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GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter

Schwartz, 1996, modified from Ramanathan, 1987
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RADIATIVE FORCING

A change in a radiative flux term in Earth’s radiation
budget, ∆F, W m-2.

Working hypothesis:
On a global basis radiative forcings are additive and
fungible.

• This hypothesis is fundamental to the radiative
forcing concept.

• This hypothesis underlies much of the assessment of
climate change over the industrial period.



CLIMATE RESPONSE
The change in global and annual mean temperature,
∆T, K, resulting from a given radiative forcing.

Working hypothesis:
The change in global mean temperature is
proportional to the forcing, but independent of its
nature and spatial distribution.

∆T = λ-1∆F



CLIMATE SENSITIVITY
The change in global and annual mean temperature per
unit forcing, λ, K/(W m-2),

λ-1 =  ∆T/∆F.

Climate sensitivity is not known and is the objective of
much current research on climate change.

Climate sensitivity is often expressed as the
temperature for doubled CO2 concentration ∆T2×.

∆T2× = λ-1∆F2×

∆F2× ≈ 3.7 W m-2



CLIMATE SENSITIVITY ESTIMATES
THROUGH THE AGES

Estimates of central value and uncertainty range from major
national and international assessments
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Despite extensive research, climate sensitivity remains highly uncertain.
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More on this in tomorrow’s lecture.



COMMITTED WARMING IN CLIMATE MODEL RUNS
Atmospheric composition held constant at 2000 value (IPCC, 2007)

models models

} Committedwarming

Temperature continues to increase for composition held constant.

Projected incremental 21st century is 50% beyond warming already
realized.



“COMMITTED WARMING,” “THERMAL INERTIA,”
“WARMING IN THE PIPELINE”

“ Additional global warming of ... 0.6˚C is “in the pipeline” and will
occur in the future even if atmospheric composition and other climate
forcings remain fixed at today’s values.

Hansen et al, Science, 2005

“ Even if the concentrations of greenhouse gases in the atmosphere had
been stabilized in the year 2000, we are already committed to further
global warming of about another half degree.

Meehl, Washington, et al., Science, 2005

“ Even if atmospheric composition were fixed today, global-mean
temperature ... rise would continue due to oceanic thermal inertia. The
warming commitment could exceed 1˚C.

Wigley, Science, 2005
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“COMMITTED WARMING,” “THERMAL INERTIA,”
“WARMING IN THE PIPELINE”  (cont’d)

“ Because of the long time scale required for removal of CO2 from the
atmosphere as well as the time delays characteristic of physical
responses of the climate system, global mean temperatures are expected
to increase by several tenths of a degree for at least the next 20 years
even if CO2 emissions were immediately cut to zero; that is, there is a
commitment to additional CO2-induced warming even in the absence
of emissions.

Friedlingstein and Solomon, PNAS, 2005
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WHAT CAN WE LEARN FROM
ENERGY BALANCE MODELS?

EMPIRICAL DETERMINATION
OF EARTH’S CLIMATE

SENSITIVITY
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STOVE-TOP MODEL OF
EARTH’S CLIMATE SYSTEM



STOVE-TOP MODEL OF EARTH’S CLIMATE SYSTEM

dH

dt
C

dT

dt
Q k T T= = − −( )amb

H = heat content    T = temperature

C = system heat capacity

Q = heating rate from stove

Tamb = ambient temperature

Steady State T:  T T
Q

k∞ = +amb

let Q Q F→ + :     ∆T
F

k∞ =

Sensitivity: λ− ∞≡ =1 1∆T

F k

Time constant: τ λ= −C 1
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T = T0 + (Tf - T0)(1-e-t/τ )

 0  τ 
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τ is the time constant of the system response to a perturbation.



DEPENDENCE OF RESPONSE ON SYSTEM HEAT CAPACITY
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For constant k, ∆T∞ and λ−1 are independent of system heat capacity C.

Time constant τ varies linearly with heat capacity: τ λ= −C 1

Sensitivity can be inferred from τ and C as λ τ− =1 / C.
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BILLIARD BALL MODEL OF
EARTH’S CLIMATE SYSTEM



BILLIARD BALL TEMPERATURE
SENSITIVITY AND TIME

CONSTANT
Evaluated according to the

Stefan-Boltzmann radiation law

Global energy balance: 
dH

dt
Q E Q T= − = − σ 4

Initially Q T0 0
4= σ

Temperature sensitivity: ∆ ∆T Qss = −λ 1 ;        ∆ ∆T t Q e t( ) = −− −λ τ1 1( )/

For Stefan-Boltzmann planet sensitivity is λS-B
-1 =

T

Q4

Relaxation time constant is τ λS-B S-B= = −T C

Q
C0

0
0

1

4 ,     or    λ τ
S-B

S-B
,0

1− =
C



BILLIARD BALL
TEMPERATURE SENSITIVITY

Evaluated according to the
Stefan-Boltzmann radiation law

For Q S0 0 4= γ /  where S0 is the solar constant = 1370 W m-2

and γ  is global mean co-albedo = 0.69

Climate sensitivity is λS-B
-1  = 0.27 K/(W m-2)

For 2 × CO2 forcing F2× = 3.71 W m-2, ∆T2× = 1.0 K
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ENERGY BALANCE MODEL OF
EARTH’S CLIMATE SYSTEM



ENERGY BALANCE MODEL OF
EARTH’S CLIMATE SYSTEM

Global energy balance: C
dT

dt

dH

dt
Q E J Ts

s
4= = − = −γ εσ

C is heat capacity coupled to climate system on relevant time scale

Ts is global mean surface temperature H is global heat content

Q is absorbed solar energy E is emitted longwave flux

J is 
1
4

 solar constant γ  is planetary co-albedo

σ  is Stefan-Boltzmann constant ε is effective emissivity



ENERGY BALANCE MODEL OF
EARTH’S CLIMATE SYSTEM

Apply step-function forcing:

At “equilibrium”

F Q E= −∆( )

∆T Fs( )∞ = −λ 1
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λ−1 is equilibrium climate sensitivity λ
γ

−1 0
4

 =   
0 S

f
T

J
       K / (W m )-2

f  is feedback factor f
d

d T

d

d T
= − +







−
1

1
4

1
40 0

1
ln
ln

ln
ln

γ ε

Time-dependence: ∆T t F e t
s( ) ( )/= −− −λ τ1 1

τ  is climate system time constant τ λ= −C 1 or λ τ− =1 / C
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TEMPERATURE RESPONSE TO
LINEARLY INCREASING

FORCING
β  = dforcing/dtime

Energy balance:

Time-dependence:

C
dT

dt
t J Ts

S s
4= + −β γ εσ

∆T t t e t
s( ) [( ) ]/= − +− −βλ τ τ τ1
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Time
2τ 3τ    4τ    τ 0    .    . 

 ∆ T = βλ-1τ      
 Teq  

 T

λ−1 and τ  are the same as before:  λ τ− =1 / C

For 
  
t /τ  >∼ 3, ∆T t ts( ) ( )= −−βλ τ1

Temperature lags equilibrium response by:  ∆Tlag = −βλ τ1
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APPROACH

Empirically determine heat capacity C and
time constant τ of Earth’s climate system
from observations over the instrumental
period.

Evaluate sensitivity as λ-1 = τ/C.



DETERMINING EARTH’S
HEAT CAPACITY

BY OCEAN CALORIMETRY



HEAT CAPACITY OF EARTH’S
CLIMATE SYSTEM FROM GLOBAL

MEAN HEAT CONTENT AND
SURFACE TEMPERATURE TRENDS

C
dH dt

dT dt

dH

dT
= =/

/s s

C: Global heat capacity

H: Global ocean heat content

Ts: Global mean surface temperature
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ZONAL AVERAGE HEAT CONTENT TREND (1955-2003)
1018 J (100 m)-1 (1˚ latitude)-1 yr-1

•  Heating is greatest in upper ocean, with downwelling plumes.



HEAT CONTENT OF WORLD OCEANS, 1022 J

Levitus et al., 2005



HEAT ABSORPTION BY COMPONENTS
OF EARTH’S CLIMATE SYSTEM

The world ocean is responsible for ~84% of the increase in global
heat content. Levitus et al., 2005



GLOBAL TEMPERATURE TREND OVER THE INDUSTRIAL PERIOD
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 GISS, Goddard Institute for Space Studies, NASA, USA
 CRU, Climatic Research Unit, East Anglia, UK
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EMPIRICAL DETERMINATION OF OCEAN HEAT CAPACITY

C
dH dt
dT dt

= /
/s

Surface
temperature Ts:

GISS, CRU

Ocean heat
content H:

Levitus et al., 2005 -10
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•  ~50% of heat capacity is between surface and 300 m.

•  Other heat sinks raise global heat capacity to 17 ± 7 W yr m-2 K-1.



CHARACTERISTIC TIME OF
EARTH’S CLIMATE SYSTEM

FROM TIME SERIES ANALYSIS



DETERMINATION OF TIME CONSTANT OF EARTH’S CLIMATE
SYSTEM FROM AUTOCORRELATION OF TIME SERIES

Recipe (GISS annual global mean surface temperature anomaly Ts)
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Recipe for determining climate system time constant, continued

3. Examine the lag-1 autocorrelation:
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Recipe for determining climate system time constant, continued

6. If no residual autocorrelation (Markov process) calculate time
constant τ for relaxation of system to perturbation:

r t e t( ) /∆ ∆= − τ   or  τ( ) / ln ( )∆ ∆ ∆T T r T= −               (Leith, 1973)
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• Time constant τ increases with increasing lag time.

• Implies coupling of Ts to a system of longer time constant.

• On decadal scale time constant asymptotes to 5 ± 1 yr.

• This is the e-folding time constant for relaxation of global mean
surface temperature to perturbations on the decadal scale.
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THIS RESULT IS ROBUST
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SUMMARY RESULTS
Quantity Unit Value 1 σ

Effective global heat capacity C W yr m-2 K-1 17 7

Effective climate system time constant τ yr 5 1

Equilibrium climate sensitivity λ τ− =1 / C K/(W m-2) 0.30 0.14

Equilibrium temperature increase for 2 × CO2,
∆T2×

K 1.1 0.5

Total forcing over the 20th century,
F T20 20

1= −∆ / λ
W m-2 1.9 0.9

Forcing in 20th century other than GHGs
(mainly aerosols), F F F20 20 20

other ghg= −
W m-2 -0.3 1.0

Lag in temperature change, ∆Tlag K 0.03



COMPARISON WITH PREVIOUS RESULTS
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Sensitivity obtained in this study is much lower than that from
climate models and paleo studies.



WHAT MIGHT BE WRONG WITH THIS
ANALYSIS?

• Ocean heat capacity too great, resulting in low sensitivity.

Erroneous or nonrepresentative data.

Obtaining heat capacity from measurements.

• Time constant too short, resulting in low sensitivity.

Time series too short to give true time constant.

Detrending emphasizes the rapid fluctuations.

• Earth’s climate system is much more complex than can be
represented by a single-compartment model.

Multiple time constants, multiple heat capacities.



CLIMATE SENSITIVITY AND INFERRED
20th CENTURY TOTAL AND AEROSOL FORCING

Inverse calculation of forcing as function of climate system time constant τ
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Time constant from autocorrelation is τ = 5 ± 1 yr.

Submitted comment suggests τ too small because of length of data record.

Climate sensitivity and inferred forcing depend strongly on time constant.



SUMMARY
• Despite intense research Earth’s climate sensitivity

remains uncertain to at least a factor of 2.

• Energy balance considerations and empirical observations
may usefully refine sensitivity estimates.

• Climate sensitivity can be determined as time constant
upon heat capacity.

• The effective heat capacity of Earth’s climate system is
17 ± 7 W yr m-2 K-1 ≈ 150 m of the world ocean.

The time constant of Earth’s climate system is 5 ± 1 years.

• Climate system response to greenhouse forcing is in
near steady state, with little further warming (due to
present GH gases) “in the pipeline.”

• The equilibrium sensitivity of Earth’s climate system is
0.30 ± 0.14 K / (W m-2);   ∆T2× = 1.1 ± 0.5 K.



CONCLUDING OBSERVATION

• The time constant, heat capacity and sensitivity of Earth’s
climate system are important integral properties that might
instructively be examined in model calculations as well as
in observations.




