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DO AEROSOLS CHANGE CLOUD
COVER AND AFFECT CLIMATE?

Yes
IN WHAT WAYS?

Direct (scattering, absorption)
 Indirect (albedo, lifetime)
Semi-direct, ...
Autoconversion, latent heat, ...

HOW MUCH?
???????



OVERVIEW
Aerosol influences on climate and climate change

Relation to climate change over the industrial era

Aerosol properties and processes pertinent to
climate influences

Recent studies examining aerosol processes

Recent studies examining aerosol indirect effects
Implications of aerosol forcing on interpretation of

climate change

The path forward

Concluding remarks



AEROSOL INFLUENCES ON
CLIMATE AND CLIMATE CHANGE
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AEROSOL IN MEXICO CITY BASIN



AEROSOL IN MEXICO CITY BASIN

Light scattering by aerosols decreases absorption of solar radiation.



AEROSOLS AS SEEN FROM SPACE

Fire plumes from southern Mexico transported north into Gulf of Mexico.



CLOUD BRIGHTENING BY SHIP TRACKS
Satellite photo off California coast

Aerosols from ship emissions enhance reflectivity of marine stratus.



RELATION TO CLIMATE CHANGE
OVER THE INDUSTRIAL ERA



GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter

Schwartz, 1996, modified from Ramanathan, 1987
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CLIMATE FORCINGS OVER THE
INDUSTRIAL PERIOD
Extracted from IPCC AR4 (2007)

3210-1-2
Forcing, W m-2

CO2 CH4
CFCs

N2O
Long Lived

Greenhouse Gases
Tropospheric

Aerosols
Direct
Effect

Cloud Albedo
Effect

Total Forcing

Total forcing includes other anthropogenic and natural (solar) forcings.
Forcing by tropospheric ozone, ~0.35 W m-2, is the greatest of these.
Uncertainty in aerosol forcing dominates uncertainty in total forcing. 



LATITUDINAL, ANNUAL DEPENDENCE OF
TEMPERATURE CHANGE

1854-
1989

I

II

III

Hunter, Schwartz, Wagener & Benkovitz, GRL 1993
Greatest cooling is midlatitude NH summer during rapid increase of sulfur
emission.



REQUIREMENTS TO QUANTIFY AEROSOL FORCING
Quantify change in Earth radiation budget due to aerosols as ƒ(time).

– Direct radiative influences; Indirect influences, on clouds and precip.
– Input to climate models.
– Required accuracy in forcing ca. 0.3 W m-2.

Relate quantitatively to emissions of primary aerosols and precursor gases.
– Necessary for past, present & projected future forcing as ƒ(x, y, z, t).

Represent processes governing aerosol radiative influences in models.
– Chemical transport models & climate models.
– Required optical properties: Extinction, single scattering albedo,

phase function as ƒ(λ; x, y, z, t).
– Required cloud-nucleating properties: CCN, IFN conc as ƒ(supersat'n)

Understand processes governing aerosol amount and chem & microphys
properties as ƒ(x, y, z, t).

Calculate aerosol optical and cloud nucleating properties from size-distrib
composition.

Evaluate accuracy of models by observation.



AEROSOL PROPERTIES AND
PROCESSES



AEROSOL PROCESSES THAT MUST BE
UNDERSTOOD AND REPRESENTED IN MODELS

water
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Radiation transfer in clouds

Modified from Ghan and Schwartz, Bull. Amer. Meterol. Soc., 2007



APPROACH TO DETERMINE
AEROSOL FORCING

Numerical simulation of physical processes

Isomorphism of processes to computer code
Modeling aerosol processes requires understanding these processes,
developing and testing their numerical representations, and 
incorporating these representations in global scale models.
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ARE WE THERE YET?
Much research: hundreds of papers per year.

– Process research - field studies, lab studies, theory, modeling.
– Several major field campaigns per year.
– Observations - surface, satellite, in-situ.

Poor understanding of primary aerosol emissions: anthro & natural.
Pretty good model-observation agreement in some observables,

e.g., optical depth; compensation in models.
Poor agreement in attribution to chemical substances; anthro vs. natural.
Forcing is still quite uncertain.

– IPCC AR4 (2007): direct, ±0.4 W m-2; first indirect, +0.4, -0.8 W m-2.
– Other indirect effects even more poorly understood and quantified.

Still in discovery stage: chemistry, microphysics.
– New particle formation, involving not the usual suspects, affecting

aerosol dynamics and number concentration.
– Large contribution of secondary organics.
– New effects, especially involving clouds, autoconversion.

Models are lagging the research.



ESTIMATES OF AEROSOL DIRECT FORCING
By linear model and by radiation transfer modeling
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Global average sulfate optical thickness is 0.03: 1 W m-2 cooling.

In continental U. S. typical aerosol optical thickness is 0.1:  3 W m-2 cooling.
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AEROSOL OPTICAL DEPTH AT ARM SGP
Fifteen years of daily average 500 nm AOD in North Central Oklahoma

Michalsky, Denn, Flynn, Hodges, Kiedron, Koontz, Schlemmer, Schwartz, JGR, 2010

Green curve is LOWESS (locally weighted scatterplot smoothing) fit.
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AEROSOL COMPOSITION AT ARM SGP
Seven years of daily average composition in North Central Oklahoma

Measurements of P. Quinn, NOAA, PMEL

Black curve is LOWESS (locally weighted scatterplot smoothing) fit.
Note summertime peak of sulfate.



AEROSOL COMPOSITION AT ARM SGP
Six days of 30-minute average composition in North Central Oklahoma
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• First data from new aerosol mass spectrometer installed at SGP.

• Note high nitrate compared to sulfate; substantial organic component.



UNCERTAINTY IN AEROSOL DIRECT FORCING
Resulting from typical uncertainty in measurements of input variables
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Colored bars denote uncertainties in 24-hr average forcing at equinox
resulting from uncertainties in the individual parameters.

Black bar denotes resultant uncertainty in forcing.
Uncertainties are substantial in context of forcings over industrial period.



MONTHLY AVERAGE AEROSOL JUNE 1997
Polder radiometer on Adeos satellite

Optical Thickness τ
 λ = 865 nm

0 0.5

Ångström Exponent α

α τ λ= −d dln / ln

-0.2 1.2
Large Small
Particles Particles

Small particles are from
gas-to-particle conversion.



AEROSOL OPTICAL DEPTH IN 17 MODELS
(AEROCOM)

Comparison also with surface and satellite observations

Kinne et al., ACP, 2006
Surface measurements: AERONET network.
Satellite measurements: composite from multiple instruments/platforms.
Are the models getting the “right” answer for the wrong reason?
Are the models getting the “right” answer because the answer is known?
Are the satellites getting the “right” answer because the answer is known?
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23 VIEWS OF EARTH’S AEROSOL OPTICAL DEPTH
Annual mean in 4 Satellites, 18 Models and Model Median

http://nansen.ipsl.jussieu.fr/AEROCOM/data.html

• Measurements: 0.12 – 0.19.

AOD

Measurements

Models

Model median

• Models: Median 0.12; range 0.07 – 0.24.



SEA SALT AEROSOL MASS EMISSIONS
Annual average in AEROCOM models; 1012 kg yr-1

Textor et al., ACP 2006; courtesy Michael Schulz
http://dataipsl.ipsl.jussieu.fr/cgi-bin/AEROCOM/aerocom/aerocom_work_annualrs.pl

Range of global annual mean is a factor of 50.
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TURNOVER TIME AS INTENSIVE VARIABLE
Five aerosol species in 16 global chemical transport models
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Textor et al., ACP, 2006

Characterize and compare processes in chemical transport models.
Turnover time displays wide model-to-model variance.
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AEROSOL PROPERTIES IN 16 MODELS
 Zonal mean emissions, loading, effective radius, optical depth

http://nansen.ipsl.jussieu.fr/AEROCOM/data.html

• Emissions and optical properties differ much more than optical depth
because of compensating effects of different variables.



RECENT STUDIES EXAMINING
AEROSOL PROCESSES



MEASURED ORGANIC AEROSOL
GREATLY EXCEEDS MODELED

Mexico City, April 9, 2003, prior to 2 p.m.

Modified from Volkamer et al., GRL, 2006

Comparison of measured oxygenated organic aerosol (OOA) and modeled
secondary organic aerosol vs. decrease in volatile organic carbon.



SECONDARY AEROSOL FORMATION
Correlation of organic aerosol with acetylene (primary) and

isopropyl nitrate (secondary) during New England Air Quality Study

Modified from De Gouw et al., JGR, 2005

Tight correlation with isopropyl nitrate shows organic aerosol is largely
secondary.



ORGANIC CONTRIBUTIONS TO TROPOSPHERIC
AEROSOL

Mass-spec determination of primary vs secondary organics

New analytical techniques permit identification of formation mechanisms.

Concentration
µg m-3



SECONDARY AEROSOL PRODUCTION
Eight aircraft flights above and downwind of Mexico City, March 2006

Age = - Log (NOx/NOy)
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Parcel photochemical age measured using -Log(NOx/NOy) as clock.
Aerosol normalized to CO above background to account for dilution.
Fivefold increase  in organic aerosol.

Measured increase in organic aerosol exceeds modeled based on
laboratory experiments and measured volatile organic carbon tenfold.
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Volume and number scales are proportional, both indicating ~ 5-fold 
increase with age over period corresponding to ~ 1 day.



Dg, nm 

NEW PARTICLE FORMATION EVENT
Mexico City, March 16, 2006

Smith, Dunn, VanReken, Iida, Stolzenburg, McMurry, & Huey, GRL, 2008
Mass spec shows composition of new particles is dominated by organics.
Particle growth rate exceeds that by sulfuric acid by order of magnitude.
New particles show hygroscopic growth characteristic of soluble material.
Particles grow to CCN active range (100 nm diameter) in hours.
Large fraction of 100 nm particles are CCN active at 0.5% supersaturation.
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Nucleation Event: Colorado, USA 09/16/10
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RECENT STUDIES EXAMINING
AEROSOL INDIRECT EFFECTS



CLOUD ALBEDO AND FORCING CALCULATED FROM
MEASURED EFFECTIVE RADIUS AND LIQUID WATER PATH

North Central Oklahoma
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Liquid water path (g m -2) 

Effective radius determined from slope of
Optical depth vs. Liquid water path

Cloud albedo is calculated for observed data and for average effective radius for each day.
Forcing is calculated for indicated conditions relative to October 26.



CRITICAL SUPERSATURATION 
Dependence on particle size and composition 
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Particles above cloud layer showed greater increase in supersaturation 

than particles below cloud.  

Composition measured with PILS (particle into liquid sampler) showed 
high organic fraction in above cloud aerosol.  

Measurements with aerosol mass spectrometer showed organic material in 
CCN size range.  



AEROSOL PARTICLE NUMBER
CONCENTRATION

Average particle number concentrations North America, July 2004

Aitken mode particles (D ≤ 100 nm) Accumulation mode particles (D ≥ 100 nm)
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Chang, Schwartz, McGraw & Lewis, JGR, 2009

Strong dependence on new particle
formation mechanism

Strong dependence on size of
primary emissions

Accurate representation of number concentrations and aerosol indirect
effects requires improved knowledge of new particle formation rate
and size distributed emissions.
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TOTAL FORCING, ANNUAL AVERAGE
GHG's + O3 + Sulfate (Direct and Indirect)

Two Formulations of Cloud Droplet Concentration

Kiehl et al.,  JGR, 2000

Indirect forcing is highly sensitive to the assumed relation between sulfate
concentration and cloud droplet number concentration.



IMPLICATIONS



TOO ROSY A PICTURE?
Ensemble of 58 model runs with 14 global climate models

 

6

5

4

3

2

1

0S
en

si
tiv

ity
 to

 2
 ×

 C
O

2 ∆
T

2 
×, K

1.5

1.0

0.5

0.0

S
ensitivity, K

 / (W
 m

-2)

19 IPCC AR4 Models

“ Simulations that incorporate anthropogenic forcings, including increasing
greenhouse gas concentrations and the effects of aerosols, and that also
incorporate natural external forcings provide a consistent explanation of the
observed temperature record.

“ These simulations used models with different climate sensitivities, rates of
ocean heat uptake and magnitudes and types of forcings.

IPCC AR4, 2007
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CORRELATION OF AEROSOL FORCING, TOTAL
FORCING, AND SENSITIVITY IN CLIMATE MODELS

Nine coupled ocean-atmosphere models; two energy balance models
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Total forcing is linearly correlated with inverse sensitivities of the models.
Climate models with lower sensitivity (higher inverse sensitivity)

employed a greater total forcing.
Slope (0.8 K) is approximately equal to observed temperature change.

Models accurately reproduce known temperature change.
Greater total forcing is due to smaller (less negative) aerosol forcing.



THE PATH FORWARD
Determine aerosol forcing with high accuracy.

Multiple approaches are required:
Laboratory studies of aerosol processes.

Field measurements of aerosol processes and properties:
emissions, new particle formation, evolution, size
distributed composition, optical properties, CCN
properties, removal processes . . .

Represent aerosol processes in chemical transport models.

Evaluate models by comparison with observations.

Satellite measurements for spatial coverage.

Calculate forcings in chemical transport models and GCMs.

Measurement based determination of aerosol forcings.



~50 km

Drone

Radiometers

AMF

DIRECT DETERMINATION OF AEROSOL FORCINGS AT ARM SITES

Net SW and LW at TOA

3-D Characterization

of Aerosol and Cloud

Properties

Measurements 24-7-365

Characterization of 3-D

Cloud Properties by Radars, 

Tomography

ARM Central FacilityScanning

Cloud Radars
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TAKE HOME MESSAGES
Aerosol forcing is substantial in the context of forcing over the

industrial period.

This forcing is quite uncertain in that context.

This uncertainty has major implications on the interpretation of
climate change over the industrial period and projected future
climate change.

Many aerosol processes are not well understood. We are still in
discovery stage.

The modeling is way ahead of the understanding.

Measurement techniques have greatly improved in the past few
years, leading to important insights and capabilities.

This situation calls for greatly enhanced effort in quantifying aerosol
influences on radiation and cloud & precipitation processes.




