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GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square mete
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ATMOSPHERIC
RADIATION
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ATMOSPHERIC CARBON DIOXIDE IS INCREASING
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GLOBAL TEMPERATURE TREND (1000-2000)

From tree-ring, coral, and ice-core proxy records
As calibrated by instrumental measurements
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RADIATIVE FORCING OF CLIMATE CHANGE

-- An externally imposed perturbation in the radiative energy budget of
Earth’s climate system.

Pertinent to climate change over the industrial period is radiative forcing
of the surface-troposphere system.

EXAMPLES:

Shortwave forcing due to change in solar constant

Longwave (thermal infrared) forcing due to increased greenhouse gas
concentrations

Shortwave forcing by changes in surface albedo

Shortwave forcing due to enhanced light scattering by aerosols

UNITS: Watts per square meter, W m-2



ATMOSPHERIC CARBON DIOXIDE IS INCREASING
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CLIMATE RESPONSE

The change in global and annual mean temperature,
AT, K, resulting from a given radiative forcing.

Working hypothesis:
The change in global mean temperature depends on
the magnitude of the forcing, not its nature or its
spatial distribution.

AT =AF

CLIMATE SENSITIVITY

The change in global and annual mean temperature per
unit forcing, A, K/(W m-2).



TOP-LEVEL QUESTION IN
CLIMATE CHANGE SCIENCE

® How much will the global mean temperature change?
AT =AF
where F is the forcing and A is the climate sensitivity.

- A forcing is a change in a radiative flux component, W m™.

- Forcings are thought to be additive and fungible.

e What is Earth’s climate sensitivity?
- National Academy Report (Charney, 1979): @ 4 W @

¢ ¢ We estimate the most probable global warming for a doubling of CO, to
be near 3 degrees C, with a probable error of plus or minus 1.5 degrees.

- Intergovernmental Panel on Climate Change (IPCC, 2001 ):

¢ ¢ Climate sensitivity [to CO, doubling] is likely to be in the range
1.5t0 4.5°C.

This level of uncertainty is not very useful for policy planning.
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THE “BIBLE” OF CLIMATE CHANGE RESEARCH

CLIMATE CHANGE 2001

The Scientific Basis

534 Contribution of Working Group | to the Third Assessment e .
Report of the Intergovernmental Panel on Climate Change “— ]

e _— = =
"y i g a Ly =
Py . F

Cambridge University Press, 2001

http://www.grida.no/climate/ipcc_tar/wgl
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FUTURE CLIMATE IS HIGHLY UNCERTAIN
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Contributors to uncertainty in future temperature include emissions,
concentrations, and Earth's climate sensitivity. And other forcings.



RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD

IPCC (2001)
Greenhouse gases only

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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AEROSOL INFLUENCES ON RADIATION

AND CLIMATE

Direct Shortwave Radiative Effects (Clear sky)

Light scattering — Cooling influence

Light absorption — Warming influence, depending on surface
Indirect Shortwave Radiative Effects—Aerosols influence cloud properties

More droplets — Brighter clouds (Twomey)

More droplets — Enhanced cloud lifetime (Albrecht)

More droplets — Broadening of drop distribution -- warming (Liu)
Semi-Direct Shortwave Radiative Effect

Absorbing aerosol heats air and evaporates clouds (Hansen)
Longwave Radiative Effect (Clear sky)

Greenhouse effect of aerosol particles (Vogelmann)
Hydrological Effects

Suppressed surface evaporation -- Spinning down the water cycle

Displaced precipitation -- Clouds last longer or evaporate (Rosenfeld)



THE "WHITEHOUSE EFFECT”
RADIATIVE FORCING OF CLIMATE CHANGE BY AEROSOLS

Partial Heflecé:n of
Incoming Solar Radiation

Sulfate Haze Clouds

\ Cloud Condensation
Nucle

— M SO (gas) /' DMS ~

Marine Phytoplankion
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AEROSOL DIRECT SHORTWAVE FORCING

Local, instantaneous, cloud-free for absorbing aerosol
Single-scattering limit (optically thin aerosol)
AF = -FyT(60)T (1- B*B60)72 | Master Equation

—— Absorption Factor
Aerosol Optical Depth

Upscatter Fraction
Surface Reflectance

Transmittance (upward)
Solar Zenith Angle

Atmospheric Transmittance (downward)

Solar Constant
Change in Net TOA Flux

Aerosol Optical Depth Absorption Factor
T:jGepdz=fochz Ol 2R (1-w)
L Mass Concentration (1— R)2 ,Ba)

Mass Extinction Efficiency
Light Extinction Coefficient Foro=1 Q=1
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DIRECT AEROSOL FORCING

Dependence on solar zenith angle

NP

Scattering path length /¢

A L TS TS S S TS S TS Sy

The scattering path length ¢ varies as sec 6o, canceling the
cos 6o dependence of direct beam irradiance, so . . .

To first approximation, the direct aerosol forcing is
independent of solar zenith angle 6y.



DIRECT RADIATIVE FORCING DUE TO ANTHROPOGENIC SULFATE AEROSOL

Aerosol Optical Depth

| |

Ay = - BT (1= A)(1= R - Bt f(RH)- Ogo ¥, [M S0 ]r /A
R=--1IT - — : 2- 50, | 2-

) F S0? I SO Mwg |50 |

Aerosol Column Burden
Microphysics Atmospheric Chemistry

AFg is the area-average shortwave radiative forcing due to the aerosol, W m-2
Fry is the solar constant, W m-2

A, 1s the fractional cloud cover

T is the fraction of incident light transmitted by the atmosphere above the aerosol
R; 1is the albedo of the underlying surface

B is upward fraction of the radiation scattered by the aerosol,

g2 is the scattering efficiency of sulfate and associated cations at a reference low relative humidity, m? (g SO%{)'1
f(RH) accounts for the relative increase in scattering due to relative humidity

Os0, 1s the source strength of anthropogenic SO g S yr-1

Y502~ is the fractional yield of emitted SO that reacts to produce sulfate aerosol

MW is the molecular weight

T30 is the sulfate lifetime in the atmosphere, yr

A is the area of the geographical region under consideration, m2

Charlson, Schwartz, Hales, Cess, Coakley, Hansen & Hofmann, Science, 1992



EVALUATION OF GLOBAL MEAN DIRECT RADIATIVE
FORCING DUE TO ANTHROPOGENIC SULFATE

- Central - Uncertainty
Quantity  Value Units Factor
Fr 1370 W m2 1.004
1-A. 0.4 — 1.1
T 0.76 — 1.15
1-Rg 0.85 — 1.1
B 0.29 — 1.3
of = 8.5 asor | 3 m2 (g SO5 ) 1.5
m2 (g SO77)!| | f(RH) 1.7 S 1.2
QSO2 80 Tg S yr‘1 1.15
Column
Y502~ 0.4 — 1.5
Burden
) TSO4_ 0.02 yr 1.5
4 mgSO; m2
S A 5%1014  m? _
Optical | =
Depth AFp -1.1 W m2 2.4
=0.03

]1/ 2 Penner, Charlson, Hales, Laulainen, Leifer, Novakov,

Total uncertainty factor evaluated as f; = exp[z(log /) Ogren, Radke, Schwartz & Travis, BAMS, 1994



DIRECT AEROSOL FORCING AT TOP OF ATMOSPHERE
Dependence on Aerosol Optical Thickness

Comparison of Linear Formula and Radiation Transfer Model
Particle radius » = 85 nm; surface reflectance R = 0.15; single scatter albedo wo = 1.

TOA AEROSOL FORCING, W m~
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Aerosol Optical Thickness at 550 nm

Forcing is highly sensitive to modest aerosol loadings.
Global-average AOT 0.1 corresponds to global-average forcing -3.2 W m-2.
Linear model is accurate and convenient, especially for error budgets.
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AEROSOL OPTICAL DEPTH

Determined by sunphotometry
North central Oklahoma - Daily average at 500 nm
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1993 1994 1995 1996 1997 1998 1999 2000 2001
Optical depth variability of 0.1 is common even at a rural mid-continental

Variability is due to variability in tropospheric aeroso
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Variability is due to variability in tropospheric aerosols.
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Optical depth variability of 0.1 is common even at a rural mid-continental site.


MONTHLY AVERAGE AEROSOL JUNE 1997

Polder radiometer on Adeos satellite
Optical Thickness 7
A =865 nm

H
0 0.5

Angstrom Exponent o

oa=—dInt/dlnA

-0.2
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LIGHT SCATTERING EFFICIENCY

Dependence on particle radius -- Size matters!

Ammonium Sulfate, 530 nm
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Ouimette and Flagan, 1982



DELIQUESCENCE, SIZE CHANGE, AND
EFFLORESCENCE OF HYGROSCOPIC PARTICLES

Ammonium Sulfate at 25°C
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WATER UPTAKE AND
LIGHT SCATTERING COEFFICIENT

Dependence on relative humidity for various substances
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LIGHT SCATTERING EFFICIENCY OF (NH4)2804
DEPENDENCE ON PARTICLE 5IZE AND RH

“, m® (g S0 )7

X

0 '° 10 ' 10 t° 10t 0t

moles(S0; ) /particle

0.02 0.05 0.10 0.25 0.50 0.751.00
Dry Radius, R, (um)
Nemesure,\Wagener & Schwartz, JGR, 1995
Scattering, optical depth, and forcing are highly sensitive to particle
and to hygroscopic growth, which depends on composition.
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Scattering, optical depth, and forcing are highly sensitive to particle size and to hygroscopic growth, which depends on composition.


UPSCATTER FRACTION
SCATTERING OF SOLAR RADIATION BY AEROSOL PARTICLE

Upscatter fraction B is the fraction of radiation scattered into the upward hemisphere.

B= [P(®,0)dx / [P®O,0)IQ = [P®,$)d /4n

upward 4T coso<(
hemisphere



UPSCATTER FRACTION

Dependence on solar zenith angle and particle radius

Horizon Zenith
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A =0.55um. n=1.40-0i.

For sun at horizon 3 = 0.5 (by symmetry).

For small particles, r<< A, upscatter fraction approaches that for Rayleigh scattering (0.5).



DIRECT AEROSOL TOA FORCING

Dependence on particle diameter

Surface reflectance R = 0.15; single scatter albedo wg = 1.
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Forcing per optical depth depends on particle size.
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INTERCOMPARISON OF BROADBAND SHORTWAVE
FORCING BY AMMONIUM SULFATE AEROSOL
Normalized global-average forcing: W m-2 / g(SO%{) m-2or W/ g(SO%{)
Aerosol optical depth 0.2; surface albedo 0.15
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Standard deviation ~8% for 15 models at radius ~ 200 nm.

Boucher, Schwartz and 28 co-authors, JGR, 1998

Radiation transfer models agree closely for well specified aerosol.
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DECREASE IN FORCING DUE TO ABSORPTION

Dependence on single scattering albedo ® and surface reflectance R

Single scatter albedo ®

1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65
1 | | | | R | ]
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Single scatter co-albedo (1-)
Note nonlinear scale.
Negative absorption factor results in positive (warming) forcing.

Forcing can be strongly warming over snow or clouds.



AEROSOL SINGLE SCATTERING ALBEDO

North central Oklahoma, 4 years of hourly data, sub 10 um diameter
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Sheridan, Delene & Ogren, JGR, 2001
Median ® = 0.95

For great majority of data ® > 0.9



AEROSOL INFORMATION REQUIRED
TO DETERMINE DIRECT FORCING

Time-dependent 3-D map of size-dependent particle
concentration, composition, and morphology.

Needed for computation of optical properties, cloud-nucleating
properties, and radiative and hydrological influences.

This can be obtained only by chemical transport modeling of
aerosols . . .

Based on understanding of the controlling processes.

Evaluated by comparison with observations.



REPRESENTING AEROSOL PROCESSES IN CTMs

Sources of primary particles and precursor gases
3-D transport as controlled by governing meteorology

Gas to particle conversion (clear air and cloud)
New particle formation
Accretion onto existing particles

Particle size evolution (clear air and cloud)

Particle morphology and intra-particle structure

Removal of particles and precursor gases, controlled by meteorology
Aerosol properties as bivariate functions of particle size and composition

Aerosol optical properties (extinction coefficient, single scatter albedo,
asymmetry parameter) as integrals over single particle properties (Mie)

All as a function of 3-D location and secular time



HEMISPHERIC DISTRIBUTION OF
SULFATE COLUMN BURDEN

Vertical integral of concentration
July 14, 1997, 1800 UTC
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Brookhaven National Laboratory Chemical Transport Model
Benkovitz & Schwartz, JGR, In press 2004
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COMPARISON OF MODEL AND OBSERVATIONS

Comparisons for 24-hr sulfate mixing ratio at surface
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MODEL-OBSERVATION COMPARISONS

5083 24-Hour sulfate mixing ratio in BNL CTM driven by
assimilated meteorological data - June-July 1997

10 \\\\\H‘ I 1T T TTT
Percent: 0.8

I
.7 16.4 28.

—

Modeled sulfate mixing ratio, ppb
o

001 \ N O v I B Y \ [ | Lo
0.01 0.1 1 10

Observed sulfate mixing ratio, ppb

56% of comparisons within factor of 2. 92% within factor of 5.

Benkovitz & Schwartz, JGR, In press 2004
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STATISTICS OF SEVERAL SULFATE CTMs

Model F96 L97 R98 K99 R0O0 C00 B97 B04

SO, Sink Rate (%/day)
Dry Deposition |[26] 10 g 17 16 |26] 12 24
Wet Deposition 5 [0] [0] [o] 1 o] kx10*
Gas Conversion 11 7 8 |6 6] 9 8 14
Aqueous Conversion to sulfate 22 26 27 |15 29 |[I5| 16 30]
Oxidation & immediate wet dep 21
Sulfate Sink Rate (%/day)
Dry Deposition 3 S 4 |2 3 2
Wet Deposition 20 14 17 14 |23 15 18 13

Inverse Lifetime (%/day)
SO, 63 43 42 38 53 56
Sulfate 23 19 21 18 |[25] 17 21

Sulfate yield, %
51 76 [8 55 68 [43 66 50

Burden (Tg S)
SO, 0.33 0.56]0.61] 0.56 0.4 0.43 0.20
Sulfate 10.43]11.05] 0.96 0.73 0.60 0.63 0.60
Sulfate Potential (days)
2.1 144] 3.7 34 25 2.7 3.3

Benkovitz & Schwartz, 2004



SULFATE MODEL INTERCOMPARISON

Annual average non-seasalt sulfate in 11 chemical transport
models and comparison with observations at nine stations
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CLIMATE CHANGE 2001
The Scientific Basis
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Penner et al., IPCC, 2001

“Most models predict surface-level seasonal mean sulphate aerosol mixing ratios to within
“We cannot be sure that these models achieve reasonable success for the right reasons.”
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SIZE DISTRIBUTIONS

Comparison of Measurement and Retrieval from Model
At 3 Altitudes near Nashville TN
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Yu, Kasibhatla, Wright, Schwartz, McGraw & Deng, JGR, 2003



UNCERTAINTY BUDGET FOR DIRECT FORCING
BY INDUSTRIAL AEROSOLS

Quantity Central | 2/3 Uncertainty ||, rtainty
Value Range Factor

Total emission of anthropogenic sulfate from fossil fuel burning (Tg/yr) 69 57.5to 82.8 1.4
Atmospheric burden of sulfate from fossil fuel burning (Tg S) 0.525 0.35t00.79 23
Fraction of light scattered into upward hemisphere, B 0.23 0.17 to 0.29 17
Aerosol mass scattering efficiency (m’g™"), o, 3.5 23t04.7 2.0
Aerosol single scattering albedo, co-albedo (dry), @,, 1- @, 1
T,, atmospheric transmittance above aerosol layer 0.87 0.72 to 1.00 1.4
Fractional increase in aerosol scattering efficiency due to hygroscopic
growth at RH=80% 2.0 1.7t02.3 1.4
Fraction of Earth not covered by cloud 0.39 0.35 t0 0.43 1.2
Mean surface albedo, co-albedo 0.15 0.08 to 0.22 2.8,1.2
Result: Central value of forcing is 0.5 Wm™ ; the uncertainty range is from -0.25to -1 Wm ™, 4

Modified from Penner et al., IPCC, 2001
Greatest uncertainties are in burden and optical properties.
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RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD

IPCC (2001)
GHG’s and sulfate aerosol direct effects

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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UNCERTAINTY BUDGET FOR DIRECT FORCING
BY INDUSTRIAL AEROSOLS

Quantity Central | 2/3 Uncertainty ||, rtainty
Value Range Factor
Total emission of anthropogenic OC from fossil fuel burning (Tg/yr) 20 10 to 30 3.0
Atmospheric burden of OC from fossil fuels (Tg) 0.48 0.33 t0 0.70 2.1
Total emission of anthropogenic BC from fossil fuel burning (Tg/yr) 7 4.67 to 10.5 22
Atmospheric burden of BC from fossil fuel burning (Tg) 0.133 0.11t0 0.16 1.5
Total emission of anthropogenic sulfate from fossil fuel burning (Tg/yr) 69 57.5to 82.8 1.4
Atmospheric burden of sulfate from fossil fuel burning (Tg S) 0.525 0.35t00.79 23
Fraction of light scattered into upward hemisphere, B 0.23 0.17 to 0.29 17
Aerosol mass scattering efficiency (m’g™"), o, 3.5 23t04.7 2.0
Aerosol single scattering albedo, co-albedo (dry), ®,, 1- @, 0.92 0.85t0 0.97 1.1, 5
T,, atmospheric transmittance above aerosol layer 0.87 0.72 to 1.00 1.4
Fractional increase in aerosol scattering efficiency due to hygroscopic
growth at RH=80% 2.0 1.7t02.3 1.4
Fraction of Earth not covered by cloud 0.39 0.35 t0 0.43 1.2
Mean surface albedo, co-albedo 0.15 0.08 to 0.22 2.8,1.2
Result: If central value is —0.6 Wm™ the 2/3 uncertainty range is from 0.1to 1.0 Wm ™. 10.0

Modified from Penner et al., IPCC, 2001
Greatest uncertainties are in chemical, microphysical, and

optical properties.
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RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD

IPCC (2001)
GHG's and aerosol direct effects

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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THE TWOMEY EFFECT

PHYSICAL BASIS AND SENSITIVITY



DEPENDENCE OF CLOUD ALBEDO ON CLOUD DEPTH

Influence of Cloud Drop Radius and Concentration
CLOUD LIQUID WATER PATH
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1.0] ' '
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1m 10 m 100 m 1 km 10 km
CLOUD DEPTH

Twomey, Atmospheric Aerosols, 1977

For a given liquid water path, cloud albedo is highly sensitive to cloud
drop number concentration or radius.
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TWOMEY SENITIVITY
Dependence on cloud-top reflectance
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Cloud-Top Reflectance, Rcr
Modified from Charlson et al., 1992

Sensitivity 1s greatest for clouds of intermediate optical depth.

For dRct /dInN_.q =0.08 = 0.08, a 10% increase in N4 increases
cloud-top reflectivity by 0.008.



SENSITIVITY OF ALBEDO AND FORCING
TO CLOUD DROP CONCENTRATION
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Schwartz and Slingo (1996)

Indirect forcing is highly sensitive to small perturbations in cloud drop
concentration.

A 30% increase in cloud drop concentration results in a forcing of ~1 W m™=2.



INDIRECT (TWOMEY) FORCING

Dependence on incremental cloud drop concentration AN and
Sensitivity to initial cloud drop concentration N

F/(Wm?)= 4ln(N0 +AN): 41n(1+AN)
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Change in Cloud Drop Concentration AN, cm-3

Aerosol indirect forcing is highly sensitive to background CCN concentrat
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Aerosol indirect forcing is highly sensitive to background CCN concentration.


RELATION BETWEEN
AEROSOL CONCENTRATIONS
AND
CLOUD DROP CONCENTRATIONS



Height {m)

CLOUD MICROPHYSICAL PROPERTIES
AND SATELLITE VISIBLE RADIANCE

ASTEX, Northeast Atlantic, June, 1992

Albrecht et al., BAMS, 1995
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FRACTIONAL UPTAKE OF ACCUMULATION

MODE PARTICLES INTO CLOUDWATER

Aircraft measurements of ASASP (0.17 - 2 um diameter)
and FSSP (2 - 35 um diameter) particles
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Gillani et al., JGR, 1995
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FRACTION OF ACTIVATED AEROSOL PARTICLES

Dependence on particle number concentration
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Gillani et al., JGR, 1995

Uptake decreases with increasing number concentration of
aerosol particles
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Uptake decreases with increasing number concentration of aerosol particles


FRACTION OF ACTIVATED AEROSOL PARTICLES

Dependence on Lapse Rate and Liquid Water Content
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Uptake increases with increasing
liquid water content
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Uptake increases with increasing instability
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Uptake increases with increasing liquid water content


PRISTINE vs. POLLUTED CLOUDS IN INDOEX

In-situ aircraft measurements during cross-Equatorial transects
Classified by concentration of aerosol particles
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Heymsfield and McFarquhar, JGR, 200
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CLOUD DROP NUMBER CONCENTRATION

Dependence on accumulation-mode aerosol particle
concentration
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Chuang et al., 2000
Ncd increases with increasing Nap, but scatter at any Nap is comparable

to increase in Ncd over range of Nap.



CLOUD DROP NUMBER CONCENTRATION

Dependence on below-cloud aerosol particle concentration
Stratified by turbulent intensity
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Leaitch et al., JGR, 1996
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SHORTWAVE FORCING, ANNUAL AVERAGE
GHG's + O3 + Sulfate (Direct and Indirect)

Two Formulations of Cloud Droplet Concentration
(af1.42) Direct + Indirect (Method Il) + GHG + O, W m2

Kiehl et al., JGR, 2000

Indirect forcing is highly sensitive to the assumed relation between sulfate concent
and cloud droplet number concentration.


steve
Indirect forcing is highly sensitive to the assumed relation between sulfate concentration and cloud droplet number concentration.
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ESTIMATES OF AEROSOL INDIRECT FORCING
Global-annual average; from IPCC (2001)

Table 6.6: The global mean annual average aerosol indirect radiative forcing from different global studies. Letters P (prescribed) and C (computed)
refer to off-line and on-line sulphate aerosol calculations, respectively. CCN and CDN stand for cloud condensation nuclei and cloud droplet number,
respectively. In studies indicated by an asterisk, the estimate in flux change due to the indirect effect of aerosols was computed as the difference in
top of atmosphere fluxes between two distinct simulations and therefore does not represent a forcing in the strict sense (see text). When several

simulations are performed in the same study,

base indicates the baseline calculation, while the range of estimates is given in parenthesis.

Reference Aerosol Forcing estimate (Wm ?) Remarks
Type First effect Second effect Both effects

Boucher and Rodhe Sulphate -0.65to -1.35 Uses 3 relationships between sulphate mass

(1994)* and CCN/CDN concentrations.

Chuang et al. (1994) Sulphate -0.47 Includes a parametrization of cloud nucleation
processes.

Jones et al. (1994) Sulphate -1.3 Uses a relationship between aerosol and
droplet number concentrations.

Boucher and Lohmann Sulphate -05t0 -14 LMD GCM | Uses 4 different relationships

(1995) between sulphate mass and

Boucher and Lohmann Sulphate -0.45to -1.5 ECHAM CCN/CDN concentrations (A,

(1995) B, C, and D).

Jones and Slingo (1996)  Sulphate -0.3to0 -1.5 Uses 2 different sulphate distributions.
Follows Jones et al. (1994), Hegg (1994),
Boucher and Lohmann (1995) D .

Kogan et al. (1996) Sulphate -1.1 Uses a cloud climatology rather than GCM-

Kogan et al. (1997) simulated clouds.

Chuang et al. (1997) Sulphate -0.4to -1.6 Includes a parametrization of cloud nucleation
processes.
Uses a mixture of pre-existing aerosols.

Feichter et al. (1997) Sulphate -0.76 Uses Boucher and Lohmann (1995) A

relationship.
cont'd
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ESTIMATES OF AEROSOL INDIRECT FORCING

Global-annual average; from IPCC (2001), cont’d

Reference Aerosol Forcing estimate (Wm) Remarks
Type First effect Second effect Both effects
Jones and Slingo (1997)  Sulphate -0.55 to -1.50 P Uses 2 different versions of the Hadley Centre
model.
Lohmann and Feichter Sulphate -1 -1.4to 4.8 C Uses Boucher and Lohmann (1995) A
(1997)* relationship.
Rotstayn (1999)* Sulphate  base -1.2 base -1.0 base -2.1 P Includes a (small) long-wave radiative forcing.
(-1.1to -1.7) (-0.4to0 -1.0) (-1.6 t0 3.2)
Jones et al. (1999)* 2 Sulphate -0.91 base -0.66 1.18 C Includes a (small) long-wave radiative forcing.
The two effects add non-linearly.
Kiehl et al. (2000) Sulphate -0.40 to -1.78 C
Ghan et al. (2001a)* Sulphate  ~50% for base =~ ~50% for base = base -1.7 C Includes a parametrization of cloud nucleation.
(-1.6 to 3.2) Predicted aerosol size distribution.
Sulphate base -0.4 C
(Oto -0.4)
Lohmann et al. (2000)* Carb. base -0.9 C | Includes a parametrization of cloud nucleation
(-091t0 -1.3) processes.
Sulphate 40% for base 60% for base  base -1.1 C
and Carb. (-1.1to -1.9)
Sulphate -0.30 C
Chuang et al. (2000b) Carb. base -1.51 C | Includes a parametrization of cloud nucleation
(-1.27 to -1.67) processes. Includes the effect of BC absorption
Sulphate -1.85 C | in clouds.
and Carb.

Estimates vary enormously within a given study (sensitivity to parameters)
and between studies.
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UNCERTAINTY BUDGET FOR INDIRECT FORCING
BY INDUSTRIAL AEROSOLS

Quantity Central 2/3 Uncertainty Uncertainty
Value Range Factor
Background N, for Northern Hemisphere marine (cm ) 140 66 to 214 3.2
Perturbed Ny for Northern Hemisphere marine (cm™) 217 124 to 310 2.5
Cloud mean liquid water content (LWC) (g m*) 0.225 0.125 t0 0.325 2.6
Background sulfate concentration (ug nt ) 1.5 0.85to 2.15 2.5
Cloud layer thickness (m) 200 100 to 300 3.0
Perturbed sulfate concentration (ug nr) 3.6 24t04.8 2.0
Susceptible cloud fraction,f, 0.24 0.19 to 0.29 15
Atmospheric transmission above cloud layer, T, 0.92 0.78 to 1.00 13
Mean surface albedo 0.06 0.03 to 0.09 30 1.1
Result: If central value is -1.4 Wm ~the 2/3 uncertainty range is from 0 to -2.8 Wm ~. 0o

Modified from Penner et al., IPCC, 2001

The greatest uncertainties are i1n aerosol and cloud
microphysics properties, such as dependence ot cloud
drop concentration on aerosol composition, loading,
and microphysical properties.

These uncertainties are not well quantified.



ISSUES IN DETERMINING AEROSOL
INDIRECT FORCING

1. Enhancement in aerosol particle concentration (and size, composition,
etc.) between preindustrial and present, as function of location.

2. Relation between aerosol particle concentration (and size, composition,
etc.) and cloud droplet concentration.

3. Relation between cloud drop concentration and cloud reflectance.

4. Aerosol influences on LWP, cloud lifetime, etc., in addition to
reflectance.

These requirements can be met only by models . . .

Based on improved understanding and evaluated
by comparison with observation:

Emissions
Chemical transport and transformation
Cloud drop activation and microphysics
Radiation transfer



RADIATIVE FORCING OVER THE INDUSTRIAL
IPCC (2001)
GHG's and aerosol direct and indirect effects

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD

IPCC (2001)
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WHY SO LARGE UNCERTAINTY IN
AEROSOL FORCING?

o Uncertainties in knowledge of atmospheric composition

Mass loading and chemical and microphysical properties and cloud
nucleating properties of anthropogenic aerosols, and geographical
distribution.

At present and as a function of secular time.

o Uncertainties in knowledge of atmospheric physics of aerosols

Relating direct radiative forcing and cloud modification by aerosols to
their loading and their chemical and microphysical properties.



REPRESENTING AEROSOL
FORCING
IN CLIMATE MODELS



FORCING AND RESPONSE IN THE UK MET OFFICE MODEL (1995)
Model sensitivity = 2.5 K per CO2 doubling; sulfate direct forcing only, -0.6 W m2 (1990)
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“Inclusion of sulphate aerosol forcing improves the simulation of global mean
temperature over the last few decades.” -- Mitchell, Tett, et al., Nature, 1995



FORCING AND RESPONSE IN THE CANADIAN CLIMATE MODEL (2000)
Model sensitivity = 3.5 K per CO2 doubling; su}fate direct forcing only, -1.0 W m2 (1990)
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“Observed global mean temperature changes and those simulated for GHG + aerosol
forcing show reasonable agreement.” -- Boer, et al., Climate Dynamics, 2000



FORCING AND RESPONSE IN THE GFDL MODEL (2000)
Model sensitivity = 3.4 K per CO2 doubling; sulfate forcing, -0.62 W m-2 (1990)
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“The surface temperature time series from the five GHG-plus-sulfate integrations
show an increase over the last century, which is broadly consistent with the
observations.” -- Delworth & Knutson, Science, 2000



FORCING AND RESPONSE IN THE NCAR MODEL (2003)
Model sensitivity = 2.18 K per CO2 doubling; sulfate direct forcing only, -0.6 W m-2 (1990)
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“The time series from GHG + sulfates + solar shows reasonable agreement with the
observations.” -- Meehl, Washington, Wigley et al., J. Climate, 2003.



FORCING AND RESPONSE IN THE UK MET OFFICE MODEL (2000)

Model sensmVlty 345K per C02 doubhng, sulfate + indirect forcmg, -1.1 W m2 (1990)
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“The ALL ensemble captures the main features of global mean temperature
changes observed since 1860.” -- Stort, Tett, Mitchell, et al., Science, 2000



[PCC-2001 STATEMENTS ON DETECTION
AND ATTRIBUTION OF CLIMATE CHANGE

¢¢ Simulations that include estimates of natural and
anthropogenic forcing reproduce the observed large-
scale changes in surface temperature over the 20th
century.

¢¢ Most model estimates that take into account both
greenhouse gases and sulphate aerosols are
consistent with observations over this period.

WMO
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IMPLICATIONS OF UNCERTAINTY
IN AEROSOL FORCING

Present uncertainty in forcing of climate change, caused largely by
uncertainty in forcing by aerosols, precludes evaluation of climate
models and empirical determination of climate sensitivity.

Uncertainty in aerosol forcing must be reduced at least three-fold
(~0.5 W m-2) for uncertainty in climate sensitivity to be meaningfully
reduced and bounded.

Such a reduction in uncertainty in aerosol forcing presents an
enormous challenge to the aerosol research community.



Thank You

Stephen E. Schwartz

NATIONAL LABORATORY
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