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Kinetic extensions of the nucleation theoréKiNT) are derived using the law of mass action and
detailed balance. Results are obtained for the first- and higher-order derivatives of the nucleation
rate,J, with change in supersaturatia,in terms of the cumulants;,,, of a molecular distribution

of reciprocal equilibrium cluster growth rates. At constant temperature wedfind/dIn S=«;

+1, an exact formulation of the nucleation theorem in terms of nucleation rate, and the extension
d"In Jd(In 9"=(—1)"*1«, for the higher-order derivativesit2). The casé =2 is related to the

Kelvin relation. Analysis of recent water vapor nucleation r@Wslk and Strey, J. Phys. Chem. B

105, 11683(2001) | provides molecular-based estimates #grand x, suitable for comparison with

the predictions of classical nucleation theory. The KNT is applied to ion-induced nucleation from
the gas phase, by a sequence of reversible chemical reactions, and extensions to multistep kinetics
and multicomponent nucleation are presented. Nucleation theorems enable one to deduce
molecular-level properties directly from macroscopic rate measurements. Here we show these
properties are not those of a single cluster, the critical nucleus, as approximate forms of the theorems
would suggest, but instead are averages over a weighted distribution of clusters near critical size.
© 2003 American Institute of Physic§DOI: 10.1063/1.1565098

. INTRODUCTION Nonisothermal versions of the nucleation theorem have
also been investigatéd For the temperature derivative at

A very useful result that has come to be called thesqnstant Ir, Ford gives the following result, which has been
nucleation theorem” is the following relationship between jied the second nucleation theorém:

the height of the barrier to nucleatiow*, and the nucleus

size.* avv*/kT>  Ep-g'ES w1
HW* OW* [KT T s kT '
Ap) "\ Tans | A9 (.13
Ml T whereEx is the critical cluster energy arEﬁ‘ is the energy

The derivative is taken at constant temperature Agd  Per molecule in the bulk liquid phase. _
=g* —n* is the excess number of molecules in the critical _ An obvious limitation of Egs(1.1a and (1.1 is that

cluster @* is the number of molecules in the cluster ajd W* and Eg. are not directly observable quantities. Thus

is the number of vapor molecules displaced by the clustePractical applications require going beyond E@ls1a and
volume. Sis the saturation ratio anélx =k TIn Sis the free (1.1b in order to make contact Wl_th experimental measure-
energy difference between the vapor and the bulk condenségents of the steady-state nucleation rele Here the argu-
phase driving the phase change. For nucleation from a dilutg'€nts have been less fundamental. The usual approach as-
vapor the displacement term is negligible akg* ~g*. sumes thafl has the prefactor-exponent form:

The nucleation theorem, as given in E#.13, is a ther-
modynamic relation that has been obtained on fundamental
grounds by several approaches including a statistical m
chanical derivation by Viisaneet al®>*and a Gibbs dividing
surface analysis by Oxtoby and Kashchiewn addition to
aiding the interpretation of experimental measureméses
the following), the nucleation theorem has been used as an gsqj3 dinJ din Jo
analytical tool and guide for introducing a molecular basis to 3ds”"dins_ dins +
phenomenological nucleation theorfeRecent studies have

focused on the range of validity of the nucleation theoreMsryq jead term on the right-hand siétés) is typically a small
on related equalities, and on applications to fields other thap,stant value or zero, depending on model. For classical

J=Jgexp(—W*/KT), (1.2
%hereJo is the kinetic prefactork is the Boltzmann con-

stant, andr is absolute temperature. Combining E¢s.and
(2) gives the relative sensitivity of to changes irs°

Ag*. (1.3

67 ) oo
nucleatior. nucleation theory(CNT) dInJy/dIn S=2. Taking into ac-
count the 1% prefactor correction of Courtnéychanges this
dElectronic mail: im@bnl.gov to dInJy/dIn S=1 and Eq.(1.3 become$
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dinJ wheres; is the surface area ofgcluster anct, is the mean-
dins_ 1+Ag*. (1.4 molecular speed of a molecule of mams. The last equality
uses the monomer boundary conditibr'n, =12 wheren,
A more complete expression for the left-hand side of Eqandf, are the constrained equilibrium and actual concentra-
(1.4 was obtained by Fofd by differentiating the Becker— tions of monomer in the vapor phase. “Constrained equilib-
Doring expression for the nucleation rate. We refer to thisjum” refers to the imposition of a formal constraint, such as
new kind of result, which depends on the kinetics as well aghe disallowance of large clusters, so as to maintain a refer-

on the thermodynamics of the nucleation process, as a Kence condition of zero nucleation current and persistence of
netic nucleation theoreniKNT). Kinetic nucleation theo- the metastable supersaturated phase.

rems predict change in the nucleation rate itself, rather than  The constrained equilibrium concentrati0n§,(cm‘3),

in the barrier height whose interpretation through experimengre related through the reversible chemistry 1 +A;=A,

is at best indirect. . . according to the law of mass action:
In this paper we obtain new KNTs for the higher-order

derivativesd" In J/d(In 9", and apply these to the interpreta-

tion of recent measurements for the homogeneous nucleation KEY(T)= [Aq] - Ng 2.3
rate of water vapor. Theoretical foundation for the KNT is g [Ad[Ag-1] ning 4’

presented in Sec. Il based on the physiochemical principles

of mass action and detailed balance. Similar results are aRwhereA, denotes a cluster containimgmonomers[A,] is
plied in Sec. Il to nucleation from the gas phase by a reversthe activity of these clusters, arkS{(T) is a function of
ible sequence of chemical reactions. These results show th@dmperature alon®. The last equality, the law of mass ac-
the isothermal rate sensitivity depends only on reaction stogon, applies to an ideal mixture of clusters for which activity

ichiometry and not on molecular bonding condition or loca-js proportional to number concentration. The vapor phase
tion within the cluster. Section IV initiates the extension of monomer versus bulk free energy difference is

KNTs to multicomponent nucleation. Formulations of the
theorem are obtained for binary nucleation in special sys-
tems, such as sulfuric acid—water mixtures, and for multi-
component systems having a quadratic free-energy surface. A
matrix approach suitable for numerical calculation of the ratayhere S is the saturation ratio of monomeA() andn§?is
sensitivity for general multistep and multicomponent nucle-the number concentration of monomer in equilibrium with
ation processes is also described. Section V gives a summatiye saturated liquid. The latter is constant at constant tem-
and discussion of results. In particular, we conclude thaperature, as we neglect any effect of pressure change on the
measurements ofi”" In J/d(In §" provide direct molecular- vapor pressure of the bulk liquid. Equatio(&s1)—(2.4) are

level information, which is averaged over certain distribu-sufficient to derive the kinetic extension of the nucleation
tions of clusters near critical size and not specific to thetheorem. For obtaining the nucleation theorem from the equi-

Ap=KkTInS=kTIn(ny)—kTIn(n{Y, (2.9

critical cluster itself. librium law of mass action, a key property of E@.3) is
employed, specifically, that the population ratig/n,_; is

Il. DERIVATION OF KINETIC NUCLEATION directly proportional tan,. From this follows the proportion-

THEOREMS FROM THE LAW OF MASS ACTION ality ng=nf, yielding a convenient intermediate result for

AND DETAILED BALANCE differentiating the product terms on the rhs of E2.1):

This section introduces a fundamental approach to
evaluating the left-hand side of E¢l.4) and higher-order d(nyng)
derivatives, through application of the law of mass action mz(ngl)nlng. (2.9

and detailed balance. The approximations that underlie Eq. o
(1.2) are bypassed and the evaluationddh J/dInSis car- A. Isothermal kinetics

ried out directly on the kinetic sequence of monomer  Thg detailed balance condition for the reaction described
addition/loss steps that govern the nucleation rate. Detallegy Eq.(2.3 gives a relation between the forward and reverse

balance is incorporated by working directly with the monomer addition rates in terms of the cluster population
Becker—Doing summation for the steady state nucleation;nqer constrained equilibrium conditions:

rate’?

-1 1
\]:(2 i) =(E L) : (2.9 BgNg= Yg+1Ng+1- (2.6)
g Bgng & CiSgNiNg
Hereny is the constrained equilibrium concentrati@ee the ~ Together, the law of mass action and the detailed balance
following) of clusters of sizey (clusters containingg mono-  condition imply only thatB,/vgy,, is proportional ton;.

meric unity and3, is the rate constant for monomer addition Equation (2.2) implies a more specific kinetic model for
to clusters of this size: which all of the monomer dependence is in the condensation

KT |12 KT |22 rate and the evaporation rate is independent of monomer
Bo= &5 f,= (_) = (_) s,n,, (2.2  concentration, a condition sufficient but not necessary for the
9 479 2mmy) 79 2mmy) 79 law of mass action to apply. A KNT incorporating both de-
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FIG. 1. Homogeneous nucleation of water vapor. Data

points are measurements Bt 250 K from Table 2 of
Wolk and Strey(Ref. 15. Superimposed on these mea-
surements are fits to the data from the Taylor expansion,
Eq. (2.9b), about the reference pois,= 10 (gray ver-
tical line). The solid curve is a quadratic fit to the data
in powers of logy(S) yielding log,d J(S;)]=8.762
(gray horizontal ling Truncating the expansion after
the linear term produces the dashed line and the first
cumulant, x;=29.86. This line is tangent to the solid
curve at the point of intersection of the gray lines. The
quadratic fit(solid curve yields the second cumulant,
k,=49.42. See the text for the comparison of these
model-free results with the predictions of classical

nucleation theory.
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tailed balance and mass action follows from E@s1) and
(2.5). On using the chain rule for differentiation of E@.1)
at constant temperature, the result is

(2.7

Equation(2.99 has a structure that arises not only from
the statistical properties of cumulants, although these play an
important role, but from the physiochemical properties of
cluster equilibria and kinetics embodied in the laws of mass
action and detailed balangsee, for example, EA1)]. The
second equation of Eq(2.99, or its equivalent relation

where the overbar signifies the following cluster averagedxi/dInS=—x, from Eq. (A6), implies that the curvature

with respect to the distribution 18;n,),

1
Zq>—Y(9)
Bgn
%=§ P(9)y(9)-
E [
Byg
The last equality defines the normalized 4d,) distribu-

(2.9

on a plot of InJ versus IS also has a direct interpretation in
terms of molecular properties, specifically in terms of the
variance of the 1/g,n,) distribution. The frequent observa-
tion that plots of InJ versus IrS; tend to be nearly linear is
seen here as a consequence of a narrogtyf) distribu-
tion. For a continuous Gaussian distribution, the cumulants
will vanish'® for indexn>2 resulting in early termination of
Eqg. (2.9 and a InJ that is quadratic in II$. Rooted in mass

tion, P(g). The present derivation applies to cluster forma-,ction and detailed balance, these results have general valid-
tion from a dilute vapor or solution for which, as in the ity independent of any cluster model.

derivation of Eq.(2.1), the subtraction of displaced monomer
can be neglected. Equatiori2.7) and (2.8) are the more
complete expressions for the lhs of E{.4) obtained by

Ford!!

An application of Eq.(2.99 to the interpretation of re-
cent rate measurements for the homogeneous nucleation of
water vapor is shown in Fig. 1. The data points are the re-
ported nucleation rates for@ atT=250 K from Table 2 of

Higher order derivatives can also be obtained and mayysik and Strey!® Equation(2.93 suggests a fit using a Tay-
be expressed remarkably simply in terms of the cumulantg,, expansion of the form:

x, of P(g). Together with the previous results from above

these ardsee the Appendix
dinJ
dinS

d?InJ —
WZ—(QL?)Z—'@

:§+ 1:K1+ 1,

d3IinJ B
d(ins)®~ "
d*InJ B

d(InS)*

(2.99

Kg,

d"InJ

ansy (Y

S
l0g:d J(S)1=109:d I(Sp) I+ (g+1)s, |0910< g)

2
+eee (2.9

_;( )s | lo E)
2(K2)s, gloso

where the switch to common logarithms for botllland InS
leaves Eq(2.9a unchanged. The solid curve in the figure is
a quadratic fit to the data in powers of ig& yielding g
+1=230.86 andk,=g>— (g)?>=49.42 evaluated at the refer-
ence supersaturatioBy,=10 (gray vertical ling. This same

fit yields the value log J(S,)]=8.762 (gray horizontal
line). The dashed line shows the result of cutting off the
Taylor expansion after the linear term whereas the solid
curve uses both the linear and quadratic terms, showing the
effect of curvature.
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It is useful to compare these parameters, derived fron20%; however data scatter and strong background linearity
measurement, with the expected results from classical nuclen the experimental log—log plot makes this parameter inher-
ation theory. The top panel of Fig. 2 shows the classicakntly more difficult to estimate. Nevertheless the sign of the
barrier profile, Wen(9)/kT=—gIn S+ag?¥kT, for homo-  curvature[which from (Eq. 2.9a must be negativieis cor-
geneous nucleation of water vapor under the conditi®ns rect, and its magnitude in rough agreement with the predic-
=10 andT=250 K, corresponding to the reference condi-tion of classical nucleation theory. Equatio2.99 and
tions used in Fig. 1. Here= (47)Y3(3/p)?3y.. wherey,.is  (2.9b provide information on the general shape of the log—
the surface tension for a flat interface ands the molecular log rate plots, seen here to be in very good agreement with
number density in the bulk condensed phase. The CNT bathe predictions of CNT, but not on their displacement, or
rier calculation of Fig. 2 uses the same physiochemical propabsolute value of the nucleation rate. Application of the
erties for HO as in Wik and Strey*® A good indication of  Becker—Doing summation Eq. (2.1)] gives logoJent(So)
P(g), the cumulants of which are related to the observable=9.49, yielding a predicted nucleation rate about a factor of
sensitivitiesd" In J/d(In §" through Egs.(2.99 and (2.9b 5 higher than the experimental value, in agreement with the
can be had by inspecting its CNT-approximate form,finding of Wdk and Strey*®
Pcnt(9), under these typical nucleation conditions. This is  The second equality of E¢2.99 is closely related to the
indicated by the solid curve in the lower panel of Fig. 2. TheKelvin relation, giving as it does the change in critical cluster
width of this distribution is, from Eqs(2.7) and (2.8), an  size with supersaturation:
indication of the extent to which measurements of
d"In Jd(In 9" yield weighted-average properties over many dg P dg*
near-critical clusters, and are not specific to the critical clus- dInS —(g°-g9)~ dins’
ter itself. The CNT calculations yielg* (CNT) =30 (nearest
intege) and the moments:g(CNT)=29.96; «,(CNT)  To move closer to the spirit of the Kelvin relation, which is a
=39.04. The classical(CNT)+1=30.96 is in remarkably thermodynamic result, we take averages in terms of thg 1/
good agreement with the determinatign- 1=30.86, from  distribution(i.e., without the kinetic part3,, which cancels
the experimental fit. The CNT prediction fep is lower than  if assumedg-independent in the region of critical cluster
the experimental determinatiofsee the captionby about size) and find a similar exact resuld{g)/dIn S=—((g%

(2.10
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(2.17

—(g)). The angular brackets are averages with respect to the alnn,
normalized I, distribution, shown in the lower panel of ( aT )
Fig. 2 (dotted curve which is only slightly shifted from S

Penr(g). The classical 3Ke|vin rtajg\tion for the critical \yherengis the monomer concentration in the vapor at equi-
nucleus size ig* = (8/27)a*(KTIn§ = Thus the change in  jibrium over bulk liquid (1,=n$%,). Similarly, from Eq.

dlnnfd dInn$d
JT g dT 7

nucleus size with supersaturation is (2.15, ng= K(T)(ny)9=K(T)SI(n%9)? and nng K(T)
* X(n§%9 to give n,=ns%Y . From these results we obtain
99 s (kT3NS 2,11 " oo
dins ° ' ' (aln ng> dinng? dInK(T)  dInnf? 218
= = + .
The connection to the general result, E§.10, follows aT | dT dT 97T

a demonstration that the negative variance of timg dlistri- ) . )

bution, as obtained from the capillary drop model distri- The last term in Eq(2.18 is readily evaluated from the
bution of the classical theory, is identical to the right-handClapeyron relation:
side [of Eg. (2.1D]. Here ngxexp(—glnS+ag?¥kT) dinn® E,—EP
=exd —Wn1(9)/KT]. Expanding the exponent in a Taylor A
series through the quadratic term abgttgives

(2.19

. 3 whereE] is the energy per molecule in the bulk liquid. Com-
Went(9)  Went(9™) g(k_T) (InS)*(g—g*)2. bining Egs.(2.16—(2.19 gives the derivative that we have
kT kT 16\ a (.12 been seeking:

eq eq
Equation(2.12 yields a Gaussian distribution forriy with (M) = dinny + dln_ng
(g)=g* and variance o= (8/9)(a/kT)3(In 9 ~*=—dg*/ T s, 9T dT

dinS where the last equality is Eq2.11). This demon-
strates the reduction of Eq2.10 to the classical Kelvin _
relation for the capillarity drop approximation of classical kT2
nucleation theory.

E,—9E) E;—E}
=9 T (2.20

This expression together with Eq.13 and (2.14 gives
the final result:
T _orb _ b
B. Temperature variation (‘“”J) _ 1 Eg—9oE; E,—Ep
InS;

aT

2T kT2 T kT (229

Next we obtain the weighted cluster energy distribution

appearing in an exagt expression. for the temperature dePeWnere the overbar indicates averaging as in @§). The
dence of the nucleation rate. Taking the temperature derivasesent derivation includes kinetics and shows explicitly the
tive of InJ from Eq. (2.1) gives underlying physics as contained in the law of mass action,
dinJ W d_etailed bala_lnce, and the Gibbs—HeImthtz relation. Equa-

a7 aT (2.13  tion (2.21) differs from the ther_modynam|c result of_ I_:ord

[Eq. (48) of Ref. 11] by the leading term on the rhsrigi-

To evaluate the rhs of Eq2.13, we use nating from Eq.(2.14)], and by averaging oveP(g), as
signified here by the overbar, to rigorously include the kinet-

din Cl:i (2.14  ics contained in the Becker—Mbog summation ford. It
daT 2T should be mentioned that Ford also used a distribution over
from Eq.(2.2), and assume that the cluster surface asga, P(g), as described here, but for simplicity took this to be
Gaussian.

is independent ofT. This leaves only the derivative
d In(n;ny)/dT, which will now be evaluated using the Gibbs—
Helmholtz relation:3

Returning to Eq(2.3), we form the equilibrium rate con-
stant for the association gf monomers to form a molecular
cluster of sizeg:

Equation(2.2) can be used to evaluate differences be-
tween the cluster energies inferred from experimental nucle-
ation rate measurements and those obtained using the capil-
lary drop model of CNT. Rewriting Eq2.21) for CNT and
differencing gives

(aInJ/JCNT)  E4—EG(CNT)  [G—G(CNT)]ER
Ins; .

n
K(T)=KgKEL -+ x K5 3. (2.15
1

aT kT? kT?

Applying the Gibbs—Helmholtz relation to the rhs, recalling (2.22
thatng has units of concentration, gives Application of Eg.(2.22 is complicated by fact that the
dInK(T)  E,—gE, averages are over two different cluster distributions: the true

(2.16 molecular distributionP(g), for g and Eg, and the drop-

2 l
dT kT model distribution Pcyr(g) of CNT, for g(CNT) and
wherek, is cluster energy. Consider the following derivative E4(CNT). On the other hand, there are widespread observa-
with respect to temperature at const&at tions that the ratiadd/Jon7 is @ function of temperature alone
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(see, e.g., Ref. 26Such observations imply that the Kelvin 1 -1

relation is satisfied and that the true nucleation barrier is J= % kn(SHINSILH, 1)) (3.3

uniformly shifted in energy from the CNT barrier by a m 4 m2ml

temperature-dependent amodif. These properties greatly

simplify the final result. Specifically, in the approximation

that the barngr is uniformly shifted, the critical cluster SIZ€, gimilar to derivation of Eq(2.7). For brevity we give only

the cluster ratiosr{y/ngy+), andP(g) all have the same val- }
. 9 g/ = A " the results:

ues as in CNT. Assuming identical molecular addition rates,

By, and settingP(g) =Pcnr(9), EQ. (2.22 simplifies to

wherek,, is the forward bimolecular rate constant for the
reaction of S{H,,,., with SiH,. Differentiation of InJ is

m

din(J/Jcnt)  Eg—Eg(CNT)  Ege —Eg«(CNT) dlnJ Emkmn(SimH;mH) o,
ar k2 kT2 ! IILSIH 1 =m~mr, o (349
(2.23 Ko (SiHa 1)
where the first equality holds for the case thal.yt is a
function of temperature alone. The weighting for both the (m-1)
molecular and CNT cluster energies in the numerator is the 9inJ Emm
. . . m m' 12m+1 —

CNT distribution, Pcy7(g). Measurements od/Jqyt (See, =— =—(m—1)
e.g., Refs. 16 and 18provide, through Eq(2.23, direct JIn[H] ;
information about the exceswith respect to CNT cluster "KmN(SinHzm 1)
energies, which can be compared directly to phenomenologi- ~—(m*—1). (3.4b
cal cluster models and calculations based on molecular
theory. The partial derivatives signify that the concentrations of

remaining precursor species, as well as temperature, are kept
constant. The approximate equalities apply only in cases

IIl. APPLICATION TO NUCLEATION FROM where there exists a critical ion-cluster size and the summa-
THE GAS PHASE BY A REVERSIBLE SEQUENCE tions are dominated by terms near this sizé&. is the num-
OF CHEMICAL REACTIONS ber of Si molecules in the critical ion-cluster of whiah

—1 derive from the growth species Sjkith the release of
The kinetic nucleation theorem is next illustrated for am* —1 molecules of H. Note, however, that the true equali-
different kind of one-step process; one for which neither thaijes of Egs.(3.4a and (3.4b apply even to activationless
kinetic prefactor nor the nucleation work are well defined.processes with no barrier or critical cluster size. The sensi-
Consider nucleation from the gas phase by the reversiblgvity on seed concentration i8In J/9In[SiH; ]=1. These
sequence of chemical reactions studied by Girstickhis  results demonstrate the application of nucleation theorems to
sequence is initiated by reaction of Sikith the “seed”ion  a reversible sequence of chemical reactions. Finally, Egs.
SiH; , (3.43 and (3.4b exhibit an important general feature of
e ey e e nucleation theorems; namely, dependence of the isothermal
SiH; +SiH,=SipHs +H, (3.13 rate sensitivity on reaction stoichiometry and not on local
followed by growth steps: bonding condition or locatiorte.g., surface or interigprof

Si,H- + SiH, = Si.H> +H species within the cluster.
2015 4— 23117 2
. _ . R 3.1b

Slm*lHmel_l— S|H4:S|mH2m+1+ H2, ( )
leading to the formation of cluster ions of larger size. With V- EXTENSIONS TO BINARY AND MULTICOMPONENT
the seed requirement, Eq.1a and (3.1b are formally =~ NUCLEATION

equivalent to a heterogeneous or ion-induced nucleation pro-  tpg kinetic nucleation theorem is applied in this section
cess. Equatioii2.3) is replaced by the equilibrium constant: v, o models of binary nucleation for which analytic solu-

[ SimHaom 1 [H21™ tions can be obtained. The theorem will be demonstrated first
Kin(T)= [SiH, [SiH, ™ for the Shugard—Heist—Reis$SHR) binary nucleation
s 4 model?® which has been tested with great success through
N(SinHom ) {N(Hy) ™1 comparisons with a fully two-dimensional kinetic model of
= n(SiH; ){n(SH ™ T (3.2  binary nucleation in sulfuric acid-mixturéS. Next we
3 4 present an extension of the kinetic nucleation theorem to
where[A] andn(A) are the activity and number concentra- multicomponent systems for which the thermodynamic bar-
tion, respectively, of speciesunder a(constraineflequilib-  rier can be approximated by a quadratic free-energy surface.
rium condition. As with the monomer boundary condition Finally we initiate the development of a matrix method for
used previouslyn(SiH,), n(H,), andn(SiH;) are equated evaluation of dInJ/dInS in more complicated kinetic
to the actual concentrations of these precursor species in tteehemes, including multistep and multicomponent nucleation
gas phase. Detailed balance considerations lead to an overpliocesses, for which simple analytic solutions cannot be
rate analogous to Eq2.1):'° obtained.
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A. Application to the Shugard—Heist—Reiss model

The Shugard—Heist—Rei$SHR) model is a specializa-
tion of the full binary nucleation kinetics to the case that
nucleation occurs primarily through stepwise additions of a
single componente.g., sulfuric acig with rapid equilibra-
tion along the orthogonal coordinate.g., water evaporation
and growth. The SHR steady-state nucleation rate takes the
double summation closed forffi:

J=|E [Ei ﬁau,j)n(i,j)}l}l, (.19

i

where B,(i,j)=c,s(i,j)f(0,1)/4=c,s(i,j)n(0,1)/4, c, is
the mean molecular speed of an acid molecule, &itd1)
=n(0,1) is the number concentration of acid molecules in
the vaporn(i,j) is the constrained equilibrium number con- FIG. 3. Quadratic free-energy surface for a binary mixure showing contours
centration of clusters containirigmolecules of water angl ~ (S0lid curves for W*, W*kT, andW* = 2kT. The principal coordinate

. sy . axes¢ and » and lines of constanb (dashed lines and values are also
molecules of acid Find_(l 'J) is the surface area ‘_)f Or_'e SPCh shown. Superimposed on the figure is a schematic depiction of the distribu-
cluster. In the derivation of Eq4.1) the approximation is tion of nucleation currentarrows for the case that the ratio of monomer
made that the nucleation flux occurs solely in the directiorgddition rates for the two species is unity. See the text for explanation of the
parallel to the acidj) coordinate. Thus we could have writ- €liPtical probability curves.

ten the overall current, instead, as a sum of noninteracting

parallel currents along thecoordinate: of Eq. 2.8,(i) will be dominated by those clusters near the
1 -1 minimumin a slice of the binary free-energy surface having
J=> 3= (E —) , (4.1b  fixed acid occupation numbgr The approximate equalities
! T T BahnGLg) of Egs. (4.2a and (4.2b), yielding results in terms of the
where the inner summation has the same form as in Equucleus composition, compare favorably with E(k8) and
(2.1). Although Egs.(4.1a and(4.1b are not equivalent al- (19) of Ref. 4 derived assuming a prefactor-exponent form
gebraically, they must give very nearly the same result undefor the binary nucleation rate. Higher-order derivatives of
the condition that the flux occurs predominately alongijthe InJare obtained as fluxJ()-weighted averages over the one-
coordinate. dimensional steady-state nucleation currents as is evident
Letting S; and S, denote the saturation ratios for water from Eqgs.(4.1b and(4.3b (see the Appendjx
and acid, respectively, we obtain from E¢.13:
alns, 3R, ~4 (J+1)Py(j)= Thg approxmatlon. that t_he free-energy ;urface is qua-
dratic in the saddle point region presents an interesting case
o amenable to exact solution. Figure 3 shows a quadratic sur-
+Z EI JPr(i.p)~j"+1, (4.28 face in the original clustefi, j) coordinates and in the prin-
cipal coordinates(¢, 7) centered on the critical nucleus

B. Application to a quadratic free-energy surface

alnd ()R o (i*,j*). In principal coordinates, the surface takes the sepa-
NS, IR _; E. P, ))=1%, (425 able form:
where R;=[=,;8,(i,j)n(i,j)]"* and (*,j*) is the compo- W(¢ ) W(0,0 24,2 4.
sition at the saddle point. In Eq4.2b, the quantity(i); kT~ kT A& tbr '

defines a different kind of average: . o L
wherea andb are positive quantities, resulting in a saddle
C ZiiBa(Ln(h)) o . o point até= »=0. Figure 3 shows a surface far=1 andb
=S g na =2 iQu(i.j). (4.38  _2 The solid(hyperbolig curves are contours of constant
|,8a( 1J) ( 1J) I
_ _ . o Wfor W=W*, W* £KkT, andW* = 2kT. Equation(4.4) im-
Equations(4.2) and (4.3) introduce the normalized distribu- plies an equilibrium cluster population satisfying the Boltz-
tions Py(j) andQy(i, ), with subscript " for binary case,  mann relationn(i,j) =n(i*,j*)exdag(i,j)—bri.j)].

and the normalized product distributionP+(i,]) Distribution functions similar to those introduced earlier
=Py () Qu(i,]). Another interpretation of Eq4.3a follows  for the SHR model are obtained along the reactive and or-
from thej-coordinate flux condition: thogonal coordinateg and 7, respectively. If one neglects

_ _ o _ DA the size dependence of the kinetic coefficierts(i,]j)
(i)=2 iQu(i,))=2 1Qp(i)=—3—=(0) (43D =c;8(i,j)n(1,0)/4~ By, Bo(i,j)=C,s(i,j)n(0,1)/4~ B, in
' ' the region of critical cluster size, these distributions are
showing that this flux condition implies th&, is indepen- Gaussian and separable in the quadratic free-energy surface
dent ofj and that(i) is a flux-weighted average over the model. Assuming continuous size coordinates and carrying
water coordinate that is independent obinlike the average out the integrations yields the normalized distributions:
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a wherew is the angle between the gradient and thé axes
Pp(é)= \gexp(—agz) (4.58  and the last equality applies under the approximation that the
monomer addition rates are constant. Figure 3 depicts the
and special case that the ratio of monomer addition rates for the
two species is unity.
\/B ) Li and Nishioka obtained steady-state nucleation flux
Qu(m) =\ - exp(—b7). (4.50 profiles in binary systems under the assumptighsw may

be treated as constant in a local region, &2dthe ® con-
The dashedelliptical) contours of Fig. 3 depictthe and Zr  tours are lineaf* The preceding analysis shows that these
surfaces(1 and 2 standard deviations, respectiydlyr the  conditions hold rigorously for the quadratic free-energy sur-
bivariate Gaussian distributio(&, 7) =Pp(§)Qu(7). The  face. Accordingly, the analysis of Li and Nishioka carries
disposition of these elliptical surfaces with respect to thegver to this special case, and their methods can be used to
critical cluster size depends only on the coefficients of bi-gbtain analytic expressions for the nucleation flux profile and
variate productsii, jj, ij ) in the cluster coordinate expansion steady-state nucleation rate. Apart from the change to con-
for W(i,j). Specifically, the squared lengths of the principaltinuous variables, the resulting rate is similar to that of the
axes, which are proportional to the principal valugari- ~ SHR model, for whichd® contours also satisfy the Li and
anceg, and orientation with respect to the original coordinateNishioka conditions and a double integration here, rather
axes are independent of the gas phase species supersatufin summation, gives the rate. Substituting fi¢r,j) and
tions,S; andS,, as the latter appear only in the coefficientsintegrating over the Gaussian distributions gives the exact

of terms linear ini andj. result:

Separation of variables in the principal frafitegs.(4.4)
and(4.5)] conveys special properties to the surfaces of con- J=n(i* i* \ﬁ Sinw-+ B+ COS 4.8
stantf(i,j)/n(i,j), wheref(i,j) is the steady state concen- (0% b(’B2 Wt By COSw). “9

tration of clusters of size(i, j). These ‘®” contours
(P(i,j)="1(,j)/n(i,j)) have been studied for binary mix-
tures and show interesting tendencies toward quasiuniversal dInJ %

behaviorr?~2*1t is not difficult to show that two of the most ains, (J* +&Pr(§,mdédy
significant of these tendencies, linearity and insensitivity to

For the sensitivities we obtain

the activities of gas phase species, hold rigorously for a qua- (B2/Bp)tanw)
dratic free-energy surface. Linearity follows from the sepa- 1+(B2/B)tan(w)
ration of variables in Eqsi4.59 and (4.5b) resulting in an
analytic solution for the gradients df: _ ., (BalBy)tan o) |
1+(B2/B1)tan(w)
Ve (&, 7)=—Pyp(§); V,P(&7)=0, (4.6) J1nJ (4.9
— i*
subject to the boundary condition®(¢&,7)=1 (P(&,7) dlnS; JJ(I T )Pr(&,m)dédn

=0) for small(large values ofé. Thus the constanb con-
tours(dashed lines in Fig.)3are linear and parallel to the + 1
axes, with®(0,0)=1/2 at the critical cluster size. The solu- 1+(B2/B)tan(w)
tion given by Egq.(4.6) is based on the factorization 1
P1(&,7)=P,(£)Qu(7n) and applies even when the compo- =j*+
nent distributions are non-Gaussian. 1+ (B2/By)tan(w)

Insensitivity of thed contours to gas phase species ac-showing similar dependence dP as in Egs.(4.29 and
tivity is not surprising given the preceding demonstration(4.2b), but with vanishing mean values @fand » at the

that the probability distributionsP(£) and Qu(7), and  saddle point composition. Fap= /2, the ® contours are
therefore thed contours, aréendependendf supersaturation oriented as in the SHR model and Eq. 4.9 reduces to
in the quadratic surface model. This insensitivity is also con-

sistent with the vanishing of third-order cumulants for the dinJ =j*+1
Gaussian distribution; implying, from E¢A6), that the vari- ainSs,
ance of, for exampleP(£), which determines thé con-
) o . alnd |
tour spacing, is independent & . Superimposed on the TS =j*
1

figure is a schematic depiction of the distribution of nucle-
ation currentarrows. The nucleation flux will in general not  showing that, apart from the distinction between continuous
be orthogonal to thé contours as depicted in Fig. 3; but it and discrete cluster coordinates, the approximate equalities
cannot be parallel to them. Lettingy(i,j) andJ,(i,j) denote in Egs.(4.2a and (4.2 become exact for a quadratic free-
the local currents in the horizonté) and vertical(j) direc-  energy surface. The third- and higher-order derivatives van-
tions, respectively, the full result?%** ish due to the fact thaP; is Gaussiar(see the Appendix
- . Thus for a quadratic free-energy surface, the logarithm of the

Jy(i,1) _ B '”tar(w)m &tar(w) (4.7) nucleation rate is rigorously a quadratic function of the gas

(i) Bali)) B1 ' ' phase supersaturatiof1 S}. The quadratic surface model
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described here is readily extendable to multidimensional 32InJ 92U

saddle points for systems having more than two components =p' U 'a
. he yster 9 P a(nS)a(ns) © a(InS)a(ns,)
involved in the nucleation process.

Z]V] aJ
+lpT——y-1? T~ )1
(pamau aJ|Poing Y 2
C. Matrix method Ju Ju
. . . L —|p" Ut U la
For binary systems with strong deviations from ideality, aln'§; dIn§;

the potential surfaces can be considerably more
complicated?® Furthermore the major nucleation flux may +pT U Y U-lal. (412
even bypass the saddle point completé§? For these more dIn; dIn§

complex situations a matrix method can be useful for evaIUEquations(4.1]) and(4.12 present a general framework for
ation ofdIn J/dIn S Developed in Refs. 26 and 27, the ap- computing the sensitivity of Id with respect to variations in
proach applies both to multistep procesges, to the growth  he |ng | but one that requires further development for inter-
of clusters through addition and subtraction of dimers, t”m'pretation of measurements. Further development of the ma-

ers and higher-order clusters, as well as mongraed mul- iy method and its application to KNTs for binary and mul-
ticomponent nucleation. These processes are related U”dt“?éomponent nucleation will be presented in a future
the method, which maps the multicomponent compositionabubncation_

grid point by point to a line, which can then be treated for-
mally as a multistep single component process. In either case
the nucleation rate can be written in the form: V. SUMMARY AND DISCUSSION

J=(a'u~ta) %, (4.10 In this paper we derived an exact relation for the observ-
able sensitivitiesd" In J/d(In 9" in terms of cumulants over
where a'={1,1,...,3 is the unit row vector andU  the molecular distribution of reciprocal cluster growth rates.
=3,_,UM. Each U™ contains only contributions from The case having index=1 is the usual nucleation theorem
r-step transitions and factors ad=[FVTG[F"]  5ng the cass=2 was shown to provide an interesting
whereF(") is a constant rectangular lower triangular matrix molecular-level reformulation of the Kelvin relation. These
having elements either zero or unity a@f” is a square results apply under conditions that the law of mass action
diagonal matrix having elemenB{)=p{) ,ng_ 1. As  and detailed balance are maintained. In particular, the clus-
B is the forward rate constant farstep transitions, it is  ters must be noninteracting for the law of mass action to be
proportional ton, for a multistep single component process, valid. A significant finding is that measurements of
or to ag; in a multicomponent process; thus the matdx  d"In J/d(In 9" reflect the properties of a distribution of clus-
depends only on the constrained equilibrium cluster growthers near critical size and not those of a single cluster, as the
rates. For a one-component and one-step prodes$), EQ.  more approximate forms of the nucleation theorem described
(4.10 reduces to Eq(2.1). Equation(4.10 is a useful start- in Sec. | would suggest. A similar result applies to the tem-
ing point for extending the kinetic nucleation theorem toperature derivative, demonstrating thetn J/dT also de-
multistep and multicomponent nucleation processes. Differpends on a weighted average of cluster energies for clusters
entiation gives a matrix expression fotn J/dIn § whereS;  near critical size. Extensions of the kinetic nucleation theo-
is the saturation ratio of specieésn a multicomponent sys- rem were obtained for binary and multicomponent nucleation
tem: under the assumption that the multivariate cluster free-
_ _ energy surface has quadratic form and for a class of binary
dInJ = afu”*(4U/9InS)]U " "a nucleation systems, such as sulfuric acid—water mixtures, for
dIn§, a'lU ‘a which the SHR modé? is a valid approximation. Finally we
=pT(4U/9InS)U 1a, (4.10) initiated the development of a mgtrix method for. comqua-
tion of d In J/dIn Sfor cases involving more complicated ki-
where to calculate the derivatives oflmve employ the iden- netic schemes, including multistep and multicomponent
tities dJ=—J2dJ" ! and dU '=—-U"'dUU"1. The last nucleation processes, for which simple analytic solutions
equality is a rewriting in terms of the column vectpr cannot be obtained.
=JU la, which is the analog of the probabilitp(g) in Inspection of the kinetic nucleation theorem suggests a
unary nucleation. From the structure Wfit is readily seen number of distinctions from thermodynamic resul&q.
that differentiation of the rhs of Eq4.11) reduces to differ- (1.4)]. First, the unit term appearing in E(R.7) arises natu-
entiation of the diagonal elements 6f"). Returning to the rally from the law of mass actiofef. Eq.(2.5)]. Consistency
single-component one-step processitself is diagonal, the of Eq. (1.4) with mass action, on the other hand, requires
term in brackets is[U (dU/dIn S)lgg=(9+1), and diInJy/dInS=1, and for this result it was necessary to em-
(Ufla)gzll(,Bgng). Thus, noting that premultiplication by ploy both the prefactor-exponent form of Ed..2) and the
the row vectora' is equivalent to summation, it is seen that prefactor correction of Courtney. The present derivation has
Eq. (4.11) reduces to Eq(2.7) for this special case. Differ- been achieved without any requirements placed on either the
entiation of Eq.(4.11), in turn, yields the second-order rate cluster formation energyV(g) or the kinetic prefactod,.
sensitivities: The expression ford on which the present derivation is
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based, Eq(2.1), is obtained under assumed removal of clus-(A2) is evaluated using the expansion from E&4), keep-
ters beyond a certain maximum size and a steady-staieg in mind that the cumulants are dependent oiS, Ito
current? however no barrier need be present. Thus theobtain
equality of 2.7 applies, for example, to the activationless o
monomer addition processe8;+A;—A,+A;—Az+-- dinedms
even with no barrier or critical cluster size. In the limit that “dmns
the forward rate strongly dominateg=1 anddInJ/dInS;

=2, which is the expected result from chemical kinetics. The
thermodynamic result, Eq1.4), on the other hand is more

limited as it is derived under the presumption that there is a

critical cluster size controlling the rate, which is of course Comparison of the rhs of EqéA2) and(A5) gives
problematic when there is no relative maximum in the free
energy of cluster formation. Finally the appearance in Eq.
(2.7 of g* (instead ofAg*) is a consequence of assuming
an ideal cluster mixture consistent with the law of mass ac-

Kl+ K2+ )Ins

dx
dinS

+ —

dx 2
5| Ket S| (N9 (A5)

dk,
Kn+1+d|—ns =0 (A6)

for all n. All of the equalities of Eq(2.11), with the excep-

tion.
tion of the first, which is derived independently in Sec. I,
follow immediately from this result.
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(e7thn Sl)PT:<e_i " Sl)Ji 13

X (terms independent 085,),

APPENDIX: DERIVATION OF EQS. (2.9a) AND (2.9b) — J-1x(terms independent o8,), (A7b)

Define the average as before=2,y(g)P(g) and note . _ . . .
with a small amount of algebra that where (f(i,}))p,=2iZ;(i,])P+(i.j) and the middle term
of Eq. (A7b) averages over the steady state current distribu-
] : .
eginS_ n_(z 4/clsgn§q), (A1) tion. Thus from Eqs(4.29 and(4.2b):
1\7g

(e’ %)p  5InJ  4Inn(0,1
where ng'= e 9%, is the concentration of clusters in T 0.

equilibrium with a flat surface andlis the steady state nucle- JInS, Jins,  dInS,
ation rate. The expression in parentheses on the rhs of Eq. =()p.+1-1=(j)p., (A83)
(A1) is independent of I6. Thus T T
dine?™_dind dinn, " ln(e™ e 5ing
dinS _dins dins 97+ 79 (A2) JinS,  ainS, ~(Dey (A8D)

where Eq.(2.7) has been used.
Consider the moment expansion obtained by expandmg
the exponent on the left-hand side of E41) in powers of

where the partial derivative indicates constant temperature
nd supersaturation of the remaining component. The cumu-
lant expansion for EqA8a) is

gins
e9MS=1479InS+ 2g%(InS)2+ 1g3(InS)3+---. (A3) In(e! " %2)p =(j)p NS+ 3((j = (i))?)p, (INS)*+
. o (A9)
The corresponding cumulant expansion is
InedMS— Ky NS+ Liy(INS)24 Les(INS)3 4+ (Ad) and continuing as in Eq$A5), (A6), and(2.9) gives
where, in terms of the central moments;=g0, 3InJ f9<J>PT o
=(0=92 «=(9-9° «=(0-0)"-3(x)2% &5 anS)2 " ains, (U=D%e; (A0

=(g—0)°—10k3k,, etc., are the cumulants &(g).** In

conventional probability theory, Eq§A3) and (A4) are the and similarly to Egs.(A6) and (2.9) for the higher-order
standard moment and cumulant generating functions, respecumulants and higher-order partial derivatives ad.lEqua-
tively, for the distributionP(g). The present analysis differs tion (A7b) vyields somewhat different expressions for
in that the moment and cumulant coefficients, and indeed ththe higher-order derivatives with respect to the orthogonal
distribution itself, all depend on & Here, the |lhs of Eq. coordinate:
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dind . o,
m-(%i/f'ﬁ,

3%InJ

Fansy? ~ 1 =()%)yn=r2, (A10b)

3%InJ ,
a(InSy)3 "3

etc., wherex| is thelth cumulant of the current distribution,
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