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GLOBAL TEMPERATURE CHANGE SINCE 1850
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ATMOSPHERIC CARBON DIOXIDE IS INCREASING
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EXPECTED AND OBSERVED TEMPERATURE
CHANGE OVER THE TWENTIETH CENTURY
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Expected increase substantially exceeds observed.



2009|COPENHAGEN ACCORD|AGREES ON
2°C MAXIMUM TEMPERATURE RISE

The Heads of State, Heads of Government, Ministers . . . present at the
United Nations Climate Change Conference 2009 in Copenhagen:

Albania, Algeria, Armenia, Australia, Austria, . . . [106 countries]
..., United States of America, Uruguay and Zambia, have agreed
on this Copenhagen Accord. . ..

We underline that climate change is one of the greatest challenges of
our time. We emphasise our strong political will to urgently combat
climate change. . ..

To ... stabilize greenhouse gas concentration in the atmosphere
at a level that would prevent dangerous anthropogenic
interference with the climate system, we shall, recognizing the
scientific view that the increase in global temperature should be
below 2 degrees Celsius . . . enhance our long-term cooperative
action to combat climate change.
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Temperature Difference to Preindustrial, K
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KEY QUESTION

* How much more CO» can be emitted
without committing Earth to a
temperature increase of 2 "C above
preindustrial?



he Greenhouse Effect
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ATMOSPHERIC
RADIATION

Power per area

Unait:
Watt per square meter
W m2

Photo: S. E. Schwartz



EARTH’S RADIATION BUDGET AND THE GREENHOUSE EFFECT
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WHAT IT REALLY LOOKS LIKE
Measurements for a single day, March 10,2012, W m-2

Shortwave upwelling Net daytime, positive downward

16 121 225 330 435 540 644 749 854 958 1063 300 -169 -38 93 224 355 486 617 748 879 1010

Longwave upwelling Net 24-hr, positive downward

67 99 131 163 195 227 259 291 323 335 387 -200 -150 -100 -50 0 50 100 150 200

NASA CERES Program, courtesy Norman Loeb



RADIATIVE FORCING

An externally imposed change in Earth’s radiation
budget, W m2.

Working hypothesis:

Global temperature change is proportional to forcing.

On a global basis radiative forcings are additive
and interchangeable.



ATMOSPHERIC CARBON DIOXIDE IS INCREASING
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CLIMATE FORCINGS OVER THE
INDUSTRIAL PERIOD
Extracted from IPCC AR4 (2007)
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Forcing, W m-2
Greenhouse gas forcing 1s considered accurately known.
Gases are uniformly distributed; radiation transfer is well understood.



EARTH’S RADIATION BUDGET AND THE GREENHOUSE EFFECT
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HOW MUCH WARMING IS EXPECTED?

Steady-state change Climate

in global mean = gepgitivity X Foreing
surface temperature
AT =5xF

S is “equilibrium” sensitivity. Units: K/(W m™2)

Sensitivity 1s commonly expressed as
“CO2 doubling temperature™

ATZX = 9 X sz

where F5, is the “CO2 doubling forcing” ca.3.7 W m2,



EARTH’S RADIATION BUDGET AND THE GREENHOUSE EFFECT
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ENERGY BALANCE MODEL OF
EARTH’S CLIMATE SYSTEM

dH ’}/J s

Global energy balance: o =Q0—-E= EGT

T5 1s global mean surface temperature  H 1s global heat content

Q 1s absorbed solar energy E 1s emitted longwave flux
Jq 1s solar constant vy 1s planetary co-albedo
o 1s Stefan-Boltzmann constant € 1s effective emissivity
At radiative steady state: 7/43 eoT
’}/] S /4

y=1-0=07; €= ;. for T,=288 K, £ =0.61

oT
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NO FEEDBACK
CLIMATE SENSITIVITY

In absence of feedbacks y and ¢ do not depend on T

Change 1n emitted flux per change in temperature:

dE _ d(eoTy')

4 4 vJ J

=4go']"s3=_E= )/S=}/S

dTy T, LT T4 T
No-teedback sensitivity: SN = dly _dls _(dE ) _ 15
dQ dE dTS )/JS

Js =1360 Wm'%; T, =287 K; y =0.7;
Sng = 0.30 K /(Wm™)

AT, = F>, Snp = 3.7 Wm™ x 030 K /(Wm2) = 1.1 K
~1 o/o NO-SO/O
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Water Vapor Feedback: Pretty Well Understood

Higher temperature,
More water vapor.
More infrared
is absorbed

Positive Feedback
Higher Sensitivity



Cloud Feedbacks: A Big Mystery in Climate Sensitivity

Higher temperature,
Clouds evaporate.
More sunlight
is absorbed

Positive Feedback
Higher Sensitivity



Cloud Feedbacks: A Big Mystery in Climate Sensitivity

Higher temperature,
Clouds evaporate.
More sunlight
is absorbed

igher temperature
More water vapor,

More clouds.
Less sunlight is
absorbed

Positive Feedback Negative Feedback
Higher Sensitivity Lower Sensitivity



CLIMATE SENSITIVITY ESTIMATES
THROUGH THE AGES

Estimates of central value and uncertainty range from major
national and international assessments
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Despite extensive research, climate sensitivity remains highly uncertain.



ESTIMATES OF EARTH’S CLIMATE SENSITIVITY
AND ASSOCIATED UNCERTAINTY

Major national and international assessments and current climate models
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Current estimates of Earth’s climate sensitivity are centered about a CO»
doubling temperature AT»« = 3.5 K, but with substantial uncertainty.

Range of sensitivities of current models roughly coincides with IPCC
“likely” range.



79 QUESTION 72

* Why is there such a large range of
sensitivities in current climate models
and why hasn’t this situation improved
much 1n thirty years?

ANSWER

* This 1s a really tough scientific problem!



20th CENTURY TEMPERATURE ANOMALY

Comparison of Measurements and Global Climate Models
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Despite very different sensitivities the models reproduce the observations.

How can this be?



HOW MUCH WARMING IS EXPECTED?

For increases in long-lived greenhouse gases (CO»,
CH4, N20O, and CFCs) over the industrial period

F=28 Wm™>

Expected temperature increase:

AT B AT, =283k =23K

P, 3.7
. Warmin
Observed temperature increase: Discrepgncy

AT, =08 K
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WHY HAS EARTH NOT WARMED
AS MUCH AS EXPECTED. ..

FROM FORCING BY LONG-LIVED
GREENHOUSE GASES?
U o ] S

about 20 % of |
the discrepancy

 |Countervailing cooling forcing by aerosols.

e Lag in reaching thermal equilibrium.

e Climate sensitivity lower than current estimates.



Climate Forcing by Anthropogenic Aerosols

1992 R.]J. CHARLSON, S. E. SCHWARTZ, J. M. HALES, R. D. CEss,
J. A. COAKLEY, JR., J. E. HANSEN, D. J. HOFMANN

DIRECT AND INDIRECT RADIATIVE INFLUENCES OF AEROSOLS
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AEROSOL IN MEXICO CITY BASIN
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AEROSOL IN MEXICO CITY BASIN

Photo: Berk Knighton

Light scattering by aerosols decreases absorption of solar radiation.



AEROSOLS AS SEEN FROM SPACE

Fire plumes from southern Mexico transported north into Gulf of Mexico.
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CLOUD BRIGHTENING BY SHIP TRACKS

Satelhte photo off California coast
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Credit: SeaWIFS§
Aerosols from ship emissions enhance reflectivity of marine stratus.
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DOE Atmospheric Radiation Measurement Climate Research Facility

Aerosol
Laboratory




AEROSOL OPTICAL DEPTH AT ARM SGP

Fifteen years of daily average AOD in North Central Oklahoma
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Michalsky, Denn, Flynn, Hodges, Kiedron, Koontz, Schlemmer, Schwartz, JGR, 2010

Chemical data: P. Quinn, NOAA

Green curve, locally weighted smooth fit, shows summertime maximum.
Black curve, locally weighted smooth fit to sulfate concentration.




ESTIMATES OF AEROSOL DIRECT FORCING

By radiation transfer modeling
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Aerosol Optical Depth at 550 nm

Continental U. S. typical aerosol optical depth is 0.1: 3 W m-2 cooling forcing .



EARTH’S RADIATION BUDGET AND THE GREENHOUSE EFFECT
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CLIMATE FORCINGS OVER THE
INDUSTRIAL PERIOD
Extracted from IPCC AR4 (2007)
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Forcing, W m-2
Aerosol forcing may offset much of the greenhouse gas forcing.

Uncertainty in total forcing is dominated by uncertainty in aerosol

forcing.
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CORRELATION OF FORCING AND
SENSITIVITY IN CLIMATE MODELS

18 TPCC 2007 climate models
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After Kiehl (2007), data from Forster and Taylor (2006)

To reproduce observed 20 century temperature increase, models with
low sensitivity employed large forcing, and vice versa.



USING CLIMATE MODELS TO ANSWER
“WHAT IF” QUESTIONS

Turn off CO, emissions and aerosol forcing
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Global temperature rapidly increases when aerosol forcing is halted.
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77 QUESTION ?7?
* Why 1s all this so important?

KEY QUESTION

* How much more CO» can be emitted
without committing Earth to a
temperature increase of 2 "C above
preindustrial?



ALLOWABLE FUTURE GLOBAL CO, EMISSION

Such that committed inc in_global mean temperature not exceed 2°C
Based o greenhouse gas forcing only xurrent forcing 2.8 W m-2

\ IPCC AR4 Sensitivity Range (1 o)
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For IPCC best-estimate sensitivity, only about 20 years more emission at
current rate.
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ALLOWABLE FUTURE GLOBAL CO, EMISSION

Such that committed inc in_global mean temperature not exceed 2°C
Based oq greenhouse gas forcing only >urrent forcing 2.8 W m-2

\ IPCC AR4 Sensitivity Range (1 o)
¢

()]
o

A /

Increase in global temperature |
\ above preindustrial

5 Ol
o O
| |

Time at current emission rate, yr

30 - not to exceed 2 'C i
20 - | .
IPCC AR4 |
10 1Best estimate
o | Sensitivity | —
10 \ \ -

) 55 30 35 40 45
Climate Sensitivity AToy, K

For IPCC best-estimate sensitivity, only about 20 years more emission at
current rate.

For IPCC sensitivity range, allowable future emission at current rate
ranges from +60 years to —10 years.
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SUMMARY AND CONCLUSIONS 1

* The “greenhouse effect” 1s an essential feature of Earth’s
climate system.

e The enhanced greenhouse effect is about 1% of Earth’s
radiation budget.

e Observed increase 1n global temperature 1s ~0. K (~0. %).

e Best estimate expected warming due to increases in long-
lived greenhouse gases alone 1s about 2.3 K, or 1.9 K after
accounting for non-steady state response. This 1s a
half an ice age.

 The warming discrepancy is 1.2 K, more than a factor of 2.



SUMMARY AND CONCLUSIONS II

e The warming discrepancy 1s due to some mix of aerosol
forcing and/or lower climate sensitivity.

e Aerosol atmospheric residence times are short. If emissions
are halted (or reduced) aerosol forcing will rapidly decrease
and global temperature would be expected to increase over
a decade. The aerosol offset is a Faustian bargain.

e Allowable future CO, emissions such that the planet 1s not
committed to 2 K increase over preindustrial is uncertain
even in Sign.



This is a very difficult scientific problem.
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