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INCREASES IN CO7 OVER THE
INDUSTRIAL PERIOD



ATMOSPHERIC CARBON DIOXIDE
Time series 1700 - 2003
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ATMOSPHERIC CO, EMISSIONS
Time series 1700 - 2003
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ATMOSPHERIC CARBON DIOXIDE
Time series 1700 - 2003
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What’s missing?


LAND USE CARBON EMISSIONS BY SOURCE REGION

Annual Net Flux of Carbon to the Atmosphere from Land-Use Change: 1850-2000

(Houghton and Hackler)
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Carbon flux estimated as land area times carbon emissions associated with
deforestation (or uptake associated with afforestation).

United States dominates emissions before 1900 and uptake after 1940.



ATMOSPHERIC CO, EMISSIONS
Time series 1700 - 2003
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Prior to 1910 COz emissions from land use changes were dominant.

Subsequently fossil fuel CO2 has been dominant and rapidly increasing!



ATTRIBUTION OF INCREASE IN
ATMOSPHERIC CO2

Comparison of cumulative CO2 emissions from fossil fuel combustion and
land use changes with measured increases in atmospheric COo.
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Prior to 1970 the increase in atmospheric CO2 was dominated by
emissions from land use changes, not fossil fuel combustion.



ATTRIBUTION OF ATMOSPHERIC CO»

Comparison of CO, mixing ratio and forcing from
fossil fuel combustion and land use changes
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ATTRIBUTION OF ATMOSPHERIC CO»

Comparison of CO, mixing ratio and forcing from

fossil fuel combustion and land use changes

400
25 | 250
Forcing
2

380 - % COo in Atmosphere CO, Residence Time, yr Wm | O
| -
g- 40 oo e 200 §'
2 360 - — 50 240 =l
g 60 120 g
o 70 75 150 g
2 340 (80,120
€ (50, 240) 5
o - 100 5
2 320 o
S (50, 240) &

© _ - .
S 300 - 0B 05  —land §
S e = use 3
oo GwEE T B s S
280 v 00 s O

260 \ \ \ \
1800 1850 1900 1950 2000

CO2 from land use emissions — not fossil fuel combustion —
was the dominant contribution to atmospheric CO7 and forcing over
the 20th century. This conclusion is not sensitive to the parameters.



IMPULSE RESPONSE PROFILES OF

ATMOSPHERIC CO;
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Preindustrial (IINIT) and IPCC-1990 (IP90) profiles from Enting

et al., 1994.



ATTRIBUTION OF ATMOSPHERIC CO»

Comparison of CO, mixing ratio and forcing from
fossil fuel combustion and land use changes
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CO2 from land use emissions — not fossil fuel combustion — has
been the dominant contribution to atmospheric CO2 and forcing over
the 20th century. This conclusion is not sensitive to the model.



INCREASE OF CO2 EMISSIONS IS ROUGHLY
EXPONENTIAL
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The time constant for emissions growth 1s well less than time constant for
decrease of excess COxo.

The mean age of fossil fuel CO2 in the atmosphere 1s ~ 40 years.

The climate influence of excess fossil fuel CO3 already in the atmosphere
will continue well into the future.



OBSERVATIONS ABOUT CO2

The residence time of excess atmospheric COp > 100 years.

CO» from land use emissions was the dominant contribution to
excess CO7 and its climate forcing over the 20t century.

CO2 from fossil fuel combustion now the dominant
contribution to excess CO7 and its climate forcing.

Fossil fuel CO7 emissions are increasing with time constant of
~40 years.

Excess CO2 now in the atmosphere is 100% of ~40 years’
emissions.

The forcing of present excess CO2 will remain for a long time.



TIME CONSTANTS OF EARTH’S
CLIMATE SYSTEM

Consider a perturbation to the climate system
How long does it take for the system to adjust to the new state?

There are many time constants:
Minutes. 1t gets cooler when the sun goes “behind a cloud.”

Hours. It 1s cooler at night than during the day; but there 1s a
lag.

Months. 1t is colder in winter than in summer, but there is a lag.

Years. Thermal buffering of the ocean mixed layer.

Thousands of years. The deep oceans.

Millions of years. Thermal mass of the whole planet (Kelvin
and the age of Earth)



TIME CONSTANT OF THE CLIMATE SYSTEM

For the relevant climate system consisting of the atmosphere
and the mixed layer of the ocean, the time constant for

relaxation of a

47,
TO

where 3 =

perturbation is 7= C, / 3,

([ ldin(l- o)

1 dlne
1 +

J

4 dInT |, 4dInT

C, 1s the thermal mass of the system, J, 1s the emitted
longwave flux at the TOA, and 7| 1s temperature at the TOA.

For ( ) taken as unity and C, given by the thermal mass of the

ocean mixed layer (100 m), 7 = 4 yr.

Climate response is essentially instantaneous! Warming due
to excess CO7 will diminish as the excess CO7 decays.



AEROSOL INFLUENCES ON RADIATION

AND CLIMATE

Direct Effect (Clear sky)

Light scattering — Cooling influence

Light absorption — Warming influence, depending on surface
Indirect Effects (Aerosols influence cloud properties)

More droplets — Brighter clouds (Twomey)

More droplets — Enhanced cloud lifetime (Albrecht)

More droplets — Broadening of drop distribution — warming (Liu)
Semi-Direct Shortwave Radiative Effect

Absorbing aerosol — Cloud evaporation (Hansen)
Longwave Radiative Effect (Clear sky)

Greenhouse effect of aerosol particles (Vogelmann)
Hydrological Effects

Suppressed surface evaporation — Spinning down the water cycle

Longer-lived clouds — Displaced precipitation (Rosenteld)
Ecological Effects

Decreased surface irradiance affects primary productivity

Increase in diffuse/direct ratio affects primary productivity



ELEMENTS OF AEROSOL FORCING

Forcing depends on amount of material present and on aerosol
microphysical and optical properties (size, single scattering
albedo, ability to nucleate cloud drops).

Amount of material present depends on emissions, atmospheric
chemistry, and removal.

Anthropogenic emissions are associated largely with fossil fuel
combustion (sulfate, soot, secondary organics), biomass
burning (organics and soot), mineral dust from disturbed soils.

Removal occurs mainly by precipitation with residence time of
about a week.
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RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD
IPCC (2001)

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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IMPLICATIONS OF AEROSOL FORCING

e Aerosol negative (cooling) forcing is likely offsetting and
masking a substantial fraction of positive (warming) forcing
by greenhouse gases.

e A substantial fraction of the forcing of 40 years of CO»
emissions 1s being offset by a week’s worth of aerosol.

e The global warming due to CO7 and other GHGs 1s almost
certainly substantially greater than has been experienced thus
far.

* Quantifying aerosol forcing 1s essential because the
uncertainty in aerosol forcing precludes meaningful
empirical inference of climate sensitivity and evaluation of
climate models.

e Aerosols influence hydrological cycles, vertical heating
profiles, surface heating, vegetation, etc., and these influences
must also be understood and quantified.



INTEGRATED FORCING

A MEASURE OF THE IMPACT OF INCREMENTAL
GREENHOUSE GASES OR AEROSOLS

T T T T
O(T)= | Floydi = | ale)ed =~ oyt =ac, | 1)t

Where

®d(T) = Integrated forcing over time horizon 77 [Unit: W m=2 yr]

F(t) = Time dependent forcing of incremental gas or aerosol species

o/(c)= F(c)/c =Forcing intensity of incremental gas or aerosol species
(may depend on concentration C)

C = Initial incremental concentration of gas or aerosol species

0
[(t) = TImpulse response function of gas or aerosol species

Integrated forcing is akin to absolute greenhouse warming potential AGWP.

® = ¢, AGWP(T)



COMMITTED INTEGRATED FORCING OF ANTHROPOGENIC
GASES AND AEROSOLS IN PRESENT ATMOSPHERE

Evaluated for 100-year time horizon
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Note vastly different scales, 1000 X, greenhouse gases >> aerosols.

Despite comparable forcings, greenhouse gases exert much greater
integrated forcings because of long atmospheric lifetimes.



SOME CONCLUDING OBSERVATIONS

 GHG concentrations and forcing are increasing. GHGs persist
in the atmosphere for decades to centuries.

 Tropospheric aerosols remain in the atmosphere for about a
week.

e Increasing scattering aerosols is not a viable strategy for
mitigating greenhouse warming.

* Decreasing absorbing aerosols would be of little long-term
avail.

e Integrated forcing is potentially useful for policymakers, e.g.,

Integrated Forcing Impact Assessment for new power plants
and the like.



