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IT’S ABOUT TIME

TOPICS

Turnover times of atmospheric aerosols

Turnover time of excess atmospheric CO2

Characteristic time of Earth’s climate system



TURNOVER TIMES OF ATMOSPHERIC
AEROSOLS

I shot an aerosol particle into the air, and then
It fell to earth, I knew not where (or when);

Apologies to Longfellow

Source-receptor relations in acid deposition
Aerosol influences on climate





Participants at the International Symposium on Sulfur in the Atmosphere, 
Dubrovnik, September 1977
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Steady-state conditions:
Turnover time: τ t-o = M / F

M = mass in reservoir
F = flux into (or out of) reservoir

Turnover times:

SO2 25 h

SO4
2- 80 h

Sulfur (SO2+ SO4
2-) 50 h

Sulfate yield: 30%



Non–steady-state conditions:

Turnover time: τ t-o = M F/       

M = mass in reservoir

F = flux out of reservoir

Averages are taken over suitably long periods.

Long-time averages yield stable, representative
turnover times.



TURNOVER TIME AS INTENSIVE VARIABLE
Five aerosol species in 16 global chemical transport models
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AEROCOM, Textor et al., ACP, 2006

Characterize and compare processes in chemical transport models.
Turnover time displays wide model-to-model variance.

Unknown
Sulfate residence time close to Rodhe (1978) value 80 h = 3.3 days



TURNOVER TIME OF EXCESS
ATMOSPHERIC CO2

I emit a kilogram of CO2 into the air, and then

It falls to earth: Can you tell me when?

Decision making on energy and climate change
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ATMOSPHERIC CARBON DIOXIDE IS INCREASING

Global carbon dioxide concentration over the last thousand years

Polar ice cores



THE GLOBAL CARBON CYCLE
Preindustrial and anthropogenic perturbation (1990’s)

Stocks in upright type, Pg C; flows in italic type, Pg C yr-1

DIC

IPCC AR4, Chapter 7 (2007); after Sarmiento and Gruber (2002)

Excess atmospheric carbon dioxide is 26 years of current fossil fuel emissions.
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ATMOSPHERIC CARBON DIOXIDE
Time series 1700 - 2003
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FOSSIL FUEL CO2 EMISSIONS
Time series 1700 - 2003
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FOSSIL CO   CUMULATIVE EMISSIONS
Time series 1700 - 2003
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Present excess CO   in the atmosphere is equal to 45 years of fossil fuel emissions.
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THE GLOBAL CARBON CYCLE
Preindustrial and anthropogenic perturbation (1990’s)

Stocks in upright type, Pg C; flows in italic type, Pg C yr-1

DIC

IPCC AR4, Chapter 7 (2007); after Sarmiento and Gruber (2002)

Large fluxes out of atmosphere suggest much shorter lifetime ~ 3.5 yr.
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THE GLOBAL CARBON CYCLE
Preindustrial and anthropogenic perturbation (1990’s)

Stocks in upright type, Pg C; flows in italic type, Pg C yr-1

DIC

IPCC AR4, Chapter 7 (2007); after Sarmiento and Gruber (2002)

Paradox resolved: Large return flux indicates coupled reservoirs.
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THE GLOBAL CARBON CYCLE
Preindustrial and anthropogenic perturbation (1990’s)

Stocks in upright type, Pg C; flows in italic type, Pg C yr-1

DIC

IPCC AR4, Chapter 7 (2007); after Sarmiento and Gruber (2002)

Turnover time calculated as (excess C)/(sink rate) is 44 yr.

Unknown


Unknown


Unknown


Unknown


Unknown
Total excess 183

Unknown


Unknown


Unknown
Total sink rate 4.2

Unknown


Unknown


Unknown


Unknown
44 years

Unknown




ALTERNATE VIEWS OF THE CO2
IMPULSE RESPONSE FUNCTION

Comparison on linear and semilogarithmic plots
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Bern model is basis for assertions that excess CO2 is long lived in the
atmosphere.

Response functions closely agree over initial 30 years but diverge greatly
at long times.



COMPARISON OF MODELED AND
OBSERVED CO2 MIXING RATIO

Fossil emissions from Marland; land-use emissions from Houghton
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Both models reproduce observations given uncertainties in emissions.
Long term impulse response is irrelevant for rapidly increasing emissions.
Knowledge of the true impulse response is essential to energy planning.



CHARACTERISTIC TIME OF EARTH’S
CLIMATE SYSTEM

I add a watt per square meter to Earth’s energy
budget, and then

Earth warms up: Can you tell me when?

Incremental heating “in the pipeline” from excess
CO2 already in the atmosphere

Earth’s climate sensitivity



APPROACH TO DETERMINE
EARTH’S CLIMATE SENSITIVITY

Empirically determine heat capacity C and time
constant τ of Earth’s climate system from
measurements over the instrumental period.

Evaluate sensitivity as λ-1 = τ/C



CLIMATE SENSITIVITY ESTIMATES
THROUGH THE AGES

Estimates of central value and uncertainty range from major
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ENERGY BALANCE MODEL OF
EARTH’S CLIMATE SYSTEM

Global energy balance: C
dT

dt

dH

dt
Q E J Ts

s
4= = − = −γ εσ

C is heat capacity coupled to climate system on relevant time scale

Ts is global mean surface temperature H is global heat content

Q is absorbed solar energy E is emitted longwave flux

J is 
1
4

 solar constant γ  is planetary co-albedo

σ  is Stefan-Boltzmann constant ε is effective emissivity



ENERGY BALANCE MODEL OF
EARTH’S CLIMATE SYSTEM

Apply step-function forcing:

At “equilibrium”

F Q E= −∆( )

∆T Fs( )∞ = −λ 1
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 T0 

 T(∞)

2τ 3τ        .

λ−1 is equilibrium climate sensitivity Units: K / (W m )-2

Time-dependence: ∆T t F e t
s( ) ( )/= −− −λ τ1 1

τ  is climate system time constant λ τ− =1 / C

One equation in three unknowns!

Approach: Determine C and τ empirically; calculate sensitivity λ−1.



EMPIRICAL DETERMINATION OF OCEAN HEAT CAPACITY
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•  ~50% of heat capacity is between surface and 300 m.
•  Other heat sinks raise global heat capacity to 17 ± 7 W yr m-2 K-1.

Ocean heat content
H: Levitus et al.,

GRL, 2005

Surface temperature
Ts: GISS, CRU

C =
dH / dt
dTs / dt
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Schwartz, JGR, 2007
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TIME CONSTANT OF EARTH’S CLIMATE SYSTEM
Determination from autocorrelation of time series

Input: Monthly global-mean surface temperature anomaly Ts
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TIME CONSTANT OF EARTH’S CLIMATE SYSTEM
Determination from autocorrelation of time series (cont’d)

Evaluate climate system time constant as τ = (d ln r(∆t)/d ∆t)-1

Correct for short duration of time series.
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GISS 1880-2007τ  = 8.6 ± 0.7 yr     9.0 ± 0.4 yr

Summary (multiple data sets):

Climate system time constant is 8.5 ± 2.5 years

Unknown
Schwartz, JGR, in press, 2008



IMPLICATIONS
Climate system time constant is 8.5 ± 2.5 years.

Short time constant implies little further heating “in the pipeline”
from present greenhouse gases.

Earth’s climate sensitivity is 0.51 ± 0.26 K /(W m-2).

CO2 doubling temperature ∆T2× = 1.9 ± 1.0 K.
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IT’S ABOUT TIME

THANK YOU, HENNING




