DOING SOMETHING ABOUT THE CLIMATE:
GREENHOUSE GASES, AEROSOLS, RADIATIVE FORCING, AND IMPLICATIONS

Stephen E. Schwartz
Environmental Sciences Department BNL

Physics Colloquium, BNL
November 8, 2005

Everybody talks about the weather —

But nobody does anything about it.

– Mark Twain
QUESTIONS ABOUT CLIMATE CHANGE

Are atmospheric CO₂ and other greenhouse gases increasing?
 Why?
 What human or other activities are responsible?

Is Earth’s temperature increasing?
 Why?
 Can temperature increase be quantitatively understood and related to causes?

What future temperature increases (and other climate changes) can be expected?
 What is the uncertainty?

What is the “take-home” message regarding present understanding of climate change?
OUTLINE

Radiative fluxes and radiative forcing of climate change

Radiative forcing of climate change

Trends in carbon dioxide and temperature

Attribution of excess atmospheric carbon dioxide

Climate sensitivity

Time constant of climate change

Radiative forcing by aerosols

Radiative forcing over the industrial period and its uncertainty

Concluding remarks
The Greenhouse Effect

Some solar radiation is reflected by the Earth and the atmosphere.

Solar radiation passes through the clear atmosphere.

Most radiation is absorbed by the Earth's surface and warms it.

Some of the infrared radiation passes through the atmosphere, and some is absorbed and re-emitted in all directions by greenhouse gas molecules. The effect of this is to warm the Earth's surface and the lower atmosphere.

Infrared radiation is emitted from the Earth's surface.
GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter

\[
\frac{1}{4} S_0 \times (1 - \alpha) = \sigma T^4
\]

\[
\alpha = 31\%
\]

\[
\frac{1}{4} S_0 = 343 \text{ W/m}^2, \quad 69\% = 1 - \alpha
\]

\[
\approx 254K, \quad 237 \text{ W/m}^2
\]

\[
\approx 288K, \quad 390 \text{ W/m}^2
\]

Shortwave
Longwave

Rayleigh
Aerosol

\[
H_2O, CO_2, CH_4\ldots
\]

Atmosphere

Schwartz, 1996, modified from Ramanathan, 1987
ATMOSPHERIC RADIATION

Energy per area per time

Power per area

Unit:
Watt per square meter
W m$^{-2}$
GEOGRAPHICAL VARIATION OF ATMOSPHERIC RADIATION

Annual average radiative flux at top of atmosphere, W m⁻²

Emitted thermal infrared Reflected shortwave

CERES (Clouds and Earth’s Radiant Energy System satellite, March, 2000 - May, 2001)
RADIATIVE FORCING OF CLIMATE CHANGE

A change in a radiative flux term in the Earth’s radiation budget, ΔF, W m$^{-2}$.

Working hypothesis:

On a global basis radiative forcings are additive and fungible.

The radiative forcing concept underlies much of the assessment of climate change over the industrial period.
ATMOSPHERIC CARBON DIOXIDE IS INCREASING

Global carbon dioxide concentration and infrared radiative forcing over the last thousand years.
GREENHOUSE GAS MIXING RATIOS OVER THE INDUSTRIAL PERIOD

- **CO₂**: Mixing ratios from ice core and in situ measurements show a steady increase over the industrial period.
- **CH₄**: Similar trend observed with higher concentrations.
- **N₂O**: Shows a slower increase compared to CO₂ and CH₄.
- **CFCs**: Notable increase in concentration, with CFC-11 and CFC-12 shown separately. Other trace gas forcing is converted to CFC-11 amount.

Hansen et al., PNAS. 1998
The global mean radiative forcing of the climate system for the year 2000, relative to 1750

- **Greenhouse gases**
 - CO₂
 - CH₄
 - N₂O
 - Halocarbons

Level of Scientific Understanding

- High
- Medium

Radiative Forcing Over the Industrial Period

IPCC (2001)
IS EARTH’S TEMPERATURE INCREASING?
GLOBAL TEMPERATURE TREND OVER THE INDUSTRIAL PERIOD

Temperature Anomaly, K

GISS
East Anglia
OCEAN SURFACE TEMPERATURE ANOMALY

Rayner et al., 2005
RETREAT OF MID-LATITUDE GLACIERS

South Cascade Glacier, Washington

1928

2000
INCREASES IN CO$_2$ OVER THE INDUSTRIAL PERIOD
ATMOSPHERIC CARBON DIOXIDE
Time series 1700 - 2003

- Law Dome (Antarctica)
- Siple (Antarctica)
- Mauna Loa (Hawaii)

Law - Etheridge et al.
Siple - Friedli et al.
Mauna Loa - Keeling
ATMOSPHERIC CO₂ EMISSIONS
Time series 1700 - 2003

Fossil Fuel Emissions

Carbon dioxide emissions, ppm/yr

Fossil Fuel - Marland
ATMOSPHERIC CARBON DIOXIDE

Time series 1700 - 2003

Carbon dioxide mixing ratio, ppm

Fossil Fuel Cumulative Emissions

Fossil Fuel - Marland
ATMOSPHERIC CARBON DIOXIDE
Time series 1700 - 2003

Fossil Fuel Cumulative Emissions

Law - Etheridge et al.
Siple - Friedli et al.
Mauna Loa - Keeling
Fossil Fuel - Marland
ATMOSPHERIC CARBON DIOXIDE
Time series 1700 - 2003

What’s missing?

Law - Etheridge et al.
Siple - Friedli et al.
Mauna Loa - Keeling
Fossil Fuel - Marland
Carbon flux estimated as land area times carbon emissions associated with deforestation (or uptake associated with afforestation).

United States dominates emissions before 1900 and uptake after 1940.
Prior to 1910 CO₂ emissions from land use changes were dominant.
Subsequently fossil fuel CO₂ has been dominant and rapidly increasing!
ATTRIBUTION OF INCREASE IN ATMOSPHERIC CO$_2$

Comparison of *cumulative* CO$_2$ emissions from fossil fuel combustion with measured increases in atmospheric CO$_2$.

![Graph showing comparison of cumulative CO$_2$ emissions from fossil fuel combustion with measured increases in atmospheric CO$_2$.](image-url)
ATTRIBUTION OF INCREASE IN ATMOSPHERIC CO$_2$

Comparison of *cumulative* CO$_2$ emissions from fossil fuel combustion and land use changes with measured increases in atmospheric CO$_2$.
ATRIBUTION OF INCREASE IN ATMOSPHERIC CO\textsubscript{2}

Comparison of \textit{cumulative} CO\textsubscript{2} emissions from fossil fuel combustion and land use changes with measured increases in atmospheric CO\textsubscript{2}.

Prior to 1970 the increase in atmospheric CO\textsubscript{2} was dominated by emissions from land use changes, not fossil fuel combustion.
Partition-decay model: \[\frac{d\Delta CO_2}{dt} = f_A Q - \Delta CO_2 e^{-t/\tau} \]
CO₂ from land use emissions – not fossil fuel combustion – has been the dominant contribution to atmospheric CO₂ and forcing over the last century. *This conclusion is not sensitive to the parameters.*
The time constant for emissions growth is well less than time constant for decrease of excess CO$_2$.
The mean age of fossil fuel CO$_2$ in the atmosphere is ~ 40 years.
The climate influence of excess fossil fuel CO$_2$ already in the atmosphere will continue well into the future.
OBSERVATIONS ABOUT CO$_2$

The residence time of excess atmospheric CO$_2$ is \sim100 years.

CO$_2$ from *land use emissions* was the dominant contribution to excess CO$_2$ and its climate forcing over the last century.

CO$_2$ from *fossil fuel combustion* now the dominant contribution to excess CO$_2$ and its climate forcing.

Fossil fuel CO$_2$ emissions are increasing with time constant of \sim40 years.

Excess CO$_2$ now in the atmosphere is \sim40 years’ emissions.

Most of the forcing of present excess CO$_2$ lies ahead.
Looking to the Future . . .
Prediction is difficult, especially about the future.

– Niels Bohr
Contributors to uncertainty in future temperature include *emissions*, *concentrations*, and Earth's *climate sensitivity*.
CLIMATE RESPONSE

The change in global and annual mean temperature, ΔT, K, resulting from a given radiative forcing.

Working hypothesis:

The change in global mean temperature depends on the magnitude of the forcing, not its nature or its spatial distribution.

$$\Delta T = \lambda F$$

CLIMATE SENSITIVITY

The change in global and annual mean temperature per unit forcing, λ, K/(W m$^{-2}$).
TOP-LEVEL QUESTION IN CLIMATE CHANGE SCIENCE

• How much will the global mean temperature change?

\[\Delta T = \lambda F \]

where \(F \) is the forcing and \(\lambda \) is the climate sensitivity.

- A forcing is a change in a radiative flux component, \(\text{W m}^{-2} \).
- Forcings are thought to be additive and fungible.

• What is Earth’s climate sensitivity?

- U.S. National Academy Report (Charney, 1979): \(F = 4 \text{ W m}^{-2} \)

 “We estimate the most probable global warming for a doubling of CO\(_2\) to be near 3 degrees C, with a probable error of plus or minus 1.5 degrees.”

- Intergovernmental Panel on Climate Change (IPCC, 2001):

 “Climate sensitivity [to CO\(_2\) doubling] is likely to be in the range 1.5 to 4.5°C.

This level of uncertainty is not very useful for policy planning.
GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter

\[
\frac{1}{4} S_0 (1-\alpha) = \sigma T^4
\]

69\% = 1 - \alpha

\[
1/4 S_0 \approx 254K
\]

\[
237 \approx 254K
\]

\[
\alpha = 31\%
\]

\[
\frac{1}{4} S_0 = 343 \text{ W m}^{-2}
\]

\[
H_2O, \ CO_2, \ CH_4 \ldots
\]

\[
390 \approx 288K
\]

\[
2 \times CO_2 \approx + 4 \text{ W m}^{-2}
\]

\[
\approx 288K
\]

\[
327
\]

\[
106
\]

\[
\approx 4 \text{ W m}^{-2}
\]

Schwartz, 1996, modified from Ramanathan, 1987
HOW CAN CLIMATE SENSITIVITY BE DETERMINED?

Climate sensitivity $\lambda = \Delta T / F$

- **Climate models** evaluated by performance on prior climate change, and/or

- **Empirical determination** from prior climate change.

- Either way, ΔT and F must be determined with sufficiently small uncertainty to yield an uncertainty in λ that is useful for informed decision making.
BILLIARD BALL TEMPERATURE SENSITIVITY

Climate sensitivity evaluated according to the Stefan-Boltzmann radiation law

Dependence of emitted flux on temperature:

$$ F = \sigma T^4 $$

Sensitivity of flux with temperature:

$$ \frac{dF}{dT} = 4\sigma T^3 $$

Sensitivity of temperature with flux:

$$ \lambda \equiv \frac{dT}{dF} = \left(4\sigma T^3\right)^{-1} $$

For $ T = 288 \text{ K} $ (15 °C or 59 °F)

$$ \lambda = 0.18 \text{ K} / (\text{W m}^2) $$
CLIMATE CHANGE SENSITIVITY
Summary of 15 Current Climate Models

<table>
<thead>
<tr>
<th>Quantity, Unit</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ, K/(W m$^{-2}$)</td>
<td>0.87</td>
<td>0.23</td>
<td>0.5 - 1.25</td>
</tr>
<tr>
<td>$\Delta T_{2\times}$, K</td>
<td>3.5</td>
<td>0.9</td>
<td>2 - 5</td>
</tr>
</tbody>
</table>

IPCC Climate Change 2001, Cambridge University Press, 2001

Why do climate models exhibit higher sensitivity?

Positive Feedback
Greenhouse forcing over the industrial period is 2.5 W m\(^{-2}\)

Temperature increase over the industrial period is 0.6 K.

Empirical Sensitivity:

\[
\lambda = \frac{dT}{dF} = \frac{0.6 \text{ K}}{2.5 \text{ W m}^{-2}} = 0.24 \text{ K / (W m}^{-2})
\]

or \[\Delta T_{2\times} = 1 \text{ K}\]

Why is this estimate so low?

Thermal lag of climate system?

Other forcings?
TIME CONSTANTS OF EARTH’S CLIMATE SYSTEM

Consider a perturbation to the climate system.

How long does it take for the system to adjust to the new state?

There are many time constants:

Minutes. It gets cooler when the sun goes “behind a cloud.”

Hours. It is cooler at night than during the day; but there is a lag.

Months. It is colder in winter than in summer, but there is a lag.

Years. Thermal buffering of the ocean mixed layer.

Thousands of years. The deep oceans.

Millions of years. Thermal mass of the whole planet (Kelvin and the age of Earth)
TIME CONSTANT OF EARTH’S CLIMATE SYSTEM BASED ON THE OCEAN MIXED LAYER

For the heat content of the climate system given by

\[\frac{dH}{dt} = J_{in} - \sigma T^4 \]

the relaxation time constant for a perturbation from an initial temperature \(T_0 \) is

\[\tau = \frac{CT_0}{4J_0} \]

where \(C \) is the heat capacity of the system.
HEAT CAPACITY OF THE SYSTEM

Lemma: the heat capacity of the atmosphere $<<$ the heat capacity of the ocean mixed layer.

The mass of the atmosphere = the mass of the first 10 m of water.

The heat capacity of the atmosphere = the heat capacity of the first 2.5 m of water.

The depth of the ocean mixed layer ≈ 100 m, so the heat capacity of the atmosphere $\approx 1/40$ that of the ocean mixed layer.

So just consider the heat capacity of the ocean mixed layer

For $z_{ml} = 100$ m, the heat capacity of the system is

$$C = c_w \rho_w z_{ml} = 4.19 \times 10^8 \text{ J m}^{-2}$$
TIME CONSTANT OF THE CLIMATE SYSTEM

For $z_{ml} = 100$ m, $\tau = \frac{CT_0}{4J_0} = \frac{c_w \rho_w z_{ml} T_0}{4J_0} = 4$ years.

[This does not take into account any flux of excess heat into the deep ocean or solid earth.]

Climate response is essentially instantaneous.

This justifies inferring climate sensitivity from forcing and temperature response.

We need consider only instantaneous forcing, not integrated forcing.

This is a very forgiving result!

The warming due to excess CO$_2$ will diminish as the excess CO$_2$ decays.
WHAT’S MISSING FROM THIS STORY?

RADIATIVE FORCING BY AEROSOLS
Radiative Forcing by Tropospheric Aerosol

Partial Reflection and Absorption of Incoming Solar Radiation

Aerosol Haze

Clouds

Organics

Dust

SO₂

Soot

Sea salt

Organics

DMS

Land Use Changes

Industrial Emissions

Biomass Burning

Ocean
LIGHT SCATTERING BY ANTHROPOGENIC AEROSOLS, 2000

SEAWIFS images
AEROSOL INFLUENCES ON RADIATION BUDGET AND CLIMATE

Direct Effect (Cloud-free sky)
- Light scattering -- Cooling influence
- Light absorption -- Warming influence, depending on surface

Indirect Effects (Aerosols influence cloud properties)
- More droplets -- Brighter clouds (Twomey)
- More droplets -- Enhanced cloud lifetime (Albrecht)

Semi-Direct Effect
- Absorbing aerosol heats air and evaporates clouds
GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter

\[\frac{1}{4} S_0 = 343 \quad \text{W/m}^2 \]

\[\frac{1}{4} S_0 (1 - \alpha) = \sigma T^4 \quad \text{(Shortwave)} \]

\[\alpha = 31\% \quad \text{Aerosol} \]

\[\beta = 69\% = 1 - \alpha \quad \text{Rayleigh} \]

\[237 \quad \approx 254K \]

\[390 \quad \approx 288K \]

\[327 \quad 90 \quad 16 \]

\[68 \quad 106 \quad 6 \]

\[25 \quad 30 \quad 45 \]

\[1/4 \quad S_0 \]

Modified from Ramanathan, 1987
ELEMENTS OF AEROSOL FORCING

Forcing depends on *amount of material* present and on aerosol *microphysical and optical properties* (size, single scattering albedo, ability to nucleate cloud drops).

Amount of material present depends on *emissions*, *atmospheric chemistry*, and *removal*.

Anthropogenic emissions are associated largely with *fossil fuel combustion* (sulfate, soot, secondary organics), *biomass burning* (organics and soot), *mineral dust* from disturbed soils.

Removal occurs mainly by precipitation with *residence time of about a week*.
RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD
IPCC (2001)
GHG's and aerosol direct and indirect effects

The global mean radiative forcing of the climate system for the year 2000, relative to 1750

Radiative forcing (Watts per square metre)

Cooling

Warning

High

Medium

Low

Very Low

Medium

Low

Very Low

Medium

Low

Very Low

Mineral Dust

Sulphate

Organic carbon from fossil fuel burning

Biomass burning

Aerosol indirect effect

Stratospheric ozone

Tropospheric ozone

Aerosols

Halocarbons

N₂O

CH₄

CO₂

Black carbon from fossil fuel burning

Summary for Policymakers
A Report of Working Group I of the Intergovernmental Panel on Climate Change
WHY SO LARGE UNCERTAINTY IN AEROSOL FORCING?

• **Uncertainties in knowledge of atmospheric composition**

 Mass loading and chemical and microphysical properties and cloud nucleating properties of anthropogenic aerosols, and geographical distribution.

 At present and as a function of secular time.

• **Uncertainties in knowledge of atmospheric physics of aerosols**

 Relating direct radiative forcing and cloud modification by aerosols to their loading and their chemical and microphysical properties.

The U.S. Department of Energy has initiated a new research program examining aerosol chemistry and physics pertinent to radiative forcing of climate change.
ADDING UP THE FORCINGS
The global mean radiative forcing of the climate system for the year 2000, relative to 1750.

Radiative forcing (Watts per square metre)

- **Global Warming**
 - Halocarbons
 - N₂O
 - CH₄
 - CO₂
 - Tropospheric ozone
 - Aerosols
 - Black carbon from fossil fuel burning
 - Mineral Dust
 - Aviation-induced
 - Contrails Cirrus
 - Solar

Cooling

- Stratospheric ozone
- Sulphate
- Organic carbon from fossil fuel burning
- Biomass burning
- Aerosol indirect effect
- Land-use (albedo) only

Level of Scientific Understanding

- High
- Medium
- Medium
- Low
- Very Low

Summary for Policymakers

A Report of Working Group I of the Intergovernmental Panel on Climate Change
The global mean radiative forcing of the climate system for the year 2000, relative to 1750.

Radiative forcing (Watts per square metre)

The global mean radiative forcing of the climate system for the year 2000, relative to 1750

Level of Scientific Understanding

Summary for Policymakers

A Report of Working Group I of the Intergovernmental Panel on Climate Change

Schwartz, JAWMA, 2005
IMPLICATIONS OF AEROSOL FORCING

• Aerosol negative (cooling) forcing is likely *offsetting* a substantial fraction of positive (warming) forcing by greenhouse gases.

• A substantial fraction of the forcing of 40 years of CO$_2$ emissions is being offset by *a week’s worth of aerosol*.

• The aerosol forcing is likely responsible for the *low apparent climate sensitivity* based on greenhouse gas forcing only.

• It is very likely that the global warming due to CO$_2$ and other GHG’s is *substantially greater* than has been experienced thus far.

• The uncertainty in aerosol forcing and the resultant uncertainty in total forcing over the industrial period are so great as to *preclude meaningful empirical inference of climate sensitivity and evaluation of climate models*.
SOME CONCLUDING OBSERVATIONS

• GHG concentrations and forcing are increasing. GHGs persist in the atmosphere for decades to centuries.

• Global mean temperature trends and other indicia point to a warming world.

• Aerosol forcing is comparable to GHG forcing but much more uncertain. Aerosols are short-lived in the atmosphere.

• The sensitivity of the climate system is highly uncertain but is almost certainly substantially greater than is inferred based on GHG forcing alone.

• Decisions on GHG policy must be made in an uncertain world. Lack of controls on GHG emissions is also a decision.
DOING SOMETHING ABOUT THE CLIMATE:

Thank you