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GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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ATMOSPHERIC
RADIATION

Energy per area per
time

Power per area

Unit:
Watt per square meter
W m2




RADIATIVE FORCING

A change 1n a radiative flux term in Earth’s radiation
budget, AF, W m™2.

Working hypothesis:
On a global basis radiative forcings are additive and

fungible.
e This hypothesis 1s fundamental to the radiative
forcing concept.

e This hypothesis underlies much of the assessment of
climate change over the industrial period.



ATMOSPHERIC CARBON DIOXIDE IS INCREASING
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CLIMATE FORCING
AND RESPONSE



GREENHOUSE GAS FORCING 1855-2004

Well mixed greenhouse gases: carb
dioxide, methane, nitrous oxide, CF(
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Well mixed greenhouse gases: carbon dioxide, methane, nitrous oxide, CFC's


Temperature Anomaly, K

GREENHOUSE GAS FORCING AND

CHANGE IN GLOBAL MEAN SURFACE
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GREENHOUSE GASES AND TEMPERATURE
OVER 450,000 YEARS [\
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CLIMATE RESPONSE

The change in global and annual mean temperature,
AT, K, resulting from a given radiative forcing.

Working hypothesis:
The change in global mean temperature is
proportional to the forcing, but independent of its
nature and spatial distribution.

AT = A AF



CLIMATE SENSITIVITY

The change 1n global and annual mean temperature per
unit forcing, A, K/(W m-2),

A= AT/AF.

Climate sensitivity 1s not known and is the objective of
much current research on climate change.

Climate sensitivity 1s often expressed as the
temperature for doubled CO» concentration AT9x.

ATry = A AF>«



CLIMATE SENSITIVITY ESTIMATES
THROUGH THE AGES

Estimates of central value and uncertainty range from major
national and international assessments
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IMPLICATIONS OF UNCERTAINTY IN
CLIMATE SENSITIVITY

Uncertainty in climate sensitivity translates directly
into . . .

e Uncertainty in the amount of incremental
atmospheric CQO; that would result in a given
increase 1n global mean surface temperature.

e Uncertainty in the amount of fossil fuel carbon that
can be combusted consonant with a given climate
effect.

At present this uncertainty is about a factor of 3.



KEY APPROACHES TO DETERMINING
CLIMATE SENSITIVITY

e Paleoclimate studies.

e Empirical, from climate change over the instrumental
record.

e Climate modeling.

Climate models evaluated by comparison with
observations are essential to informed decision making.



IMPORTANCE OF KNOWLEDGE OF
CLIMATE TO INFORMED
DECISION MAKING

e The lifetime of incremental atmospheric CO; 1s about
100 years.

* The expected life of a new coal-fired power plant 1s
50 to 75 years.

Actions taken today will have long-lasting effects.

Early knowledge of climate sensitivity can result in
huge averted costs.



INFLUENCE OF AEROSOLS



GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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AEROSOL IN MEXICO CITY BASIN




AEROSOL IN MEXICO CITY BASIN

Mexico City 1s a wonderful place to study aerosol properties and evolution.



AEROSOLS AS SEEN FROM SPACE

Fire plumes from southern Mexico transported north into Gulf of Mexico.




AEROSOL.: A suspension of particles in air
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SeaWiF'§ Project, NASA/Goddard Space Flight Center, and ORBIMAGE

Atmospheric aerosols may result from primary emissions (dust, smoke)
or from gas to particle conversion in the atmosphere (haze, smog).



CLOUD BRIGHTENING BY SHIP TRACKS

Satelhte photo off Cahforma coast
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UNCERTAINTY IN CLIMATE
FORCING



GLOBAL-MEAN RADIATIVE FORCINGS (RF)

Pre-industrial to present (Intergovernmental Panel on Climate Change, 2007)
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Looking to the
Future . . .




Prediction is difficult,
especially about the future.
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PROJECTIONS OF FUTURE CO2 EMISSIONS

CO5 emissions (Gt Clyr)
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PROJECTIONS OF FUTURE CO2 EMISSIONS


PROJECTIONS OF FUTURE CO2 CONCENTRATIONS
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PROJECTIONS OF FUTURE CO2 CONCENTRATIONS


Temperature Change (°C)

PROJECTIONS OF FUTURE TEMPERATURE CHANGE
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PROJECTIONS OF FUTURE TEMPERATURE CHANGE


Sea level rise (metres)
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PROJECTIONS OF FUTURE SEA LEVEL RISE
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Weiss and Overpeck, University of Arizc
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Weiss and Overpeck, University of Arizc
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MELTING OF GREENLAND ICE CAP

Satellite determination of extent of glacial ice 1992 vs 2002

NASA Arctic Climate Impact Assessment, Cambridge, 2004

Complete melt of the Greenland ice sheet would raise the level of the
global ocean 7 meters.
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Weiss and Overpeck, University of Arizona
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“Gentlemen, it’s time we gave some serious thought

to the effects of global warming.”



CONCLUDING REMARKS

Atmospheric carbon dioxide will continue to increase
absent major changes in the world’s energy economy.

The consequences of this increase are not well known but
they range from serious to severe to catastrophic.

Uncertainty in forcing by aerosols greatly limits present
understanding of climate change.

Present scientific understanding 1s sufficient to permit “no
regrets” decision making.

Research 1s urgently needed to refine “what 1f”” projections.

Actions taken (or not taken) today will inevitably affect
future generations.



