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The Key under the Lamppost

The Islamic world finds a timeless source of humorous wisdom in the antics of a holy fool, a
Mullah called Nasruddin.

One night a neighbor of Mullah Nasruddin was walking home and found Mullah squatting on
the ground beside a lamppost evidently looking for something.

"What's the matter Mullah?" asked the concerned neighbor.

"I have lost my key" replied the Mullah.

"Oh! Here let me help you." and the kindly neighbor got down on his knees and started
searching for the Mullah's key as well.

After some time spent looking the neighbor straightened up and quite puzzled asked "are you
sure you dropped your key here?"

"Oh, I didn't drop it here." replied the Mullah.

"Where did you drop it ?!?" exclaimed the now bewildered neighbor.

"Over there" and the Mullah pointed to the front of his house that was in darkness.

"So why are you looking for it here ??!!??" exclaimed the now exasperated neighbor.

"Because the light is better over here." replied the Mullah.
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GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter
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ATMOSPHERIC
RADIATION

Energy per area per
time

Power per time

Unit:
Watt per square meter
W m-2
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ATMOSPHERIC CARBON DIOXIDE IS INCREASING

Global carbon dioxide concentration and infrared radiative forcing 
over the last thousand years
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GREENHOUSE GAS MIXING RATIOS OVER THE INDUSTRIAL PERIOD
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GREENHOUSE GAS FORCINGS OVER THE INDUSTRIAL PERIOD
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GLOBAL TEMPERATURE TREND OVER THE INDUSTRIAL PERIOD
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THE “BIBLE” OF CLIMATE CHANGE RESEARCH

Cambridge University Press, 2001



CLIMATE CHANGE SENSITIVITY
Summary of Current Models

Units: K / (W m-2)

Number of
Models

Mean Standard
Deviation

Range

15 0.87 0.23 0.5 - 1.25

Climate Change 2001, Cambridge University Press, 2001



EMPIRICAL TEMPERATURE SENSITIVITY

Greenhouse forcing over the industrial period is 2.5 W m-2

Temperature increase over the industrial period is 0.6 K.

Empirical Sensitivity: λ = = =dT

dF

0 6
0 24

.
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-2

This value is much lower than model predictions.

WHY?





CLIMATE FORCING BY SULFATE AEROSOL



BIOMASS BURNING AND WIDESPREAD AEROSOL
Northeastern Oklahoma, 2000-12-01



DEPENDENCE OF CLOUD ALBEDO ON CLOUD DEPTH
Influence of Cloud Drop Radius and Concentration

r = 4 8 16 µm

LWC = 0.3 g m-3

g = 0.858

CLOUD DEPTH
Twomey, Atmospheric Aerosols, 1977



Level  of Scientific Understanding
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The global mean radiative forcing of the climate system 
for the year 2000, relative to 1750
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WHY MODELING SULFATE IS “EASY”
The key under the lamppost

• Conservation of matter

• Emissions

• Chemistry

• Measurements



WHY MODELING SULFATE IS IMPORTANT
The key

• Major anthropogenic aerosol
constituent

• Test ability to model

• Examine for aerosol influences

• Examine climate sensitivity



AEROSOL COMPOSITION AND MASS-LOADING
PM2.5 (µg m-3) at nonurban U. S. locations

Several-year average
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Aerosol Chemical Transport Model GChM-O
Global Chemistry Model Driven by Observation-Derived Meteorological Data

Benkovitz, Schwartz, et al., 1994 - 2003
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AQUEOUS OXIDATION OF S(IV) BY H2O2 AND O3
pH Dependence of solubility and kinetics
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DAYS OF RECKONING
Component of Model Number Aggregate Number
Grid cells

Longitude 360 360
Latitude 81 2.92 × 104

Vertical 27 7.87 × 105

Source Regions 5 3.94 × 106

Biogenic, North America, Europe,
Asia, Volcanic

Sulfur species per source region 4 1.57 × 107

SO2, pSO4
2-, gSO4

2-, aqSO4
2-

Solutions per day
Chemistry, Vertical transport,
Precip scavenging

24

Horizontal advection 4
Differential equations per day 28 4.41 × 108

Days 60 2.65 × 1010

Experiments ?? ?? × 10??



SULFATE COLUMN BURDEN
Vertical integral of concentration

July 18, 1997, 1800 UTC - North American sources only
Sample frame from animation

BNL Chemical Transport Model



COMPARISON OF MEASURED VS. MODELED SULFATE DURING ACE-2
S
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Measurement

Model

Benkovitz, Schwartz & Kim, GRL, in review, 2003

Model identifies sulfate according to geographical source and chemical
formation mechanism.

Model closely tracks observations at intensive observation stations.
Blue arrows denote instances where sulfate was substantially from North

American sources.



COMPARISON OF MODEL AND OBSERVATIONS
Comparisons for 24-hr sulfate mixing ratio at surface
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COMPARISON OF MODEL AND OBSERVATIONS

Statistics of Comparisons

N
Median
Spread

Obs-Obs 503 1.5
Model-Obs

Same locations
503 1.9

Model-Obs
All locations

7907 2.3

Benkovitz and Schwartz, JGR, 1997



SHORTWAVE FORCING, ANNUAL AVERAGE
GHG's + O3 + Sulfate (Direct and Indirect)

Two Formulations of Cloud Droplet Concentration

Kiehl et al.,  JGR, 2000



MODELED SULFATE COLUMN BURDEN

[ ]SO4
2−∫ dz

April 2-8, 1987
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AVHRR IMAGES APRIL 2-8, 1987

steve
Channel 1, Visible, 0.58-0.68 µm



CLOUD OPTICAL DEPTH
Dependence on Liquid Water Path

25˚-30˚W, 50˚-55˚N      April 2-8, 1987
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CLOUD PROPERTIES AND SULFATE COLUMN BURDEN
25˚-30˚W, 50˚-55˚N, April 2-8, 1987
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CLOUD-TOP ALBEDO
Dependence on Liquid Water Path

25˚-30˚W, 50˚-55˚N      April 2, 5 and 7,1987
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SIZE MATTERS
Light scattering efficiency of ammonium sulfate vs. radius
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NUCLEATION AND GROWTH PROCESSES
OF ATMOSPHERIC AEROSOLS AND CLOUDS



DO YOU HAVE A FEW MOMENTS?
The Problem

How to represent the size-distribution of
atmospheric aerosols and its evolution in
chemical transport models

The Solution

Represent the size distribution in terms of
its low-order moments

µk
kr

dN

dr
dr≡ ∞

∫ ( )
0



PHYSICAL INTERPRETATION OF MOMENTS

Moment Physical Interpretation Unit

µ0 Particle number concentration cm-3

µ1 Total radius per unit volume cm cm-3

µ2 ( )4 1π − × Area per unit volume cm2 cm-3

µ3 ( )4
3

1π − × Volume per unit volume cm3 cm-3



EVALUATING AEROSOL PROPERTIES AND
EVOLUTION FROM THE MOMENTS OF THE PSD

McGraw, Schwartz, et al.

An aerosol physical or optical property or growth rate is
an integral over the size distribution, requiring integrals
of the form

P r f r dr=
∞

∫ σ ( ) ( )
0

where the kernel function σ ( )r  describes the property of
interest.

Problem:  How to evaluate integrals over the aerosol
size distribution when only the lower-order moments of
the distribution  are known???



Solution: Gaussian quadrature    σ σ( ) ( ) ( )r f r dr r wi
i

N

i≈
=

∞ ∑∫
1

0

Here σ ( )r  is the known kernel function and f r( ) is the
unknown size distribution.

The N abcissas { ri} and N weights { wi } are determined
from 2N moments of f r( )  by inversion of

µk
k

i
k

i

N

ir f r dr r w≡ =
=

∞ ∑∫ ( )
1

0    k = 0, 1, …, 2N-1.

Aerosol properties (e.g., light scattering coefficient)
evaluated from the lowest six moments are accurate
typically to a few percent.



APPLICATION TO SULFATE IN
EASTERN NORTH AMERICA

Simulations: 40 days, 19 July to 28 August 1995.

Comparison with observations: Sulfate mass
concentration, aerosol number concentration and size
distributions at the Great Smoky Mountains National
Park during Southeastern Aerosol and Visibility Study.

Limitation: Model is for sulfate only; size measurements
are for entire aerosol, not just sulfate.



RESULTS
40-day averages at lowest model layer.

 

Sulfate mixing ratio, ppb Number concentration, cm-3

Yu, Kasibhatla, Wright, Schwartz, McGraw & Deng, JGR, in press, 2003



TIME SERIES COMPARISON FOR AEROSOL MOMENTS
Look Ridge, Great Smoky Mountains TN (84˚ W, 36˚ N; 900 m) during SEAVS
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Yu, Kasibhatla, Wright, Schwartz, McGraw & Deng, JGR, in press, 2003



TIME SERIES COMPARISON FOR
AEROSOL INTENSIVE PROPERTIES

EVALUATED FROM MOMENTS
Look Ridge, Great Smoky Mountains TN (84˚ W, 36˚ N; 900 m) during SEAVS
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SIZE DISTRIBUTIONS
Comparison of Measurement and Retrieval from Model

At 3 Altitudes near Nashville TN
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SUMMARY
Aerosol forcing is the greatest source of uncertainty in
radiative forcing of climate change over the industrial period.
Knowledge of this forcing is required to build confidence in
climate models or to empirically infer climate sensitivity.
Representing aerosol forcing in climate models requires
accurate representation of the distribution and properties of
anthropogenic aerosols.
Sulfate is a major aerosol constituent and a major test-bed for
ability to represent aerosols in models.
Present model does a “pretty good job” of representing sulfate
mass concentration on subhemispheric to hemispheric scales
but not good enough.
Representing aerosol microphysical properties and evolution in
chemical transport models is necessary but still in its infancy.




