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GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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ATMOSPHERIC
RADIATION

Energy per area per
time

Power per area

Unit:
Watt per square meter
W m2




GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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RADIATIVE FORCING

A change 1n a radiative flux term in Earth’s radiation
budget, AF, W m™2.

Working hypothesis:
On a global basis radiative forcings are additive and

fungible.
e This hypothesis 1s fundamental to the radiative
forcing concept.

e This hypothesis underlies much of the assessment of
climate change over the industrial period.



ATMOSPHERIC CARBON DIOXIDE IS INCREASING
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CLIMATE RESPONSE

The change in global and annual mean temperature,
AT, K, resulting from a given radiative forcing.

Working hypothesis:
The change in global mean temperature is
proportional to the forcing, but independent of its
nature and spatial distribution.

AT =85 AF



CLIMATE SENSITIVITY

The change 1n global and annual mean temperature per
unit forcing, S, K/(W m—2),

S = AT/AF.

Climate sensitivity 1s not known and 1s the objective of
much current research on climate change.

Climate sensitivity 1s often expressed as the
temperature for doubled CO» concentration A7T9x.

ATr = SAFr
AFZX =37 W m-2



CLIMATE SENSITIVITY ESTIMATES
THROUGH THE AGES

Estimates of central value and uncertainty range from major
national and international assessments

Carbon Dioxide and Climate:

A Scientific Assessment
NATIONAL ACADEMY OF SCIENCES
Washington, D.C. 1979

\ 7 \ \
1900 7/ /980 / 1990 / 200;%

9 0 | | 1 | | | 5
E\J 5 EV."’VM’VEIQANNVIS%'SA]; ® Charney — . o
8 Y Arrhenius NRC -———-IPCC ———- D
X 4 g : ‘ \ 1 singa "Likel 6% @,
o\ & g SVE’E ‘I y" ° 10 =
_'9 % 5 i# l‘ '2._
.é.. 3 OG'S LK QSTER] ?51 | o ® \.3
:'E' 2 Stefan- | f‘ f'_'ﬂ‘ 1 os 3
7p) el gt .
C Boltzmann s S
c>§1 0 | |
> 1880 1890 2010

Despite extensive research, climate sensitivity remains highly uncertain.



IMPLICATIONS OF UNCERTAINTY IN
CLIMATE SENSITIVITY

Uncertainty in climate sensitivity translates directly
into . . .

e Uncertainty in the amount of incremental
atmospheric CQO; that would result in a given
increase 1n global mean surface temperature.

e Uncertainty in the amount of fossil fuel carbon that
can be combusted consonant with a given climate
effect.

At present this uncertainty is about a factor of 3.



IMPORTANCE OF KNOWLEDGE OF
CLIMATE TO INFORMED
DECISION MAKING

e The lifetime of incremental atmospheric CO; 1s about
100 years.

* The expected life of a new coal-fired power plant 1s
50 to 75 years.

Actions taken today will have long-lasting effects.

Early knowledge of climate sensitivity can result in
huge averted costs.



KEY APPROACHES TO DETERMINING
CLIMATE SENSITIVITY

e Paleoclimate studies: Forcing and response over time
scales from millennial to millions of years.

e Empirical: Forcing and response over the instrumental
record.

e Climate modeling: Understanding the processes that

comprise Earth’s climate system and representing them
in large-scale numerical models.



CLIMATE SENSITIVITY
FROM PALEOCLIMATE



GLOBAL MEAN TEMPERATURE
FROM PALEO DATA
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Last Glacial Maximum: AT = -3 K; Middle Cretaceous, AT = +9 K.



CLIMATE SENSITIVITY FROM PALEO DATA

Component Last Glacial Maximum Middle Cretaceous

Forcing, W m-2 Value+ 16 Value+ 16
Sun 0.0+0.2 -1.2+0.2
Albedo -3.0+£0.5 5.8+0.9
Greenhouse -2.8+£0.3 11.1 6.7
Aerosol -0.9 £ 0.7

Total AF, W m-2 -6.7+£ 0.9 15.7+6.8

AT, K -3.0+£0.5 9.0+20

S, K/(W m-2) 0.45£0.11 0.57 +£0.27

ATy, K (Fyy = 4.4 W m-2) 20+£0.5 25+1.2

Hoffert & Covey, Nature, 1992

Best estimate S = 0.51 £ 0.2 K/(W m2); AT,,, =2.3+0.9K (1 o).



UNCERTAINTY IN
AEROSOL FORCING
AND ITS IMPLICATIONS



AEROSOL INFLUENCES ON CLOUDS
AND RADIATION
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Aerosol radiative forcing is a change in atmospheric radiation budget
due to the change 1n amount or properties of aerosols, typically taken as
present aerosol vs. preindustrial aerosol.



GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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GLOBAL-MEAN RADIATIVE FORCINGS (RF)

Pre-industrial to present (Intergovernmental Panel on Climate Change, 2007)
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CLIMATE SENSITIVITY
FROM CLIMATE MODELS



CLIMATE SENSITIVITY ESTIMATES
FROM GLOBAL CLIMATE MODELS

18 Current global climate models — IPCC AR4, 2007
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Range of model sensitivities is identical with range of current overall

IPCC sensitivity estimate.



TOO ROSY A PICTURE?

Ensemble of 58 model runs with 14 global climate models
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¢ ¢ Simulations that incorporate anthropogenic forcings, including increasing
greenhouse gas concentrations and the effects of aerosols, and that also
incorporate natural external forcings provide a consistent explanation of the
observed temperature record.

¢ ¢ These simulations used models with different climate sensitivities, rates of
ocean heat uptake and magnitudes and types of forcings.



TOO ROSY A PICTURE?

Ensemble of 58 model runs with 14 global climate models

p—
& I I
°\« models using only natural forcings
% models using both natural and anthropogenic forcings
E 1 O [ smssmmm observations N
o)
< Factor of 2
S // actor o
o O i | Fact f4q
S // actor o
]
<
o 0.0 —
Q.
5
- I |
1900 1950 2000

Schwartz, Charlson & Rodhe, Nature Reports — Climate Change, 2007

Uncertainty in modeled temperature increase — less than a factor of 2, red —
is well less than uncertainty in forcing — a factor of 4, green.

The models did not span the full range of the uncertainty and/or . . .

The forcings used in the model runs were anticorrelated with the
sensitivities of the models.



CORRELATION OF AEROSOL FORCING, TOTAL
FORCING, AND SENSITIVITY IN CLIMATE MODELS

Eleven models used in 2007 IPCC analysis

da 2.2 b 29
G 18 18
c <
2 ® £
. 16 . = 16 )
)
j= ¢ 2 o
(83 14 C 14
I 2
T 12 % ¢ = 12 . °
O ’ (S °
= S
1 1
08 ° 08 )
06 0.6
5 2 25 3 35 4 45 5 04 06 08 4 2 14 16
, 1o : -2
Climate Sensitivity (°C) Aerosol Forcing (Wm©)

Modified from Kiehl, GRL, 2007
Climate models with higher sensitivity have lower total forcing.



EMPIRICAL
CLIMATE SENSITIVITY
FROM TEMPERATURE

CHANGE OVER THE
INSTRUMENTAL RECORD



EMPIRICAL DETERMINATION OF CLIMATE
SENSITIVITY OVER INDUSTRIAL PERIOD

Sensitivity 1s temperature change upon forcing accounting for
transient heat uptake — modified from Gregory et al. J. Clim. 2002

o AT
AF —(dH / dr)

Evaluated for 1957-1994 vs. 1861-1900 for AF,, =3.71 W m-2

Symbol Quantity Value+ 1o  Unit

AT Temperature change 0.335+0.017 K

AF Forcing W m-2

dH /dt Planetary heat uptake rate  0.16 £ 0.08 W m-2
S Climate sensitivity 0.5 .@ K/(W m-2)

ATs, AT for doubled CO, 0. 1€ K
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EMPIRICAL DETERMINATION OF CLIMATE
SENSITIVITY OVER INDUSTRIAL PERIOD

Probability distribution function for climate sensitivity
Climate sensitivity, K / W m™
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CLIMATE SENSITIVITY
FROM WHOLE EARTH
ENERGY BALANCE MODELS

WHOLE EARTH CATALOG




ENERGY BALANCE MODEL OF
EARTH’S CLIMATE SYSTEM

1, dH
Global energy balance: C ddt dd =0-F= 7/{TS—¢€GTS4

C 1s heat capacity coupled to climate system on relevant time scale

15 1s global mean surface temperature  H 1s global heat content

Q 1s absorbed solar energy E 1s emitted longwave flux
Jg 18 solar constant Y 1s planetary co-albedo

o 1s Stefan-Boltzmann constant € 1s effective emissivity



ENERGY BALANCE MODEL OF
EARTH’S CLIMATE SYSTEM

Apply step-function forcing: AF =A(Q—-E)

Temperature

At new “equilibrium” AT () = SAF A
Time
S 1l1br S = fo ! K /(W m™
?S et r1um Yo's 1 dlny 1 dine (Wm ™)
climate sensitivity +
4meO 4 dInT|,

If ¥ and € are constant § = 1Ip  Stefan-Boltzmann sensitivity,
(no feedbacks), Y0/s  Ssg=0.30 K/ (W m2); AT, = 1.1 K

1 1
f is feedback [ = ( )= 1 F is feedback

factor 1 diny 1 dlne
4dlnT 4dlnTO

strength



ENERGY BALANCE MODEL OF
EARTH’S CLIMATE SYSTEM

Apply step-function forcing: AF = A(Q-E) = —
At “equilibrium” AT, (o) = SAF B
Time
o Iy .
S is equilibrium S =——f=38sp/Sf Stefan-Boltzmann senstivity
1i e ’)/()J S :
climate sensitivity times feedback factor
Time dependence: AT, (1) = SAF(1—- e~ Y
T 1s climate system time constant T=CSorS=1/C

One equation in three unknowns!

Approach: Determine C and 7 from measurements; calculate sensitivity S.



EMPIRICAL DETERMINATION OF OCEAN HEAT CAPACITY
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e ~50% of heat capacity 1s between surface and 300 m.
e Other heat sinks raise global heat capacity to 17 +7 W yrm2 KL

Fraction equilibrated

Schwartz, JGR, 200
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TIME CONSTANT OF EARTH' SCLIMATE SYSTEM
Determination from autocorrelation of time series

I nput: Monthly global-mean surface temperature anomaly Tg
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Remove long term trend; plot the residuals:
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TIME CONSTANT OF EARTH'SCLIMATE SYSTEM
Determination from autocorrelation of time series (cont’ d)

Calculate autocorrelogram r(Dt), correlation coefficient of detrended
time series with itself, lagged by Dt (& standard deviations).

(0
5 GISS 1880-2007
-1%% |
20 R RO Qo 0 (O |
2 % Hod LDl 3532 4D gﬁj ) i
D o
C i@ 2 D D 2952
\E I Ry i s %3 §53 2 53) i
- -37 Y D 3)%3 D 5 I ( )) gj) D) Do | [P D i I
0 1T [ of{fofifafllile
i D D el ko 8
4 | D iop D 5
-5 | |
0 5 10 15 20

Lag time D, yr



TIME CONSTANT OF EARTH'SCLIMATE SYSTEM
Determination from autocorrelation of time series (cont’ d)

Evaluate climate system time constant ast = (d In r(Dt)/d Dt)-1
Correct for short duration of time series.
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Summary (multiple data sets):

Climate system time constant is 8.5 + 2.5 years

Schwartz, JGR, 2008
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EVALUATION OF SENSITIVITY AND FORCINGS

Quantity Unit Value 10
Effective global heat capacity C Wyrm?K! 17 7
Effective climate system time constant T yr 85 2.5
Equilibrium climate sensitivity S =17/C K/(Wm?) 0.51 0.26
Feedback factor f — 1.7
Equilibrium temperature increase for 2 X CO», K 1.9 1.0
AT

Total forcing over the 20t century, W m 1.1 0.6
Fro=A4T>o /S

Forcing in 20" century other than GHGs W m -1.1 0.7

(mainly aerosols), Fz%ther =I—F 2%1 )

Lag in temperature change, ATj,, K 0.05
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CLIMATE SENSITIVITY ESTIMATES
THROUGH THE AGES

Estimates of central value and uncertainty range from specific
approaches and major national and international assessments
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Sensitivity obtained in this study overlaps range from climate models,
paleo, empirical; seems to rule out AT, 2 3 K.



INVERSE CALCULATION OF “AEROSOL”
FORCING OVER TWENTIETH CENTURY

“Aerosol” forcing = Total forcing — GHG forcing

Total (Inverse calc)

WMGG  —
O5 (Trop + Strat) b

“Aerosol”

! [ . ! \ ! \ !
-2 -1 0 1 2 3
Forcing, W m-2

Total forcing remains uncertain to a factor of 3.

“Aerosol” forcing, calculated as residual, 1s presumably dominated by
aerosols.

“Aerosol” forcing is substantial, with large uncertainty.
“Aerosol” forcing could be masking as much as 75% of GHG warming.



CONCLUDING REMARKS

Traditional approaches to determination of Earth’s climate
sensitivity yield uncertainty of at least a factor of 3, largely
because of uncertainty 1n aerosol forcing.

The energy balance approach offers a new independent
determination of Earth’s climate sensitivity that does not depend
on knowledge of aerosol forcing.

This approach yields a sensitivity that is at the low end of current
estimates and would seem to rule out high sensitivity.

The short time constant, ~ 8.5 years, suggests little heating in the
pipeline from time lags.

Aerosols could be masking up to 75% of GHG forcing and warming.

Nothing in the present study should be construed as diminishing the
need for strenuous reduction in GHG emissions.



FINAL REMARKS

This study 1s a first effort on this approach. I would hope that it
would be refined by further research.

Would I bet the ranch on this analysis? Of course not.





