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Fossil fuels supply about 85% of the world’s primary energy, and future use would not appear limited by
availability of reserves, especially of coal. Rather, future use of fossil fuels will likely be limited by
controls on the emission of carbon dioxide into the atmosphere that are agreed to by the nations of the
world. The increase in atmospheric CO, over the past 200 years, mainly from fossil fuel combustion, is
confidently thought to have increased global temperatures and induced other changes in Earth’s climate,
with the prospect of much more severe consequences from projected future emissions. Limiting such
changes in Earth’s climate would place major constraints on the combustion of fossil fuels and/or the
emission of CO, into the atmosphere. Developing effective and cost-effective strategies for limiting CO,
emissions requires the confident ability to project the changes in climate that would result from a given
increase in atmospheric CO,. However, even the change in global mean surface temperature (GMST), the
single most important index of climate change, that would result from a given increase in atmospheric
CO, remains uncertain to a factor of 2 or more, largely because of uncertainty in Earth’s climate
sensitivity, the change in GMST per change in radiative flux. This uncertainty in climate sensitivity,
which gives rise to a comparable uncertainty in the shared global resource of the amount of fossil fuel that
can be burned consonant with a given increase in global mean surface temperature, greatly limits the
ability to effectively formulate strategies to limit climate change while meeting the world’s future energy
requirements. Key limits on determining climate sensitivity are the small change in downwelling
longwave irradiance, less than one percent, that would give rise to changes in climate that reach the level
of concern, the complexity of cloud processes and the difficulty of representing them in climate models,
and limited understanding of the processes that control the radiative influences of atmospheric aerosols.
A recent empirical calculation of Earth’s climate sensitivity as the quotient of the relaxation time constant
of GMST upon the effective heat capacity characterizing climate change on the multidecadal time scale
points to a possible alternative approach to determining Earth’s climate sensitivity. While improved
knowledge of Earth’s climate sensitivity is essential to development of optimal energy strategies, even for
climate sensitivity at the low end of the range of present estimates, substantial reductions in CO,
emissions from their present values would be required to avert dangerous anthropogenic interference
with the climate system that would otherwise occur well before the end of the present century.
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GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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ATMOSPHERIC CARBON DIOXIDE IS INCREASING
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RADIATIVE FORCING

A change 1n a radiative flux term in Earth’s radiation
budget, AF, W m2.

Working hypothesis:

On a global basis radiative forcings are additive and
fungible.

e This hypothesis 1s fundamental to the radiative
forcing concept.

e This hypothesis underlies much of the assessment of
climate change over the industrial period.



ATMOSPHERIC CO, EMISSIONS
Time series 1700 - 2003
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Prior to 1910 COz emissions from land use changes were dominant.

Subsequently fossil fuel CO2 has been dominant and rapidly increasing!



ATTRIBUTION OF ATMOSPHERIC CO;

Comparison of CO, mixing ratio and forcing from
fossil fuel combustion and land use changes
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the 20th century.



CLIMATE RESPONSE

The change in global and annual mean temperature,
AT, K, resulting from a given radiative forcing.

Working hypothesis:
The change in global mean temperature is
proportional to the forcing, but independent of its
nature and spatial distribution.

AT =85 AF



Temperature Anomaly, K
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GREENHOUSE GASES AND TEMPERATURE
OVER 450,000 YEARS [\
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CLIMATE SENSITIVITY

The change 1n global and annual mean temperature per
unit forcing, S, K/(W m—2),

S = AT/AF.

Climate sensitivity 1s not known and 1s the objective of
much current research on climate change.

Climate sensitivity 1s often expressed as the
temperature for doubled CO» concentration A7T9x.

ATr = SAFr
AFZX =37 W m-2
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CLIMATE SENSITIVITY ESTIMATES
THROUGH THE AGES

Estimates of central value and uncertainty range from major
national and international assessments

Carbon Dioxide and Climate:

A Scientific Assessment
NATIONAL ACADEMY OF SCIENCES
Washington, D.C. 1979
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Despite extensive research, climate sensitivity remains highly uncertain.



KEY APPROACHES TO DETERMINING
CLIMATE SENSITIVITY

e Paleoclimate studies: Forcing and response over time
scales from millennial to millions of years.
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GLOBAL MEAN TEMPERATURE
FROM PALEO DATA
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CLIMATE SENSITIVITY FROM PALEO DATA

Component Last Glacial Maximum Middle Cretaceous

Forcing, W m-2 Value+ 16 Value+ 16
Sun 0.0+0.2 -1.2+0.2
Albedo -3.0+£0.5 5.8+0.9
Greenhouse -2.8+£0.3 11.1 6.7
Aerosol -0.9 £ 0.7

Total AF, W m-2 -6.7+£ 0.9 15.7+6.8

AT, K -3.0+£0.5 9.0+20

S, K/(W m-2) 0.45£0.11 0.57 +£0.27

ATy, K (Fyy = 4.4 W m-2) 20+£0.5 25+1.2

Hoffert & Covey, Nature, 1992

Best estimate S = 0.51 £ 0.2 K/(W m2); AT,,, =2.3+0.9K (1 o).



CLIMATE SENSITIVITY ESTIMATES
THROUGH THE AGES

Estimates of central value and uncertainty range from specific
approaches and major national and international assessments
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Climate sensitivity from paleo climate has been a major contributor to
present assessment of climate sensitivity.



KEY APPROACHES TO DETERMINING
CLIMATE SENSITIVITY

e Paleoclimate studies: Forcing and response over time
scales from millennial to millions of years.

e Empirical: Forcing and response over the instrumental
record.
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Anthropogenic

Natural

GLOBAL-MEAN RADIATIVE FORCINGS (RF)

Pre-industrial to present (Intergovernmental Panel on Climate Change, 2007)
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Radiative Forcing by Tropospheric Aerosol

Land Use Changes Industrial Emissions Biomass Burning
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AEROSOLS AS SEEN FROM SPACE

Fire plumes from southern Mexico transported north into Gulf of Mexico.




CLOUD BRIGHTENING BY SHIP TRACKS

Satelhte photo off Cahforma coast
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GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter

AN 7
69% =1 -0
o3l
343 = 254K
143 § 1/4 80(1-0c)=0T4

Shortwave Longwave

Schwartz, 1996, modified from Ramanathan, 1987


stepheneschwartz



ESTIMATES OF AEROSOL DIRECT FORCING

By linear model and by radiation transfer modeling
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Global average sulfate optical thickness is 0.03: 1 W m-2? cooling.
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AEROSOL OPTICAL DEPTH

Determined by sunphotometry
North central Oklahoma - Daily average at 500 nm
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MONTHLY AVERAGE AEROSOL JUNE 1997

Polder radiometer on Adeos satellite

Optical Thickness 7
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Small particles are from
gas-to-particle conversion.




DOMINANCE OF ORGANIC AEROSOL

Measurements by aerosol mass spectrometer
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HOA AND OOA BY LOCATION TYPE

Area of pie scaled to organic aerosol concentration
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OOA fraction increases with increasing distance from urban sources.



AEROSOL IN MEXICO CITY BASIN




AEROSOL IN MEXICO CITY BASIN

Mexico City 1s a wonderful place to study aerosol properties and evolution.



SECONDARY AEROSOL PRODUCTION

Eight aircraft flights above and downwind of Mexico City, March 2006
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Parcel photochemical age measured using - Log(NOx/NOy) as clock.
Aerosol normalized to CO above background to account for dilution.
Fivefold increase in organic aerosol.

Measured increase in organic aerosol exceeds modeled based on
laboratory experiments and measured volatile organic carbon tenfold.



CLOUD ALBEDO AND FORCING CALCULATED FROM
MEASURED EFFECTIVE RADIUS AND LIQUID WATER PATH
North Central Oklahoma
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AEROSOL PROCESSES THAT MUST BE
UNDERSTOOD AND REPRESENTED IN MODELS
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APPROACH TO DETERMINE
AEROSOL FORCING

Numerical simulation of physical processes
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Isomorphism of processes to computer code

Modeling aerosol processes requires understanding these processes,
developing and testing their numerical representations, and incorporating
these representations in global scale models.



GLOBAL-MEAN RADIATIVE FORCINGS (RF)

Pre-industrial to present (Intergovernmental Panel on Climate Change, 2007)
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EMPIRICAL DETERMINATION OF CLIMATE
SENSITIVITY OVER INDUSTRIAL PERIOD

Sensitivity 1s temperature change upon forcing accounting for
transient heat uptake — modified from Gregory et al. J. Clim. 2002

o AT
AF —(dH / dr)

Evaluated for 1957-1994 vs. 1861-1900 for AF,, =3.71 W m-2

Symbol Quantity Value+ 1o  Unit

AT Temperature change 0.335+0.017 K

AF Forcing W m-2

dH /dt Planetary heat uptake rate  0.16 £ 0.08 W m-2
S Climate sensitivity 0.5 .@ K/(W m-2)

ATs, AT for doubled CO, 0. 1€ K
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CLIMATE SENSITIVITY ESTIMATES
THROUGH THE AGES

Estimates of central value and uncertainty range from specific
approaches and major national and international assessments
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Empirical approach does not greatly constrain sensitivity because of
uncertainty in aerosol forcing over the period of instrumental record.



KEY APPROACHES TO DETERMINING
CLIMATE SENSITIVITY

e Paleoclimate studies: Forcing and response over time
scales from millennial to millions of years.

e Empirical: Forcing and response over the instrumental
record.

e Climate modeling: Understanding the processes that

comprise Earth’s climate system and representing them
in large-scale numerical models.
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EQUILIBRIUM SENSITIVITIES IN CURRENT
CLIMATE MODELS
20 Models employed in IPCC AR4 simulations
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Sensitivity varies by more than a factor of 2.



CLOUD FEEDBACK STRENGTH AND
CLIMATE SENSITIVITY IN 9 GCMS

1
S=8p ——
SB 1—F
S = Climate sensitivity

Sqp = Stefan-Boltzmann
sensitivity

F = feedback strength
F =2F

sum over all feedbacks

Cloud feedback strength

Sensitivity AT, ., K
0.3 0 5 10

[ Longwave
B Shortwave
B Total

HadGSMI
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HadSM4

HadGSM1

MIROC lo

IPSL

MIROC hi

0 1 2
Sensitivity K / (W m2)
Adapted from Webb et al., Clim. Dyn., 2006

Variation in climate model sensitivity 1s dominated by variation in cloud

feedback strength.




ZONAL MONTHLY MEAN ALBEDO

20 GCMs — Difference vs. ERBE Satellite
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TOO ROSY A PICTURE?

Ensemble of 58 model runs with 14 global climate models
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¢ ¢ Simulations that incorporate anthropogenic forcings, including increasing
greenhouse gas concentrations and the effects of aerosols, and that also
incorporate natural external forcings provide a consistent explanation of the
observed temperature record.

¢ ¢ These simulations used models with different climate sensitivities, rates of
ocean heat uptake and magnitudes and types of forcings.



TOO ROSY A PICTURE?

Ensemble of 58 model runs with 14 global climate models
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Schwartz, Charlson & Rodhe, Nature Reports — Climate Change, 2007

The models did not span the full range of the uncertainty and/or . . .

The forcings used in the model runs were anticorrelated with the
sensitivities of the models.



CORRELATION OF AEROSOL FORCING, TOTAL
FORCING, AND SENSITIVITY IN CLIMATE MODELS

Eleven models used in 2007 IPCC analysis
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Climate Sensitivity (°C) Aerosol Forcing (Wm™)

Modified from Kiehl, GRL, 2007
Climate models with higher sensitivity have lower total forcing.

Total forcing decreases with increasing (negative) aerosol forcing.



KEY APPROACHES TO DETERMINING
CLIMATE SENSITIVITY

e Paleoclimate studies: Forcing and response over time
scales from millennial to millions of years.

e Empirical: Forcing and response over the instrumental
record.

e Climate modeling: Understanding the processes that
comprise Earth’s climate system and representing them
in large-scale numerical models.

e Energy-balance model. Empirical determination from
integral properties of Earth’s climate system.
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ENERGY BALANCE MODEL OF
EARTH’S CLIMATE SYSTEM

1. H
Global energy balance: C dly JdH _ Q- E= Ws _ 8(7TS4
dt | dt 4

C 1s heat capacity coupled to climate system on relevant time scale

15 1s global mean surface temperature  H 1s global heat content

Q 1s absorbed solar energy E 1s emitted longwave flux
Jg 18 solar constant Y 1s planetary co-albedo

o 1s Stefan-Boltzmann constant € 1s effective emissivity
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ENERGY BALANCE MODEL OF
EARTH’S CLIMATE SYSTEM

Apply step-function forcing: AF = A(Q-E) = —
At “equilibrium” AT, (o) = SAF B
Time
o Iy .
S is equilibrium S =——f=38sp/Sf Stefan-Boltzmann senstivity
1i e ’)/()J S :
climate sensitivity times feedback factor
Time dependence: AT, (1) = SAF(1—- e~ Y
T 1s climate system time constant T=CSorS=1/C

One equation in three unknowns!

Approach: Determine C and 7 from measurements; calculate sensitivity S.
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EVALUATION OF SENSITIVITY AND FORCINGS

Quantity Unit Value 10
Effective global heat capacity C Wyrm?K! 17 7
Effective climate system time constant T yr 85 2.5
Equilibrium climate sensitivity S =17/C K/(Wm?) 0.51|0.26
Feedback factor f — 1.7
Equilibrium temperature increase for 2 X CO», K 1.9 1.0
AT

Schwartz, JGR, 2007-200
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CLIMATE SENSITIVITY ESTIMATES
THROUGH THE AGES

Estimates of central value and uncertainty range from specific
approaches and major national and international assessments
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Sensitivity obtained in this study overlaps range from climate models,
paleo, empirical; seems to rule out AT, 2 3 K.



RECAPITULATION

Present estimates of Earth’s climate sensitivity range over
at least a factor of 3.

The range of sensitivity in climate models results largely

from differing treatment of clouds, resulting in differing
cloud feedbacks.

Evaluation of climate models 1s limited mainly because of
uncertainty in aerosol forcing over the industrial period.



IMPLICATIONS OF UNCERTAINTY IN
CLIMATE SENSITIVITY

Uncertainty in climate sensitivity translates directly
into . . .

e Uncertainty in the amount of incremental
atmospheric CQO; that would result in a given
increase 1n global mean surface temperature.

e Uncertainty in the amount of fossil fuel carbon that
can be combusted consonant with a given climate
effect.

At present this uncertainty is about a factor of 3.



IMPORTANCE OF KNOWLEDGE OF
CLIMATE TO INFORMED
DECISION MAKING

e The lifetime of incremental atmospheric CO; 1s about
100 years.

* The expected life of a new coal-fired power plant 1s
50 to 75 years.

Actions taken today will have long-lasting effects.

Early knowledge of climate sensitivity can result in
huge averted costs.



Looking to the
Future . . .




Prediction is difficult,
especially about the future.
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PROJECTIONS OF FUTURE CO2 EMISSIONS

CO5 emissions (Gt Clyr)
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PROJECTIONS OF FUTURE CO2 CONCENTRATIONS
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PROJECTIONS OF FUTURE CO2 CONCENTRATIONS


Temperature Change (°C)

PROJECTIONS OF FUTURE TEMPERATURE CHANGE
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Sea level rise (metres)
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EFFECT OF SEA LEVEL RISE

POPUIaﬂOH density, Current coastline
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EFFECT OF SEA LEVEL RISE

Population density, 1 meter sea level rise
North Korea) [& - s &
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Weiss and Overpeck, University of Arizona



MELTING OF GREENLAND ICE CAP

Satellite determination of extent of glacial melt 1992 vs 2002
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R = L el T A

7.00E+05 Extent Experiencing at Least 1 Melt Day
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Complete melt of the Greenland = g e

ice sheet would raise the level g
of the global ocean 7 meters. <

Steffen & Huff , Univ. Colo., 2005
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EFFECT OF SEA LEVEL RISE

Population density, 1 meter sea level rise
North Korea) [& - s &
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Weiss and Overpeck, University of Arizona



EFFECT OF SEA LEVEL RISE

Populatlon density, 6 meter sea level rise
North Korea, [+ _L ' '
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EFFECT OF SEA LEVEL RISE

Population density, current coastline
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EFFECT OF SEA LEVEL RISE

Population density, 6 meter sea level rise
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CONCLUDING REMARKS

Atmospheric carbon dioxide will continue to increase
absent major changes in the world’s energy economy.

The consequences of this increase are not well known but
they range from serious to severe to catastrophic.

Present scientific understanding is sufficient to permit “no
regrets” decision making.

Research 1s urgently needed to refine “what if”” projections.

Especially important is reducing uncertainty in climate
Sensitivity.

Actions taken (or not taken) today will inevitably affect
future generations.



