ENERGY FLOWS

- FORCINGS
CLIMATE CHANGE

Mtﬂ::ltl
hdbthEah

Stephen B ‘S"&‘ﬁWdrTz BNL: 7 +20-
www.ecd.bnl. gov/s’reve

3
; !




he Greenhouse Effect
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THE GREENHOUSE EFFECT

ARTH’S ENERGY BUDGET:
A DELICATE BALANCE

» Sunlight heats the Earth,

* The warm Earth radiates energy (in the form of infrared
radiation, or hedat) back out 1o space,

« Some of this infrared radiation is trapped in the
atmosphere, giving Earth its temperate climate.
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This is the greenhouse effect.
Global average temperature 15°C or 59°F

Without it, the Earth’s climate would
be like the moon's, harsh and severe.

Global average temperature -19°C or -2 °F
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ATMOSPHERIC
RADIATION

Power per area

Energy per time per
area

Unit:
Watt per square meter
W m2




STEFAN - BOLTZMANN RADIATION LAW

Emitted thermal radiative flux from a black body

Temperature, °K
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Stefan-Boltzmann law “converts” temperature to radiative flux.



GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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Schwartz, 1996, modified from Ramanathan, 1987
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RADIATIVE FORCING

A change 1n a radiative flux term in Earth’s radiation
budget, AF, W m™2.

Working hypothesis:
On a global basis radiative forcings are additive and

fungible.
e This hypothesis 1s fundamental to the radiative
forcing concept.

e This hypothesis underlies much of the assessment of
climate change over the industrial period.



ATMOSPHERIC CARBON DIOXIDE IS INCREASING
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CLIMATE FORCINGS OVER THE
INDUSTRIAL PERIOD
Extracted from IPCC AR4 (2007)
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Forcing, W m-2
Greenhouse gas forcing 1s considered accurately known.
Gases are uniformly distributed; radiation transfer 1s well understood.



GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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Temperature Anomaly, °C

GLOBAL ANNUAL TEMPERATURE
ANOMALY, 1880-2010
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HOW MUCH WARMING IS EXPECTED?

Equilibrium change Climate .
in global mean = sensitivity X Forcing
surface temperature
AT =S X F

S is equilibrium sensitivity. Units: K/(W m-2)

Sensitivity 1s commonly expressed as “COj2 doubling
temperature”

ATZX =95 X FZX

where F5y is the “CO2 doubling forcing” ca. 3.7 W m2.



ESTIMATES OF EARTH’S CLIMATE SENSITIVITY
AND ASSOCIATED UNCERTAINTY

Major national and international assessments and current climate models
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Current estimates of Earth’s climate sensitivity are centered about a CO»

doubling temperature AT>x = 3 K, but with substantial uncertainty.

Range of sensitivities of current models roughly coincides with IPCC
“likely” range.



HOW MUCH WARMING IS EXPECTED?

For increases in CO», CH4, N»2O, and CFCs over the
industrial period

F=26W m'2 IPCC, 2007

. Best Estimate
Expected temperature increase:

AT, FxAT2X:2'6><3K:2.1K

Observed temperature increase: Warming

ATobs — 08 K Discrepancy
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Radiative Forcing by Tropospheric Aerosol

Land Use Changes Industrial Emissions Biomass Burning
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AEROSOL IN MEXICO CITY BASIN




AEROSOL IN MEXICO CITY BASIN

Light scattering by aerosols decreases absorption of solar radiation.



AEROSOLS AS SEEN FROM SPACE

Fire plumes from southern Mexico transported north into Gulf of Mexico.




CLOUD BRIGHTENING BY SHIP TRACKS

Satelhte photo off Cahforma coast
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Aerosols from sh1p emissions enhance reﬂectlwty of marine stratus.



ESTIMATES OF AEROSOL DIRECT FORCING

By linear model and by radiation transfer modeling
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Aerosol Optical Thickness at 550 nm
Global average sulfate optical thickness is 0.03: 1 W m-2? cooling.

In continental U. S. typical aerosol optical thickness is 0.1: 3 W m-2 cooling.
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AEROSOL OPTICAL DEPTH AT ARM SGP

Fifteen years of daily average 500 nm AOD in North Central Oklahoma
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Michalsky, Denn, Flynn, Hodges, Kiedron, Koontz, Schlemmer, Schwartz, JGR, 2010
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Green curve 1s LOWESS (locally weighted scatterplot smoothing) fit.



GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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Schwartz, 1996, modified from Ramanathan, 1987
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CLIMATE FORCINGS OVER THE
INDUSTRIAL PERIOD
Extracted from IPCC AR4 (2007)
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Forcing, W m-2
Total forcing includes other anthropogenic and natural (solar) forcings.
Forcing by tropospheric ozone, ~0.35 W m-2, is the greatest of these.
Uncertainty in aerosol forcing dominates uncertainty in total forcing.



THE PATH FORWARD

Determine aerosol forcing with high accuracy.
Multiple approaches are required:
Laboratory studies of aerosol processes.

Field measurements of aerosol processes and properties:
emissions, new particle formation, evolution, size
distributed composition, optical properties, CCN
properties, removal processes . . .

Represent aerosol processes in chemical transport models.
Evaluate models by comparison with observations.
Satellite measurements for spatial coverage.

Calculate forcings in chemical transport models and GCMs.

Measurement based determination of aerosol forcings.



AEROSOL PROCESSES THAT MUST BE
UNDERSTOOD AND REPRESENTED IN MODELS

e er?sation Radiation transfer in clouds
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Modified from Ghan and Schwartz, Bull. Amer. Meterol Soc., 2007



APPROACH TO DETERMINE
AEROSOL FORCING

Numerical simulation of physical processes

Radiation transfer in clouds
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Isomorphism of processes to computer code

Modeling aerosol processes requires understanding these processes,
developing and testing their numerical representations, and
incorporating these representations in global scale models.





