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GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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Schwartz, 1996, modified from Ramanathan, 1987
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ATMOSPHERIC
RADIATION

Power per area

Energy per time per
area

Unit:
Watt per square meter
W m2




RADIATIVE FORCING

A change 1n a radiative flux term in Earth’s radiation
budget, AF, W m™2.

Working hypothesis:
On a global basis radiative forcings are additive and

fungible.
e This hypothesis 1s fundamental to the radiative
forcing concept.

e This hypothesis underlies much of the assessment of
climate change over the industrial period.



ATMOSPHERIC CARBON DIOXIDE IS INCREASING
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GLOBAL-MEAN RADIATIVE FORCINGS (RF)
BY LONG-LIVED GREENHOUSE GASES

Pre-industrial to present (Intergovernmental Panel on Climate Change, 2007)
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CLIMATE RESPONSE

The change in global and annual mean temperature,
AT, K, resulting from a given radiative forcing.

Working hypothesis:
The change in global mean temperature is
proportional to the forcing, but independent of its
nature and spatial distribution.

AT =85 AF



CLIMATE SENSITIVITY

The change 1n global and annual mean temperature per
unit forcing, S, K/(W m—2),

S = AT/AF.

Climate sensitivity 1s not known and 1s the objective of
much current research on climate change.

Climate sensitivity 1s often expressed as the
temperature for doubled CO» concentration A7T9x.

ATr = SAFr
AFZX =37 W m-2
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CLIMATE SENSITIVITY ESTIMATES
THROUGH THE AGES

Estimates of central value and uncertainty range from major
national and international assessments

Carbon Dioxide and Climate:

A Scientific Assessment
NATIONAL ACADEMY OF SCIENCES
Washington, D.C. 1979
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Despite extensive research, climate sensitivity remains highly uncertain.



IMPLICATIONS OF UNCERTAINTY IN
CLIMATE SENSITIVITY

Uncertainty 1n climate sensitivity results in . . .

e Uncertainty in the amount of incremental atmospheric
CO, that would result in a given increase in global mean
surface temperature.

e Uncertainty in the amount of fossil fuel carbon that can
be combusted consonant with a given climate effect.

This uncertainty has major implications on planning the
nation’s and the world’s energy future.



IMPLICATION OF PRESENT GREENHOUSE FORCING

Expected equilibrium increase in global mean surface temperature as function of
climate sensitivity for present GHG forcing = 2.64 W m-2

Equilibrium Climate Sensitivity, K/(W rn'2)
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Observed increase 1n global temperature from preindustrial 1s 0.8 K.

IPCC 2007 estimate of climate sensitivity, 3 K (range 2.0 — 4.5 K, 1-0) implies
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LIMITS ON FUTURE CO2 EMISSION

Maximum allowable future CO, emission (Pg C) for a given allowable increase
in global mean surface temperature, as function of climate sensitivity
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Commonly accepted maximum increase in global temperature is 2 K.

IPCC 2007 estimate of climate sensitivity is 3 K; range 2.0 - 4.5 K, 1-0.
Current fossil CO7 emission rate is ~9 PgC yr-1.




WHY IS OBSERVED INCREASE
IN GLOBAL TEMPERATURE
SO MUCH LESS THAN EXPECTED?

Heating in the pipeline:
Transient sensitivity < Equilibrium sensitivity.

Other forcings not considered.
Aerosols

Estimated climate sensitivity too low:
Sensitivity < IPCC estimates

Forcing-response model does not apply.

Any or all of the above.



HEATING IN THE PIPELINE

What do climate models tell us?

Transient sensitivity A7(70 yr) 1s increase in global mean temperature
at year 70 while increasing CO2 at 1% per year, compounded.

Compare to equilibrium temperature increase for doubled CO2, AT2x.
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Heating in the pipeline might account for a factor of 2 in

observed temperature increase < expected.



KEY APPROACHES TO DETERMINING
CLIMATE SENSITIVITY

Global
Climate
“Models

Paleo:
Last Glacial Maximum,
Mid-Cretaceous

Empirical:
20" Century



KEY APPROACHES TO DETERMINING
CLIMATE SENSITIVITY

e Paleoclimate studies: Forcing and response over time
scales from millennial to millions of years.
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GLOBAL MEAN TEMPERATURE
FROM PALEO DATA
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x = sin (latitude)
Hoffert & Covey, Nature, 1992

Last Glacial Maximum: AT = -3 K; Middle Cretaceous, AT = +9 K.
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CLIMATE SENSITIVITY FROM PALEO DATA

Component Last Glacial Maximum Middle Cretaceous

Forcing, W m-2 Value+ 16 Value+ 16
Sun 0.0+0.2 -1.2+£0.2
Albedo -3.0+£0.5 5.8+0.9
Greenhouse -2.8+0.3 11.1 6.7
Aerosol -0.9 £ 0.7

Total AF, W m-2 -6.7+£ 0.9 15.7+6.8

AT, K -3.0+£0.5 9.0+20

S, K/(W m-2) 0.45£0.11 0.57 +£0.27

ATy, K (Fyy = 4.4 W m-2) 20+£0.5 25+1.2

Hoffert & Covey, Nature, 1992

Best estimate S = 0.51 £ 0.2 K/(W m2); AT,,, =2.3+0.9K (1 o).
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KEY APPROACHES TO DETERMINING
CLIMATE SENSITIVITY

e Paleoclimate studies: Forcing and response over time
scales from millennial to millions of years.

e Empirical: Forcing and response over the instrumental
record.
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Radiative Forcing by Tropospheric Aerosol

Land Use Changes Industrial Emissions Biomass Burning
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GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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Schwartz, 1996, modified from Ramanathan, 1987
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GLOBAL-MEAN RADIATIVE FORCINGS (RF)

Pre-industrial to present (Intergovernmental Panel on Climate Change, 2007)
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AEROSOLS
THE “MONKEY WRENCH” OF FORCING




Atmospheric Aerosol
Properties and
Climate Impacts

U.S. Climate Change Science Program
Synthesis and Assessment Product 2.3

January 2009




EMPIRICAL DETERMINATION OF CLIMATE
SENSITIVITY OVER INDUSTRIAL PERIOD

Sensitivity 1s temperature change upon forcing accounting for
transient heat uptake — modified from Gregory et al. J. Clim. 2002

AT

S =
AF — (dH / d)

Evaluated for 1957-1994 vs. 1861-1900 for AF,, =3.71 W m-2

Symbol Quantity Value+ 1o  Unit

AT Temperature change 0.335+0.017 K

AF Forcing 0.35+033 W m-2

dH /dt Planetary heat uptake rate  0.16 £ 0.08 W m-2

S Climate sensitivity 056755 |  KAWm2)
AT, AT for doubled CO, 21738, K
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KEY APPROACHES TO DETERMINING
CLIMATE SENSITIVITY

e Paleoclimate studies: Forcing and response over time
scales from millennial to millions of years.

e Empirical: Forcing and response over the instrumental
record.

e Climate modeling: Understanding the processes that

comprise Earth’s climate system and representing them
in large-scale numerical models.
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CLIMATE SENSITIVITY ESTIMATES
FROM GLOBAL CLIMATE MODELS

18 Current global climate models — IPCC AR4, 2007

Sensitivity to 2 x COz’ K
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Range of model sensitivities is identical with range of current overall

IPCC sensitivity estimate.



TOO ROSY A PICTURE?

Ensemble of 58 model runs with 14 global climate models
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¢ ¢ Simulations that incorporate anthropogenic forcings, including increasing
greenhouse gas concentrations and the effects of aerosols, and that also
incorporate natural external forcings provide a consistent explanation of the
observed temperature record.

¢ ¢ These simulations used models with different climate sensitivities, rates of
ocean heat uptake and magnitudes and types of forcings.



TOO ROSY A PICTURE?

Ensemble of 58 model runs with 14 global climate models
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Schwartz, Charlson & Rodhe, Nature Reports — Climate Change, 2007

The models did not span the full range of the uncertainty and/or . . .

The forcings used in the model runs were anticorrelated with the
sensitivities of the models.



CORRELATION OF AEROSOL FORCING, TOTAL
FORCING, AND SENSITIVITY IN CLIMATE MODELS

Eleven models used in 2007 IPCC analysis

Sensitivity, K/(W m2)
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22— I — I \ 2.2
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Inverse Sensitivity, W m-2/K Aerosol forcing, W m=2

Modified from Kiehl, GRL, 2007
Total forcing was linearly correlated with inverse of model sensitivity.
Climate models with lower sensitivity (higher inverse sensitivity)
employed a greater total forcing.

Greater total forcing 1s due to lower magnitude (less negative) aerosol
forcing.



CLIMATE SENSITIVITY
FROM WHOLE EARTH
ENERGY BALANCE MODELS

WHOLE EARTH CATALOG




ENERGY BALANCE MODEL OF
EARTH’S CLIMATE SYSTEM

1, dH
Global energy balance: C ddt dd =0-F= 7/{TS—¢€GTS4

C 1s heat capacity coupled to climate system on relevant time scale

15 1s global mean surface temperature  H 1s global heat content

Q 1s absorbed solar energy E 1s emitted longwave flux
Jg 18 solar constant Y 1s planetary co-albedo

o 1s Stefan-Boltzmann constant € 1s effective emissivity



ENERGY BALANCE MODEL OF
EARTH’S CLIMATE SYSTEM

Apply step-function forcing: AF =A(Q—-E)

Temperature

At new “equilibrium” AT () = SAF A
Time
Ty 1 2

S 1libri S= K/(Wm

?S e rlum Yo's 1 dlny 1 dilne (Wm ™)
climate sensitivity +

4meO 4dInT|,

If ¥ and € are constant § = 1Ip  Stefan-Boltzmann sensitivity,
(no feedbacks), Y0/ Ssg=0.30 K/(Wm™2); ATy, = 1.1 K

is feedback ~ f = 1
J 15 feedbac Ldiny| 1 dine
factor —

4d InT| 4 dInT
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ENERGY BALANCE MODEL OF
EARTH’S CLIMATE SYSTEM

Apply step-function forcing: AF = A(Q-E) = —
At “equilibrium” AT, (o) = SAF B
Time
o Iy .
S is equilibrium S =——f=38sp/Sf Stefan-Boltzmann senstivity
1i e ’)/()J S :
climate sensitivity times feedback factor
Time dependence: AT, (1) = SAF(1—- e~ Y
T 1s climate system time constant T=CSorS=1/C

One equation in three unknowns!

Approach: Determine C and 7 from measurements; calculate sensitivity S.
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EMPIRICAL DETERMINATION OF|OCEAN HEAT CAPACITY

N 6 \ 3 \ 1.5
c dH /dt £
- 000 >
- —
dTS [ dt i 10 3
3 :
Q
Ocean heat content s
. : <
H: Levitusetal.,, = / -
GRL, 2005 ;5 VS g
§ Temperature, | 0.0
T =
Surface temperature ¢ DS
[ ] q) o
Ts GISS,CRU & \ -~ GRU
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0 | | 0 | 0 | |
—
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e e |
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Heat capacity C, W yr m2 K’ Equlibrated depth, m Fraction equilibrated

 ~50% of heat capacity is between surface and 300 m.

«| Other heat sinks raise global heat capacity to 17 +7 W yr m™= K1
i Schwartz, JGR, 2007
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TIME CONSTAN'IjOF EARTH' SCLIMATE SY STEM

Determination from autocorrelation of time series
| nput: Monthly global-mean surface temperature anomaly T¢
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Remove long term trend; plot the residuals:
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TIME CONSTANT OF EARTH'SCLIMATE SYSTEM
Determination from autocorrelation of time series (cont’ d)

Evaluate climate system time constant ast = (d In r(Dt)/d Dt)-1
Correct for short duration of time series.

0 |
t =86+0.7yr 9.0+0.4yr GISS 1880-2007
5&%@1 .
9 % 5
3382;@;5@@2 Jg)SﬂbﬁF 2 ;H%LL T 5513 2215) )‘5 k I Dﬁ B 5@ )2
sikiies] > eee S To @
33)% S)bj el 3?53) D o | P ch, 057
P DOl |40 D
SN Il I bj) i %
47 ’ ol ¢} C@ !
P o
5 | |
0 5 10 15 20

Lag time D, yr

Summary (multiple data sets):

Climate system time constant is|8.5 + 2.5 years

Schwartz, JGR, 2008
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CLIMATE SENSITIVITY ESTIMATES
THROUGH THE AGES

Estimates of central value and uncertainty range from specific
approaches and major national and international assessments

6 | | |
- 1.5
¢ Charney
A N Yo R ———— IPCC ———— —— D

S T T T T @
x >66% | 1.0 <
o Paleo . ) =
>3 e Likely T =
> ~
= ®

2 2 1o 16 ® 05 =
2 : o : a Thi 10 3
o 1- Hoffert IS| D
@ Covey Study

| | |

0 | | | 0.0
1975 1980 1985 1990 1995 2000 2005 2010

Sensitivity obtained in this study overlaps range from climate models,
paleo, empirical; seems to rule out AT, 2 3 K.



INVERSE CALCULATION OF “AEROSOL”
FORCING OVER TWENTIETH CENTURY

“Aerosol” forcing = Total forcing — GHG forcing

Total (Inverse calc)

WMGG  —
O5 (Trop + Strat) b

p— \
“Aerosol” | | \
| [ | ‘ | ‘ |
-2 10— 1 2 3

Forcing, W m-2

Total forcing remains uncertain to a factor of 3.

“Aerosol” forcing, calculated as residual, 1s presumably dominated by
aerosols.

“Aerosol” forcing is substantial, with large uncertainty.

“Aerosol” forcing could be masking as much as 75% of GHG warming.
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EVALUATION OF SENSITIVITY AND FORCINGS

Quantity Unit Value 10
Effective global heat capacity C Wyrm?K! 17 7
Effective climate system time constant T yr 85 2.5
Equilibrium climate sensitivity S =17/C K/(Wm?) 051 0.26
Feedback factor f — 1.7
Equilibrium temperature increase for 2 X CO», K 1.9 1.0
AT

Total forcing over the 20t century, W m 1.1 0.6
Fro=A4T>o /S

Forcing in 20" century other than GHGs W m -1.1 0.7

(mainly aerosols), cmz)ther =I—F 2%1 ®

Lag in temperature change, ATj,, K 0.05




CONCLUDING REMARKS

Traditional approaches to determination of Earth’s climate
sensitivity yield uncertainty of at least a factor of 3, largely
because of uncertainty 1n aerosol forcing.

The energy balance approach offers a new independent
determination of Earth’s climate sensitivity that does not depend
on knowledge of aerosol forcing.

This approach yields a sensitivity that is at the low end of current
estimates and would seem to rule out high sensitivity.

The short time constant, ~ 8.5 years, suggests little heating in the
pipeline from time lags.

Aerosols could be masking up to 75% of GHG forcing and warming.

Nothing in the present study should be construed as diminishing the
need for strenuous reduction in GHG emissions.



FINAL REMARKS

This study 1s a first effort on this approach. I would hope that it
would be refined by further research.

Would I bet the ranch on this analysis? Of course not.





