Mass-transport considerations pertinent to aqueous-phase reactions of gases in liquid-water clouds. Schwartz, S. E. In Chemistry of Multiphase Atmospheric Systems, W. Jaeschke, Ed, pp. 415-471. Springer, Heidelberg, 1986.


Reactions of gases in liquid-water clouds are potentially important in the transformation of atmospheric pollutants affecting their transport in the atmosphere and subsequent removal and deposition to the surface. Such processes consist of the following sequence of steps: Mass-transport of the reagent gas or gases to the air-water interface; transfer across the interface and establishment of solubility equilibria locally at the interface; mass-transport of the dissolved gas or gases within the aqueous phase; aqueous-phase chemical reaction(s1; mass- transport of reaction product(s) and possible subsequent evolution into the gas-phase. Description of the rate of the overall process requires identification of the rate-limiting step (or steps) and evaluation of the rate of such step(s). Identification of the rate-limiting step may be achieved by evaluation and comparison of the characteristic times pertinent to the several processes and may be readily carried out by methods outlined herein, for known or assumed reagent concentrations, drop size, and fundamental constants as follows: gas- and aqueous-phase diffusion coefficients; Henry's law coefficient and other pertinent equilibrium constants; interfacial mass-transfer accommodation coefficient; aqueous-phase reaction rate constants(s). A graphical method is described whereby it may be ascertained whether a given reaction is controlled solely by reagent solubility and intrinsic chemical kinetic or is mass-transport limited by one or another of the above processes. In the absence of mass-transport limitation, reaction rates may be evaluated uniformly for the entire liquid-water content of the cloud using equilibrium reagent concentrations. In contrast, where appreciable mass-transport limitation is indicated, evaluation of the overall rate requires knowledge of and integration over the drop-size distribution characterizing the cloud.


This page was last updated 2005-04-25.

Return to Stephen E. Schwartz Publications Page