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ATMOSPHERIC AEROSOLS

Aerosol: Colloidal suspension of solid or liquid particles in air

Characterized by size, composition, morphology, sources . . .
Radius 1 nm to 10 um
Twelve orders of magnitude in volume

Sources:
Natural: Dust, sea salt, haze (Great Smokies, Blue Ridge Mtns.)
Anthropogenic: Smoke, smog

Importance

Clouds — Aerosol particles as cloud condensation nuclel, ice
nuclel

Human health: inhalation

Acid deposition

Visibility impairment: light scattering
Influence on climate and climate change



AEROSOLS — A SIGN OF PROSPERITY

The Lackawanna Valley, George Inness, ca. 1850






GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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RADIATIVE FORCING

A change 1n a radiative flux term in Earth’s radiation
budget, AF, W m™2.

Working hypothesis:
On a global basis radiative forcings are additive and

fungible.
e This hypothesis 1s fundamental to the radiative
forcing concept.

e This hypothesis underlies much of the assessment of
climate change over the industrial period.



ATMOSPHERIC CARBON DIOXIDE IS INCREASING
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Temperature Anomaly, K
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CHANGE IN GLOBAL MEAN SURFACE
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CLIMATE RESPONSE

The change in global and annual mean temperature,
AT, K, resulting from a given radiative forcing.

Working hypothesis:
The change in global mean temperature is
proportional to the forcing, but independent of its
nature and spatial distribution.

AT = A AF



CLIMATE SENSITIVITY

The change 1n global and annual mean temperature per
unit forcing, A, K/(W m-2),

A= AT/AF.

Climate sensitivity 1s not known and is the objective of
much current research on climate change.

Climate sensitivity 1s often expressed as the
temperature for doubled CO» concentration AT9x.

ATry = A AF>«



CLIMATE SENSITIVITY ESTIMATES
THROUGH THE AGES

Estimates of central value and uncertainty range from major
national and international assessments
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Despite extensive research, climate sensitivity remains highly uncertain.



GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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Radiative Forcing by Tropospheric Aerosol

Partial Reflection and Absorption of
Incoming Solar Radiation
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Anthropogenic

Natural

GLOBAL-MEAN RADIATIVE FORCINGS (RF)

Pre-industrial to present (Intergovernmental Panel on Climate Change, 2007)
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AEROSOL IN MEXICO CITY BASIN




AEROSOL IN MEXICO CITY BASIN

Mexico City 1s a wonderful place to study aerosol properties and evolution.



AEROSOLS AS SEEN FROM SPACE

Fire plumes from southern Mexico transported north into Gulf of Mexico.




CLOUD BRIGHTENING BY SHIP TRACKS

Satelhte photo off Cahforma coast
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AEROSOL PROCESSES THAT MUST BE
UNDERSTOOD AND REPRESENTED IN MODELS
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RECENT FINDINGS FROM THE
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DOMINANCE OF ORGANIC AEROSOL

Measurements by aerosol mass spectrometer
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Secondary fraction increases with increasing distance from urban sources.



SECONDARY AEROSOL PRODUCTION

Eight aircraft flights above and downwind of Mexico City, March 2006
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Parcel photochemical age measured using - Log(NOx/NOy) as clock.
Aerosol normalized to CO above background to account for dilution.
Fivefold increase in organic aerosol.

Measured increase in organic aerosol exceeds modeled based on
laboratory experiments and measured volatile organic carbon tenfold.



Following the growth of particles formed
from nucleation at Tecamac, Mexico
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Sulfate accounts for only ~10% of particulate mass.

Growth rate exceeds that from sulfuric acid by order of magnitude.
Smith, McMurry et al., GRL, 2008



AEROSOL TRANSPORT AND EVOLUTION
Mexico City, March 22, 2006
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COMPOSITION MATTERS

Size dependent critical supersaturation of aerosol particles
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Measurements below (110-170 m) and above (400-470 m) clouds off the
coast of California, north of San Francisco, on July 25, 2005.

Higher supersaturation is required to activate particles with greater organic

fraction.

Bulk composition determined by PILS (particle into liquid sampler).

Size-dependent composition determined by aerosol mass spectrometer.



CLOSURE STUDY ON CCN CONCENTRATION

CCN concentration at 0.22% supersaturation
for 9 flights during MASE, July 2005
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LABORATORY STUDIES OF ACTIVATION OF MIXED
ADIPIC ACID — AMMONIUM SULFATE PARTICLES

Sparingly soluble organic acid — soluble inorganic salt
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Koehler theory works well mixed adipic acid and sulfate particles.

For slightly soluble compounds initial particle phase is very important.

P. Davidovits, Boston Coll.; T. Onasch, Aerodyne, Inc., et al.



WATER WATER EVERYWHERE

Water 1s taken up by hygroscopic aerosol particles increasing their
light scattering.

Water content depends on composition, relative humidity, and
history.

CCN activity depends on composition and surface properties.

Understanding interactions with water 1s central to describing
aerosol optical and cloud nucleating properties.



DELIQUESCENCE, SIZE CHANGE, AND
EFFLORESCENCE OF HYGROSCOPIC PARTICLES

Ammonium Sulfate at 25°C
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WATER UPTAKE AND
LIGHT SCATTERING COEFFICIENT

Dependence on relative humidity for various substances
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WETTING OF SODIUM CHLORIDE

Change of particle shape studied by Atomic Force Microscopy
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Representative AFM line profiles of a single NaCl salt nanoparticle on flat
silicon oxide terminated surface.

No apparent uptake of water below ~ 71% RH.
Significant change in morphology observed near deliquescence RH 75%.
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SOOT HAPPENS

Elemental carbon 1s a ubiquitous component of atmospheric
aerosols.

Significant absorber of atmospheric radiation.

Often emitted as small chain aggregates that are modified by
uptake of semivolatiles changing morphology and optical
properties.

Characterization of soot i1s a challenge 1n field measurements.

Understanding soot morphology and its changes is central to
describing 1its optical properties and fate in atmosphere.



HOW BLACK IS BLACK CARBON?




TRANSMISSION ELECTRON MICROGRAPH
OF INDIVIDUAL PARTICLE

Soot inclusion in single particle consisting mainly of A4S
Unpolluted air near Tasmania.
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ELECTRON TOMOGRAM OF SINGLE SOOT PARTICLE

200 nm

Clicking on the
image should
download and
show a movie
showing rotation
of the image.
Alternatively enter
the link below the
picture (which is
to Peter Buseck's
web page server)
into a browser.

Van Poppel, Friedrich, Spinsby, Chung, Seinfeld, and Buseck, Geophys. Res. Lett., 2005
http://7starm.asu.edu/movies/DieselSoot_Ivp184.mpg
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http://7starm.asu.edu/movies/DieselSoot_lvp184.mpg
stepheneschwartz
http://7starm.asu.edu/movies/DieselSoot_lvp184.mpg
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Clicking on the image should download and show a movie showing rotation of the image. Alternatively enter the link below the picture (which is to Peter Buseck's web page server) into a browser.


ATMOSPHERIC AGING OF SOOT

Condensation of semi-volatile secondary particulate matter and
collapse of fractal structure under influence of surface tension

Collapse of fractal structure of nascent soot

Nascent soot ?" | $ Aged soot
g i! LRLL o Simultaneous(?) thih e @

Growth of transparent coating

- @

Collapse decreases absorption efficiency because of screening.

Transparent coating increases absorption efficiency because of
lensing.
Hygroscopic coating would make particle more active cloud

condensation nucleus. Art Sedlacek. ASD. BNI



stepheneschwartz
Art Sedlacek, ASD, BNL


FRESHLY GENERATED FRACTAL SOOT

TEM 1mages of acetylene-air soot




CONCLUDING REMARKS

Atmospheric aerosols are dystunctional nanomaterials.

Heterogeneous: space, time, sources, composition,
morphology.

Important to climate and climate change.

Necessary to develop methods to characterize properties
and evolution, and to represent these in climate models.

Understanding aerosol properties and evolution would
benefit greatly from advanced experimental methods.





