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TOP-LEVEL QUESTION IN
CLIMATE CHANGE SCIENCE

® How much will the global mean temperature change?
AT =AF
where F is the forcing and A is the climate sensitivity.

- A forcing is a change in a radiative flux component, W m™.

- Forcings are thought to be additive and fungible.

e What is Earth’s climate sensitivity?
- National Academy Report (Charney, 1979):

¢ ¢ We estimate the most probable global warming for a doubling of CO, to
be near 3 degrees C, with a probable error of plus or minus 1.5 degrees.

- Intergovernmental Panel on Climate Change (IPCC, 2001 ):

¢ ¢ Climate sensitivity [to CO, doubling] is likely to be in the range
1.5t0 4.5°C.



HOW CAN CLIMATE SENSITIVITY BE DETERMINED?
Climate sensitivity A = AT / F

e Climate models evaluated by performance on prior climate change
and/or

o Empirical determination from prior climate change

e Either way, AT and F must be determined with sufficiently small
uncertainty to yield an uncertainty in A that is useful for informed
decision making.

 Present generally accepted uncertainty in A (1.5 to 4.5°C) — a factor
of 3 — 1s not very useful for policy planning purposes.

e Uncertainty may be much greater!



CONCLUSIONS

® Radiative forcing of climate change by anthropogenic aerosols is
substantial in the context of other forcings of climate change over the
industrial period.

Global annual mean aerosol forcing of -1 to -3 W m2 is plausible
given present understanding.

e Uncertainty in radiative forcing of climate change by anthropogenic
aerosols is the greatest source of uncertainty in forcing of climate
change.

This uncertainty precludes:
- Evaluation of models of climate change.

- Inference of climate sensitivity from temperature changes over the
industrial period.

- Informed policy making on greenhouse gases.

e Uncertainty in aerosol forcing must be reduced at least three-fold for

uncertainty in climate sensitivity to be meaningfully reduced and
bounded.



RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD
IPCC (2001)

The global mean radiative forcing of the climate system
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. 3
Q
B P )
e L | Halocarbons
O o2 N,O Aerosols 1
E c CH — A ~
2 E 4 Black -
n ®© co carbon from
— 2 i |
o = 1t Tropospheric f?usej" Mineral Aviation-induced
@ i oz:ne burning Dust ~ A = Solar |
g T I Contrails Cirrus |—I—|
0 = = =

= > Stratospheric J_ Organic - .
o £ ozone Cfarcr)?;’” Biomass A I Lﬁgg-
© o -1r Sulphate . burnin eroso
; 8 u p fOSS” g |nd| ect (albedO)
>0 L bfue_l effect only i
g urning
© 2L |
®
o

High Medium Medium Low Very Very Very Very Very Very Very Very

Low Low Low Low Low Low Low Low
Level of Scientific Understanding

Summary fOI‘ PO”Cymakel’S Inteﬁgg{veeﬁ%gggtgolggggl%;O%ﬁ)irlng‘{et%ehange



RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD
IPCC (2001)

With total aerosol forcing
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RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD
IPCC (2001)

With total aerosol forcing

The global mean radiative forcing of the climate system
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RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD

IPCC (2001)

With total aerosol forcing and total forcing

Total
The global mean radiative forcing of the climate system Forcing
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With total aerosol forcing and total forcing and uncertainties Total

The global mean radiative forcing of the climate system Forcing

for the year 2000, relative to 1750
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With total aerosol forcing and total forcing and uncertainties Total
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DIRECT AEROSOL FORCING

Forcing = (Forcing per aerosol amount) X (Aerosol amount)

Comparison of linear formula and radiation transfer model
Particle radius » = 85 nm; surface reflectance R = 0.15; single scatter albedo mo = 1.
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Forcing is highly sensitive to modest aerosol loadings.
Global-average AOT 0.1 corresponds to global-average forcing -3.2 W m-2.
Linear model is accurate and convenient, especially for error budgets.



AEROSOL OPTICAL DEPTH

Determined by Sunphotometry
North Central Oklahoma - Daily Average
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J. Michalsky et al., JGR, 2001

Variability is due to variability in tropospheric aerosols.
Optical depth variability of 0.1 is common even at a rural mid-continental sit
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Variability is due to variability in tropospheric aerosols.
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Optical depth variability of 0.1 is common even at a rural mid-continental site.  


INTERCOMPARISON OF BROADBAND SHORTWAVE
FORCING BY AMMONIUM SULFATE AEROSOL

Normalized global-average forcing: W m-2 / g(SO%{) m-2 or W /g(SO%{)
Aerosol optical depth 0.2; surface albedo 0.15
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Standard deviation ~8% for 15 models at radius ~ 200 nm.

Boucher, Schwartz and 28 co-authors, JGR, 1998



SULFATE MODEL INTERCOMPARISON

Annual average non-seasalt sulfate in 11 chemical transport models
and comparison with observations at nine stations
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LIGHT SCATTERING EFFICIENCY OF (NH4)2S04
DEPENDENCE ON PARTICLE SIZE AND RH
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0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

INDIRECT AEROSOL FORCIN!

SENSITIVITY OF ALBEDO AND FORCING
TO CLOUD DROP CONCENTRATION
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CDNC (cm-3)

CLOUD DROPLET NUMBER CONCENTRATION

Dependence on Non-Seasalt Sulfate
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SHORTWAVE FORCING, ANNUAL AVERAGE

GHG's + O3 + Sulfate (Direct and Indirect)

Two Formulations of Cloud Droplet Concentration
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Kiehl et al., JGR, 2000
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REPRESENTING AEROSOL
INFLUENCES
IN CLIMATE MODELS



FORCING AND RESPONSE IN THE UK MET OFFICE MODEL (1995)
Model sensitivity = 2.5 K per CO2 doubling; sulfate direct forcing only, -0.6 W m2 (1990)
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“Inclusion of sulphate aerosol forcing improves the simulation of global mean
temperature over the last few decades.” -- Mitchell, Tett, et al., Nature, 1995



CLIMATE RESPONSE IN THE GFDL MODEL (1997)
Model sensitivity = 3.7 K per CO2 doubling; sulfate direct forcing only, -0.6 W m2 (1990)
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“The global average SAT trend from the model [is] in reasonable agreement with
the observations.” -- Haywood, Ramaswamy et al., Geophys. Res. Lett, 1997



FORCING AND RESPONSE IN THE CANADIAN CLIMATE MODEL (2000)
Model sensitivity = 3.5 K per CO2 doubling; su}fate direct forcing only, -1.0 W m2 (1990)
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“Observed global mean temperature changes and those simulated for GHG + aerosol
forcing show reasonable agreement.” -- Boer, et al., Climate Dynamics, 2000



FORCING AND RESPONSE IN THE GFDL MODEL (2000)
Model sensitivity = 3.4 K per CO2 doubling; sulfate forcing, -0.62 W m-2 (1990)
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“The surface temperature time series from the five GHG-plus-sulfate integrations
show an increase over the last century, which is broadly consistent with the
observations.” -- Delworth & Knutson, Science, 2000



FORCING AND RESPONSE IN THE NCAR MODEL (2003)
Model sensitivity = 2.18 K per CO2 doubling; sulfate direct forcing only, -0.6 W m-2 (1990)
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“The time series from GHG + sulfates + solar shows reasonable agreement with the
observations.” -- Meehl, Washington, Wigley et al., J. Climate, 2003.



FORCING AND RESPONSE IN THE UK MET OFFICE MODEL (2000)

Model sensmVlty 345K per C02 doubhng, sulfate + indirect forcmg, -1.1 W m2 (1990)
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“The ALL ensemble captures the main features of global mean temperature
changes observed since 1860.” -- Stort, Tett, Mitchell, et al., Science, 2000



[PCC-2001 STATEMENTS ON DETECTION
AND ATTRIBUTION OF CLIMATE CHANGE

¢¢ Simulations that include estimates of natural and
anthropogenic forcing reproduce the observed large-
scale changes in surface temperature over the 20th
century.

¢¢ Most model estimates that take into account both
greenhouse gases and sulphate aerosols are
consistent with observations over this period.




OUR SIMULATIONS THAT INCLUDE ESTIMATES
OF NATURAL AND ANTHROPOGENIC FORCING
REPRODUCE THE OBSERVED LARGE-SCALE

CHANGES IN SURFACE TEMPERATURE
OVER THE 20TH CENTURY.

BUT MOM, DON'T THE
GCM CALCULATIONS
REQUIRE ACCURATE
ESTIMATES OF
FORCING? _

SHHHH || THE EMPEROR
I&HT HEAR YOU.




UNCERTAINTY PRINCIPLES
Climate sensitivity A = AT / F

The fractional uncertainty in climate sensitivity A is evaluated from
fractional uncertainties in temperature change AT and forcing F’ as:

b (4]

A reasonable target uncertainty might be:

% = 30%, e.qg., ATZXCOZ = (3 T+ 1) K

This would require uncertainties in temperature anomaly and forcing:

OAT x5F = 20%.
AT F

This imposes stringent requirements on uncertainty in aerosol forcing!



REQUIRED UNCERTAINTY IN AEROSOL FORCING

Uncertainty 1n total forcing not to exceed 20%

GHG Forcing (well mixed gases + strat and trop O3) =2.6 W m2 + 10%
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Uncertainty in aerosol forcing must be reduced by at least a factor of 3 to
meet requirements for determining climate sensitivity.



CONCLUSIONS

® Radiative forcing of climate change by anthropogenic aerosols is
substantial in the context of other forcings of climate change over the
industrial period.

Global annual mean aerosol forcing of -1 to -3 W m2 is plausible
given present understanding.

e Uncertainty in radiative forcing of climate change by anthropogenic
aerosols is the greatest source of uncertainty in forcing of climate
change.

This uncertainty precludes:
- Evaluation of models of climate change.

- Inference of climate sensitivity from temperature changes over the
industrial period.

- Informed policy making on greenhouse gases.

e Uncertainty in aerosol forcing must be reduced at least three-fold for

uncertainty in climate sensitivity to be meaningfully reduced and
bounded.





