in the
late 19th and early 20th centuries. During that time period, scientists (e.g., Maxwell,
Boltzmann and Gibbs) were frustrated by their inability to explain the macroscopic
thermodynamic properties of gases, despite the Jact that the Newtonian equations could
accurately describe the motion of each individual molecule in a gas. By analogy to the
kinetic theory of gases, these bottom-up models are generically referred to as kinetic
theories.

4. The systems theory
In view of the insurmountable difficulties with kinetic models, a entirely different

formalism, which considers cloud droplets as a system and studies them as a whole
instead of following each droplet or eddy, has been recently developed by integrating
into cloud physics the ideas from statistical physics and information theory [14, 81-86].
In this section, we elaborate on this theory and the major results derived from it, because
it is relatively less known compared to the mainstream tbeories discussed in Section 3.

4.1. Basic philosophy and droplet ensemble
The essence of the systems theory is to obtain useful information on droplet size

distributions without concern with the details of each individual droplet. This philosophy
is analogous to the idea used by Maxwell, Boltzmann and Gibbs, among others, to avoid
the difficulties of following each molecule in a gas, and is still the backbone of modem
statistical physics whose applications extend far beyond thermodynamic systems [87].
Let us start by quoting part of Gibbs' famous preface to his Elementary Principles in
Statistical Mechanics [88]:

n We may imagine a great !lumber ofsystems ofthe same nalure, but differing in the
configurations and velocities.... And here we may set the problem, not to follow a
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particular system through its succession of configurations, but to determine how the
whole number of systems will be distributed among the various conceivable
configurations and velocities at any required time, when the distribution has been given
for some one time.... The laws of thennodynamics, as empirically determined, express
the approximate and probable behavior of systems of a great number ofparticles, or
more precisely, they express the laws ofmechanics for such systems as they appear to
beings who have not the jineness ofperception to appreciate quantities of the order of
magnitude of those which relate to single particles, and who cannot repeat their
experiments ojien enough to obtain any but the most probable results."

Similarly, the existence of turbulence and fluctuations in clouds leads us to assume
that a droplet size distrihution results from a large number of stochastic events and to
consider a droplet ensemble that consists of an arbitrarily large number of different
microstates (size distributions) satisfying the same macroscopic constraints
(conservation laws). The choice of the ensemble depends on the conditions imposed on
the systems (e.g., microcanonical ensemble for isolated systems, or canonical ensemble
for systems in contact with a thermostat). The first key to the systems theory is to
establish a droplet ensemble suitable for the droplet system.

The droplet ensemble that has been investigated so far is for the study of droplet
systems having monomodal droplet size distributions [14, 83, 84, 86]. Briefly, it has two
constraints:

Ip(x)dx =1,

x
Ixp(x)dx=­

N'

(4a)

(4b)

where x, defined as the Hamiltonian variable (it was previously called restriction
variable), is related to the physical processes controlling the droplet system; X is the
total amount ofx per unit volume; N is the total droplet concentration; p(x) = n(x)/N can
be considered as the probability that a droplet of x occurs and n(x) is the droplet
concentration per unit volume per unit x interval. It should be noted that the
correspondence hetween x and the conservation law is a key to the ensemble. For
example, for the special droplet system constrained by the conservation of liquid water
content, x represents the mass of a droplet, X is the liquid-water content, and n(x) the
droplet concentration per unit mass interval. _ _

The current systems theory focuses on the following question: given X and N, what
are the most and the least probable ways to distribute X among the N droplets?

4.2. The most probable size distribution
As the Boltzmann energy distribution descrihes the most probable energy

distribution of a molecular system and the Maxwell velocity distrihution characterizes
the most probable velocity distrihution of a molecular system, it is expected that there
exists a characteristic droplet size distribution that occurs most probably among all the
possible droplet size distributions.
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By analogy with the Boltzmann entropy for molecular systems and the Shannon­
Jaynes entropy generalized for complex systems, the spectral entropy H is introduced
and defined as

H = -kJp(x)ln[p(x)}fx, (5)

where k is a proportional constant that has no effect on the derivation of the most
probable droplet size distribution. Maximizing the speetral entropy subject to the
constraints described by Eqs. (4a) and (4b), we can easily derive

(6)

where a = X/N represent the mean amount of X per unit droplet. Note that the physical
meaning of a is consistent with that of "KBT" in the Boltzmann energy distribution (KG
is the Boltzmann constant, T is the temperature, and KGT essentially represents the mean
energy per molecule in the gas). Therefore, the most probable droplet distribution with
respect to the Hamiltonian variable x is

(7)

In cloud-related studies, droplet size distribution with respect to the radius (r) is
preferred. It has been argued that x is related to r by the power-law relation [14, 83, 84,
86]

bx=ar , (8)

where the parameters a and b are related to physical mechanisms controlling the droplet
system. For the special case of liquid-water content conservation, a = [1/(6ltpw], and b =

3. The symbol Pw denotes the water density. A combination of Eqs. (7) and (8) yields
that the most probable droplet size distribution follows the Weibull distribution

(9)-

where the parameters No = ab/a and J.. = ala.

4.3. The least probable size distribution
Cloud droplet systems are more complex than molecular systems. For a molecular

system, the most probable state suffices to specify macroscopic thermodynamic
properties such as teinperature and pressure because of the enormous number of
molecules involved (e.g., 10" em'\ In other words, the most probable state virtually is
the mean state. As a result, other states sueh as the least probable state have not been a
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concern in statistical physics. However, because of very limited concentrations of
cloud droplets (e.g., lOa in cm l

), one cannot always equate the most probable size
distributions with observed or modeled droplet size distributions. Therefore, a
complete characterization of such a small system may also require knowing other
possible droplet size distributions. Although determining the specific probability of
each possible size distribution seems impossible at present, useful information can
be obtained by knowing the least probable distribution. If the least probable
distribution is identical with the most probable distribution, clouds are absolutely
uniform and the uniform model suffices. An example would be a unifonn updraft
with all droplets exposed to the same supersaturation and identical cloud
condensation nuclei (CCN). However, such idealized situations probably never
occur in nature. If there are any differences between the most and least probable
distributions, individual size distributions then depend on the scale over which they
are averaged.

A new concept of spectral free energy, defined as the energy necessary for the
formation of a specific droplet size distribution n(r), is introduced. Note that it was
previously called the populational energy change, and we switch to the new term
because of its analogy with the concept of free energy in thermodynamics. In Ref.
[85], the spectral free energy E was expressed as

E '" - 1T
P
iL. Jr3n(r} dr +1raJr2n(r)dr+c, (10)

where the first term on the right side is the latent energy with L. representing the
latent heat of the condensation of water vapor; the seeond term is the surface energy
with cr representing the surface tension of water. The coefficient c is related to the
activated CCN. Equation (10) was derived under the common assumption that other
forms of energy (i.e., gravitational potential energy, the kinetic energy associated
with droplet terminal velocities, and the solution effect) are negligibly small [24]. In
Ref. [86], these minor terms were incorporated into the coefficients before the
integrals as,

(II)

where the coefficient c\ = [(1tpw) /3(-L + gh + 1/2 VIZ )] (g is the gravitational con§tant; h_

is the height over which the water molecules in droplets are displaced; vi is the mean

square terminal velocity of droplets) includes the effects of the latent heat, gravitational

potential energy (gh), and the kinetic energy (1/2 Vi). The coefficient cz considers the

solution effect on the surface tension. Maximizing E given by Eq. (II) subject to the
constraints described by Eqs. (4a) and (4b), the least probable droplet size distribution is
derived as

n . (r) =No(r-rb)
nun '

(I2a)
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(l2b)

It is obvious that the least probable droplet size distribution is a monodisperse size
distribution.

It is easy to show that the least probable size distribution also corresponds to the
minimum spectral entropy H = O. The state of the minimum free energy is expected to
correspond to the most probable size distribution by analogy to molecular systems where
the Gibbs free energy is minimum at the state of maximum entropy. However, a formal
relationship between the spectral entropy and spectral free energy remains elusive.

4.4. Contrasts between the most and least probable size distributions
As shown above, expressions for the two most and the least probable droplet size

distributions are derived by use of the same mathematical technique - calculus of
variation. On the other hand, the spectral shapes of the two characteristic size
distributions are drastically different in general. The Weibull most probable droplet size
distribution is much broader than the monodisperse least probable size distribution.
Table 2 summarizes the major contrasts between the two characteristic size distributions.

It is noteworthy that the most probable size distribution, the least probable size
distribution, and their differences depend on the constraint characterized by the
parameter b. An analysis of the Weibull distribution as described by Eq. (9) shows that
it becomes narrower with increasing values of b, and eventually approaches the
monodisperse distribution as described by Eq. (12a) when b approaches ~ (See [86] for
mathematical proof). This behavior can be understood by examining the relationship
between b and spectral dispersion for the most probable Weibull distribution,

_[2br(2/b)j ]"2
&- jr2 ( I1bfl,

Table 2. Contrasts between the Most and Least Droplet
Size Distributions

Most Probable Least
Distribution Probable

Distribution
Probability 0 Most Least
occurrence
Spectral width Wide Narrow
Function to be Spectral Spectral Free
optimized entropy energy
Association Observation Uniform

model

(12)

where r (.) represents the
standard gamma function. Figure
4 helps to visualize the
asymptotic approach of the mosL
probable distribution to the
monodisperse distribution when
b increases.

In Fig. 4, the solid line
represents the relationship
calculated from Eq. (12); the
dashed line represents the fitting
power-law relationship shown in
the legend. The monodisperse
size distribution has a spectral
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dispersion of O. This result
indicates that the most probable
approaches the monodisperse
distribution with decreasing
fluctuations, because spectral
dispersion is closely related to
fluctuation levels in clouds, and
increases with increasing
fluctuations.
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Figure 4. Relationship between spectral dispersion and
the parameter b.

4.5. Explanations of exis­
ting puzzles

The unique properties ofthe
most and least probable droplet
size distributions, along with
their dependence on
fluctuations, can be used to
explain the question raised at the
end of Section 2, and virtnally

all the puzzles discussed in Section 3.1 in a unified way. First, the association of
observed droplet size distributions with the most probable droplet size distribution
explains why the Weibull distribution well describes observed droplet size distributions.
This is best illustrated by an example. The PMS FSSP-100 is probably the most
commonly used instrument for measuring droplet size distributions. The effective
sample area of this instrument is approximately 0.004 ern'. Suppose that at least 100
droplets are needed to establish a variance of less than 10%. The length that must be
sampled is therefore (100 droplets/(O.004.N) = 250001N (em), where N is the droplet
coucentrution in cm-3. This shows that for typical clouds of 100 - 200 cm-3, a path 125
to 300 ern long must be sampled, a path much longer than the typical Kolmogorov
microscale of clouds (- 1 mm). A much longer path is actually needed to get statistically
meaningful droplet size distributions. FSSP measurements of I second (i.e., 100 m for a
aircraft speed of 100 m/s) or longer are typically used in most studies. Therefore,
observed droplet size distributions average many size distributions and, subsequently,
look more like the most probable Weibull distribution.

Second, why is there spectrul broadening? The agreement of the least probable
monodisperse distribution with the prediction of the uniform growth model strongly
suggests that the uniform model predicts a result that is least probable to occur when­
clouds are turbuleut. The discrepancy between observations and model predictions may
be due to comparing two entirely different characteristic droplet size distributions.

Third, very narroW droplet size distributions are indeed observed in clouds formed
under "unifonn" conditions, e.g., in lenticular clouds and in adiabatic cores of small
cumulus. At first glance, the narrow size distributions observed under uniform
conditions seem to indicate that these observed size distributions are associated with the
least probable distribution. However, this is actually due to the fact that the most
probable Weibull distribution approaches the monodispcrse distribution when
fluctuations decrease.
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Finally, although droplet size distributions observed in the so-called adiabatic
cores are very narrow, they are still broader than those predicted by uniform models
[27]. In reality, real clouds are always in a more or less turbulent state. Even in non­
turbulent, uniform clouds with uniform CCN, the Poisson random spatial
distribution of droplets can cause fluctuations in the microscopic supersaturation
[73], an essential variable controlling the condensation/evaporation of individual
droplets. These facts suggest that the extreme monodisperse size distribution will
probably never be observed, no matter how uniform the cloud.

It is worth noting in passing that the third law of thermodynamics assures that
the state of absolute zero (or zero thermodynamic entropy) never occurs in nature.
By analogy, we may speculate that the state of the zero maximum spectral entropy
never occurs in atmospheric clouds. Coupled with the fact that the odds of observing
the least probable distribution are extremely slim, the monodisperse droplet size
distribution will never be observed!

4.6. Scale-dependence
The striking differences between the most and least droplet size distributions

imply that individual droplet size distributions depend on the scale over which they
are sampled/simulated. In particular, it has been argued [85, 86] that an individual
size distribution approaches the most probable droplet size distribution with an
increase in the averaging scale, and as a result, there exists a characteristic scale,
defined as saturation scale, beyond which all size distributions are approximately
the same and equal to the most probable droplet size distribution. When the
averaging scale is less than the corresponding saturation scale, however, droplet size
distributions are strongly dependent on the averaging scale, and therefore ill-defined
without specification of the averaging scale. In this case, it is necessary to explicitly
specify the scale and the dependence of droplet size distributions on the scale. The
saturation scale and the details of the scale-dependence of droplet size distributions
also depend on fluctuation intensities. The weaker the fluctuation, the smaller the
difference between the most and the least probable droplet size distributions, the
smaller the saturation scale, and the weaker the scale-dependency. The scaIe­
dependence and spectral broadening disappear when there are no fluctuations in
clouds.

MandeIhrot divided fluctuations into three categories: mild, slow and wild [77].
According to this proposal, the scale dependence with finite saturation scale
corresponds to the classical mild fluctuations and is defined as the scale-dependence
of the first kind. If the fluctuation is wild, there will be no saturation scale. -In thi,
situation, droplet size distrihutions are always dependent on the scale, and scaIe­
dependence and the averaging scale are always key to understanding individual
droplet size distributions, no matter how large the averaging scale. Even if the
fluctuation is slow or the mild fluctuation is too strong, one may not be ahle to reach
the saturation scale in practice. For now, we generically define the cases without
saturation scales as the scale-dependence of the second kind. Figure 5 illustrates the
two kinds of the scale-dependence. In reality, another complication comes from the
fact that different droplet systems may be encountered during sampling processes in
real clouds.
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Averaging Scale

Scale-dependence and the
associated ill-definedness have many
practical implications as well. In
general, question of the compatibility
of the different scales will arise when
comparing observations with models,
when coupling models of different
scales, and when comparing measure­
ments collccted using instruments with
different sampling scales. For example,
a suite of in-situ and remote sensing
instruments (surface-, aircraft- and
satellite-based) with a variety of scales

Figure 5. A diagram illustrating the scale- are often coordinated in current field
dependence of droplet size distribntions. Both projects to address cloud-related issues.
axes are only qualitative. The bottom curve A key to such multi-instruments
represents the simplest case of unifonn clouds. campaigns is the mutual comparison
The middle and top curves represent the scale- and validation of measurements made
depeadeace of the first and second kind, by instruments operated at different
respectIvely. sampling scales.

To improve cloud parameterizations, it is increasingly common to couple climate
models with microphysical models as detailed as allowed by computer resources. Such a
direct coupling of models of different scales seems natural at first glance; but this
coupling is questionable because of the scale-dependence of individual droplet size
distributions. Droplet size distributions predicted by detailed microphysical models may
not be compatible with those required in climate models because of the large scale­
mismatch between the two kinds of models. It was recently proposed to replace the
conventional cloud parameterization in climate models by the so-called super­
parameterization which essentially means coupling cloud systems-resolving models to
climate models [89, 90]. Similar scale-mismatch problems may exist in this idea too.
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4.7. More comparisons with kinetic models
The systems theory stands in stark contrast to kinetic models with regard to the

philosophy of treating the problem of droplet size distributions. The philosophical
differences between the systems theory and kinetic models in turn lead to differences in
other aspects. Methodologically, kinetic models use a bottom-up approach, albeit
different models involving different individual details; the systems theory uses·a top-­
down approach. Mathematically, unlike kinetic models formulated using differential
equations, the systems theory is built upon calculus of variations, integral equations and
constrained optimization. Physically, the systems theory predicts the scale-dependence
of droplet size distributions and accommodates spectral broadening as a manifestation of
scale-dependency.

In the quest to understand and explain observed droplet size distributions, major
efforts have been devoted to various kinetic models. The idea of the systems theory has
received much less attention compared to its kinetic counterpart. At first glance, the
systems theory seems to convey a "strange" impression that observed size distributions
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have little to do with the details of individual droplets and their interactions. It is
interesting to note that physicists shared a similar impression regarding statistical
mechanics during the early days of this discipline. However, such a view was refuted by
the later success of statistical mechanics. The ideas of statistical mechanics have been
successfully extended to study other complex systems [87]. Such widespread success
provides indirect justifications for using the systems approach to study cloud droplet size
distributions. The systems theory has also been justified by its successful explanations
for many long-standing issues, including the Weibull droplet size distribution and
spectral broadening.

4.8. Section snmmary
By treating a droplet system as a whole instead of tracing individual details, the

systems theory overcomes many difficulties confronting kinetic models, provides a
theoretical framework that is able to explain existing puzzles in a unified fashion, and
reveals many important points. First, observed droplet size distributions tend to follow
the Weibull distribution because the probability of its occurrence is the highest. Second,
the phenomenon that droplet size distributions observed in adiabatic cores of cumulus
clouds are very narrow, yet still broader than those predicted by nniform models, is due
to the small, yet inexorable fluctuations affecting cloud droplets even in adiabatic cores,
which will cause small differences between the most and the least probable droplet size
distributions. This result suggests that it is almost certain that monodisperse assumption
will overestimate effective radius. Droplet size distributions depend on the scale over
which they are observed or simulated, and the details of scale-dependence are related to
fluctuation properties. Spectral broadening is a manifestation of scale-dependence,
arising from scale-mismatch and incompatibility between models and observations.

The systems theory suggests that there are two IIdrivers" that compete to detennine
the spectral shape of cloud droplet size distributions: the deterministic driver as given in
the uniform model tends to narrow the droplet distribution while the statistical driver
tends to broaden the distribution. Observations seem to support the notion that the
statistical driver prevails.

5. Concluding remarks
We attempt to bring together the two traditionally separate subjects, cloud physics

and cloud parameterizations in climate models and cloud-resolving models. Because
each major topic has been briefly summarized in its own section, this sectiOn
concentrates on the connections between these two subjects and the common pr9blems_
confronting them.

It become evident now that spectral dispersion is the thread linking cloud
parameterizations with cloud physics. In cloud physics, it had been recognized before the
1960s [17] that observed size distributions should be described by skewed distribution
functions (e.g., gamma, Weibull, and lognormal distributions), rather than monodisperse
or the Gaussian distributions as predicted by the uniform model and most stochastic
theories. These skewed distribution functions have been assumed in the parameterization
of cloud microphysics in cloud-resolving models. Unfortunately, cloud
parameterizations corresponding to the monodisperse or the Gaussian droplet size
distributions are still in wide use in current climate models. Furthennore, there is no
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agreement as to which distribution functions should be used to express droplet size
distributions. Analysis of field data indicates that the Weibull distribution most
accurately describes observed droplet size distributions among the commonly used
distribution functions, and should be used in cloud parameterizations. However,
mainstream kinetic theories have not yet succeeded in predicting this form of the droplet
size distribution.

In fact, as discussed in Section 3, since the 1940s cloud physics has not been graced
with major conceptual breakthroughs, but rather by a series of progressively more
refined quantitative theories of previously identified microphysical processes. The
reductionist approach inherent in the mainstream theories may be a reason for such a
failure. On the other hand, the systems theory not only predicts the Weibull droplet size
distribution, but also explains many other issues that have frustrated the cloud physics
community over the last few decades. The successes of the systems theory furnish
positive proof that a systems approach may hold the key to the understanding of droplet
size distributions.

Several challenging questions remain to be solved. First, spectral dispersion needs to
be further specified in terms of prognostic/ diagnostic variables in climate or cloud­
resolving models. The issue of spectral dispersion subsists in the so-called super­
parameterization. Spectral dispersion could become more important when precipitation
is also a concern. The systems theory predicts that spectral dispersion is related to the
parameter b that is involved in the constraints imposed on the droplet system and
depends on fluctuation properties. One of the future challenges is to express b as a
function of fluctuation properties. Based on previous studies, there are at least two major
factors affecting spectral dispersion: dynamics and CCN properties. Dynamics can be
further divided into updraft and turbulent fluctuations; CCN properties include size,
chemical composition and concentration. To establish such relationships is also key to
understanding indirect effects of anthropogenic aerosols on climate change, and this
issue will be addressed elsewhere. A formal solution to this problem is not clear to us
now. Nevertheless, an extension of the systems theory could be the answer. There are
three distinct, complimentary disciplines to address issues regarding thermodynamic
systems such as gases: kinetics, statistical physics, and thermodynamics. By analogy,
this issue could be solved by establishing a new discipline, "thermodynamics for droplet
systems" and linking it with the systems theory. Another way to find the constraints is to
study the symmetry/invariance structure of the fundamental equations involved.
According to Yang [91], symmetry reflects conservation laws and dictates interactions.

Second, the current systems theory only qualitatively reveals that individual droplet
size distributions depend on the scales over which they are sampled/simulated.­
Furthermore, as discussed in Section 4.6, the details of the scale-dependence are critical
for virtually all cloud-related problems, including cloud parameterizations. However,
except for the uniform case, the saturation scale and the scale-dependence are largely
unknown. Therefore, there is a dire need to quantifY the scale-dependence and its
relationship with fluctuation properties. Theoretically, the unique property of scale­
dependence suggests the ultimate need for an entirely new theoretical framework that
treats the scale as an independent variable, just as the variables of space and time are
treated in the current framework. A combination of the systems idea with multiscale
approaches seems to be a promising avenue. Actually, the need for a paradigm-shift
from a scale-independent to a scale-dependent theoretical framework is emerging in
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many fields where a variety of fluctuations and scales are involved [92-94]. Current
effort is concentrated on the search for the symmetry of scale-invariance (scaling
models). Extensive scale-dependent analysis of data under a variety of fluctuating
conditions can empirically provide crucial guidance to the establishment of tbe new
theoretical framework.

Third, there seems little dispute on the role of fluctuations in determining droplet
size distributions. A fundamental question· is the origin of the Il randomness11

• Practical
schools think that randonmess arise from our ignorance or incomplete information due to
practical limitations, as well as from the prohibitive demand for computational
resources. On the other hand, according to recent investigations into general dynamical
systems [95], randomness is physically inherent in the dynamics of varions processes
occurring in clonds. Briefly, there are at least two types of situations in which dynamical
motion physically generates randomness. The first corresponds to ergodic (mixing or K­
flows) systems, and the second corresponds to the Poincare catastrophe (resonance). In
both cases, the character of motion is sach that two trajectories, regardless of bow close
together their starting points are, may diverge greatly in time. Althoagh the quantitative
details of kinetic eqnations of a droplet system as a dynamical system remain elusive,
randonmess is physically expected. Therefore, it should be stressed that in this case,
probability and associated statistical laws are no longer a state of mind due to our
ignorance, but the result of the laws of nature. Evidently, research into the physical
origin of fluctuations in clouds is closely related to the determination of the nature of the
droplet ensemble. However, to the best of our knowledge, there is no investigation into
the physical origin of randomness along tbis line.

Finally, it is noteworthy in passing tlmt new paradigm-shift poses mathematical
challenges. Mainstream theories have established their framework within the familiar
Hilbert functional space. In fact, the Hilbert space has been taken for granted in cloud
physics. As implied by the least probable size distribution and its derivation, the systems
theory or other new formalism needs to go beyond, moving the Hilbert functional space
to the generalized functional space [96].
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